
The SiLK Reference Guide

(SiLK-3.23.1)

CERT Software Automation Product Development
©2002–2024 Carnegie Mellon University

License available in Appendix A

The canonical location for this handbook is
https://tools.netsa.cert.org/silk/silk-reference-guide.pdf

September 26, 2024

https://tools.netsa.cert.org/silk/silk-reference-guide.pdf

SiLK 3.23
Copyright 2024 Carnegie Mellon University.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROMUSE OF THEMATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
Licensed under a GNU GPL 2.0-style license, please see LICENSE.txt or contact permission@sei.cmu.edu
for full terms.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.
This Software includes and/or makes use of Third-Party Software each subject to its own license.
DM24-1064

2

Contents

Introduction 7

1 SiLK Analysis Tools and Utilities 9
mapsid . 10
num2dot . 14
rwaddrcount . 17
rwaggbag . 27
rwaggbagbuild . 34
rwaggbagcat . 43
rwaggbagtool . 53
rwappend . 63
rwbag . 66
rwbagbuild . 78
rwbagcat . 92
rwbagtool . 105
rwcat . 118
rwcombine . 122
rwcompare . 130
rwcount . 133
rwcut . 141
rwdedupe . 156
rwfglob . 163
rwfileinfo . 170
rwfilter . 177
rwgeoip2ccmap . 205
rwgroup . 216
rwidsquery . 225
rwip2cc . 229
rwipaexport . 234
rwipaimport . 237
rwipfix2silk . 239
rwmatch . 244
rwnetmask . 255
rwp2yaf2silk . 260
rwpcut . 262
rwpdedupe . 264
rwpdu2silk . 266
rwpmapbuild . 270
rwpmapcat . 281
rwpmaplookup . 290

3

rwpmatch . 302
rwptoflow . 304
rwrandomizeip . 311
rwrecgenerator . 314
rwresolve . 325
rwscan . 328
rwscanquery . 337
rwset . 346
rwsetbuild . 352
rwsetcat . 357
rwsetmember . 371
rwsettool . 373
rwsilk2ipfix . 384
rwsiteinfo . 394
rwsort . 407
rwsplit . 417
rwstats . 422
rwswapbytes . 445
rwtotal . 448
rwtuc . 455
rwuniq . 465
silk config . 488

3 SiLK Libraries and Plug-Ins 491
addrtype . 492
app-mismatch . 495
ccfilter . 498
conficker-c . 501
cutmatch . 505
flowkey . 508
flowrate . 513
int-ext-fields . 517
ipafilter . 522
packlogic-generic.so . 524
packlogic-twoway.so . 528
pmapfilter . 533
PySiLK . 540
silk-plugin . 577
silkpython . 598

5 SiLK File Formats 629
sensor.conf . 630
silk.conf . 652

7 SiLK Miscellaneous Information 659
SiLK . 660

8 SiLK Administrator’s Tools 671
flowcap . 672
rwflowappend . 678
rwflowpack . 685
rwguess . 700

4

The SiLK Reference Guide

rwpackchecker . 704
rwpollexec . 710
rwreceiver . 715
rwsender . 723

A License 731

SiLK-3.23.1 5

The SiLK Reference Guide

6 SiLK-3.23.1

Introduction

The SiLK Reference Guide contains the manual page for each analysis tool, utility, plug-in, file format, and
collection facility in the SiLK Collection and Analysis Suite.

This document is meant for reference only. The SiLK Analysis Handbook provides both a tutorial for learning
about the tools and examples of how they can be used in analyzing flow data. See the SiLK Installation
Handbook for instructions on installing SiLK at your site.

This reference guide is broken into sections like the traditional UNIX manual: end-user analysis tools and
utilities are described in Section 1; the libraries and plug-ins that augment the behavior of some tools are
presented in Section 3; Section 5 contains information about file formats; miscellaneous information is in
Section 7; and commands for the installer and administrator of SiLK appear in Section 8.

7

The SiLK Reference Guide

8 SiLK-3.23.1

1

SiLK Analysis Tools and Utilities

This section provides the manual page for each analysis tool and utility that the users of SiLK may employ
in their day-to-day work.

9

mapsid(1) The SiLK Reference Guide

mapsid

Map between sensor names and sensor numbers

SYNOPSIS

mapsid [--print-classes] [--print-descriptions]

[--site-config-file=FILENAME]

[{ <sensor-name> | <sensor-number> } ...]

mapsid --help

mapsid --version

DESCRIPTION

As of SiLK 3.0, mapsid is deprecated, and it will be removed in the SiLK 4.0 release. Use rwsiteinfo(1)
instead---the EXAMPLES section shows how to use rwsiteinfo to get output similar to that produced by
mapsid.

mapsid is a utility that maps sensor names to sensor numbers or vice versa depending on the input argu-
ments. Sensors are defined in the silk.conf(5) file.

When no sensor arguments are given to mapsid, the mapping of all sensor numbers to names is printed.
When a numeric argument is given, the number to name mapping is printed for the specified argument.
When a name is given, its numeric id is printed. For convenience when typing in sensor names, case is
ignored.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--print-classes

For each sensor, print the classes for which the sensor collects data. The classes are enclosed in square
brackets, [].

--print-descriptions

For each sensor, print the description of the sensor as defined in the silk.conf file (if any).

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
mapsid searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

10 SiLK-3.23.1

The SiLK Reference Guide mapsid(1)

EXAMPLES

The following examples demonstrate the use of mapsid. In addition, each example shows how to get similar
output using rwsiteinfo(1).

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Name to number mapping

$ mapsid beta

BETA -> 1

$ rwsiteinfo --fields=sensor,id-sensor --sensors=BETA

Sensor|Sensor-ID|

BETA| 1|

Unlike mapsid, matching of the sensor name is case-sensitive in rwsiteinfo.

Number to name mapping

$ mapsid 3

3 -> DELTA

$ rwsiteinfo --fields=id-sensor,sensor --sensors=3 --delimited=,

Sensor-ID,Sensor

3,DELTA

Print all mappings

$ mapsid

0 -> ALPHA

1 -> BETA

2 -> GAMMA

3 -> DELTA

4 -> EPSLN

5 -> ZETA

....

$ rwsiteinfo --fields=id-sensor,sensor --no-titles

0| ALPHA|

1| BETA|

2| GAMMA|

3| DELTA|

4| EPSLN|

5| ZETA|

...

SiLK -3.23.1 11

mapsid(1) The SiLK Reference Guide

Print the class

$ mapsid --print-classes 3 ZETA

3 -> DELTA [all]

ZETA -> 5 [all]

$ rwsiteinfo --fields=id-sensor,sensor,class:list --sensors=4,ZETA

Sensor-ID|Sensor|Class:list|

3| DELTA| all|

5| ZETA| all|

Print the class and description

$ mapsid --print-classes --print-description 0 1

0 -> ALPHA [all] "Primary gateway"

1 -> BETA [all] "Secondary gateway"

rwsiteinfo supports using an integer range when specifying sensors.

$ rwsiteinfo --fields=id-sensor,sensor,class:list,describe-sensor \

--sensors=0-1

Sensor-ID|Sensor|Class:list|Sensor-Description|

0| ALPHA| all| Primary gateway|

1| BETA| all| Secondary gateway|

ENVIRONMENT

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, mapsid may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
mapsid may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

12 SiLK-3.23.1

The SiLK Reference Guide mapsid(1)

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwsiteinfo(1), silk.conf(5), silk(7)

NOTES

As of SiLK 3.0, mapsid is deprecated; use rwsiteinfo(1) instead.

SiLK-3.23.1 13

num2dot(1) The SiLK Reference Guide

num2dot

Convert an integer IP to dotted-decimal notation

SYNOPSIS

num2dot [--ip-fields=FIELDS] [--delimiter=C]

num2dot --help

num2dot --version

DESCRIPTION

num2dot is a filter to speedup sorting of IP numbers and yet result in both a natural order (i.e., 29.23.1.1
will appear before 192.168.1.1) and readable output (i.e., dotted decimal rather than an integer representation
of the IP number).

It is designed specifically to deal with the output of rwcut(1). Its job is to read stdin and convert specified
fields (default field 1) separated by a delimiter (default ’|’) from an integer number into a dotted decimal IP
address. Up to three IP fields can be specified via the --ip-fields=FIELDS option. The --delimiter option
can be used to specify an alternate delimiter.

num2dot does not support IPv6 addresses. The EXAMPLES section below includes an example PySiLK
script to handle IPv6.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--ip-fields=FIELDS

Column number of the input that should be considered IP numbers. Column numbers start from 1. If
not specified, the default is 1.

--delimiter=C

The character that separates the columns of the input. Default is ’|’.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

14 SiLK-3.23.1

The SiLK Reference Guide num2dot(1)

EXAMPLES

In the following example, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Suppose in addition to the default fields of 1-12 produced by rwcut(1), you want to prefix each row with an
integer form of the destination IP and the start time to make processing by another tool (e.g., a spreadsheet)
easier. However, within the default rwcut output fields of 1-12, you want to see dotted-decimal IP addresses.
You could use the following command:

$ rwfilter ... --pass=stdout \

| rwcut --fields=dip,stime,1-12 --ip-format=decimal \

--timestamp-format=epoch \

| num2dot --ip-field=3,4

In the rwcut invocation, you prepend the fields of interest (dip and stime before the standard fields. The
first six columns produced by rwcut will be dIP, sTime, sIP, dIP, sPort, dPort. The --ip-format switch
causes the first, third, and fourth columns to be printed as integers, but you only want the first column to
have an integer representation. The pipe through num2dot will convert the third and fourth columns to
dotted-decimal IP numbers.

num2dot does not support converting integers to IPv6 addresses. The following PySiLK script (see
pysilk(3)) could be used as a starting-point to create a version of num2dot that supports IPv6 addresses:

#! /usr/bin/env python

from __future__ import print_function

import sys

import silk

The IPv6 fields to process; the ID of the first field is 0

ip_fields = (0, 1)

The delimiter between fields

delim = ’|’

The width of the IPv6 fields

width = 39

The file to process; this script processes standard input

f = sys.stdin

try:

for line in f:

fields = line.rstrip(f.newlines).split(delim)

for i in ip_fields:

fields[i] = "%*s" % (width, silk.IPv6Addr(int(fields[i])))

print(delim.join(fields))

finally:

f.close()

SEE ALSO

rwcut(1), pysilk(3), silk(7)

SiLK-3.23.1 15

num2dot(1) The SiLK Reference Guide

BUGS

num2dot has no support for IPv6 addresses.

16 SiLK-3.23.1

The SiLK Reference Guide rwaddrcount(1)

rwaddrcount

Count activity by IPv4 address

SYNOPSIS

rwaddrcount {--print-recs | --print-ips | --print-stat}

[--use-dest] [--min-bytes=BYTEMIN] [--max-bytes=BYTEMAX]

[--min-records=RECMIN] [--max-records=RECMAX]

[--min-packets=PACKMIN] [--max-packets=PACKMAX]

[--set-file=PATHNAME] [--sort-ips] [--timestamp-format=FORMAT]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG] [--site-config-file=FILENAME]

[{--legacy-timestamps | --legacy-timestamps=NUM}]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwaddrcount --help

rwaddrcount --version

DESCRIPTION

rwaddrcount reads SiLK Flow records, sums the byte-, packet-, and record-counts on those records by
individual source or destination IP address and maintains the time window during which that IP address
was active. At the end of the count operation, the results per IP address are displayed when the --print-recs
switch is given. rwaddrcount includes facilities for displaying only those IP address whose byte-, packet-
or flow-counts are between specified minima and maxima.

rwaddrcount does not support IPv6 addresses. To generate output for IPv6 records, use the rwuniq(1)
tool:

rwuniq --fields=sip --values=bytes,packets,records,stime,etime

rwaddrcount reads SiLK Flow records from the files named on the command line or from the standard
input when no file names are specified and --xargs is not present. To read the standard input in addition
to the named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed
as it is read. When the --xargs switch is provided, rwaddrcount reads the names of the files to process
from the named text file or from the standard input if no file name argument is provided to the switch. The
input to --xargs must contain one file name per line.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

For the application to operate, one of the three --print options must be chosen.

SiLK-3.23.1 17

rwaddrcount(1) The SiLK Reference Guide

--print-recs

Print one row for each bin that meets the minima/maxima criteria. Each bin contains the IP address,
number of bytes, number of packets, number of flow records, earliest start time, and latest end time.

--print-ips

Print a single column containing the IP addresses for each bin that meets the minima/maxima criteria.

--print-stat

Print a one or two line summary (plus a title line) that summarizes the bins. The first line is a summary
across all bins, and it contains the number of unique IP addresses and the sums of the bytes, packets,
and flow records. The second line is printed only when one or more minima or maxima are specified.
This second line contains the same columns as first, and its values are the sums across those bins that
meet the criteria.

--use-dest

Count by destination IP address in the filter record rather than source IP.

--min-bytes=BYTEMIN

Filtering criterion; for the final output (stats or printing), only include count records where the total
number of bytes exceeds BYTEMIN

--min-packets=PACKMIN

Filtering criterion; for the final output (stats or printing), only include count records where the total
number of packets exceeds PACKMIN

--min-records=RECMIN

Filtering criterion; for the final output (stats or printing), only include count records where the total
number of filter records contributing to that count record exceeds RECMIN.

--max-bytes=BYTEMAX

Filtering criterion; for the final output (stats or printing), only include count records where the total
number of bytes is less than BYTEMAX.

--max-packets=PACKMAX

Filtering criterion; for the final output (stats or printing), only include count records where the total
number of packets is less than PACKMAX.

--max-records=RECMAX

Filtering criterion; for the final output (stats or printing), only include count records which at most
RECMAX filter records contributed to.

--set-file=PATHNAME

Write the IPs into the rwset(1)-style binary IP-set file named PATHNAME. Use rwsetcat(1) to see
the contents of this file.

--timestamp-format=FORMAT

Specify the format and/or timezone to use when printing timestamps. When this switch is not spec-
ified, the SILK TIMESTAMP FORMAT environment variable is checked for a default format and/or
timezone. If it is empty or contains invalid values, timestamps are printed in the default format,
and the timezone is UTC unless SiLK was compiled with local timezone support. FORMAT is a
comma-separated list of a format and/or a timezone. The format is one of:

18 SiLK-3.23.1

The SiLK Reference Guide rwaddrcount(1)

default

Print the timestamps as YYYY /MM /DDThh:mm:ss

iso

Print the timestamps as YYYY -MM -DD hh:mm:ss

m/d/y

Print the timestamps as MM /DD/YYYY hh:mm:ss

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

--ip-format=FORMAT

For the --print-recs and --print-ips output formats, specify how IP addresses are printed, where
FORMAT is a comma-separated list of the arguments described below. When this switch is not
specified, the SILK IP FORMAT environment variable is checked for a value and that format is used
if it is valid. The default FORMAT is canonical. Since SiLK 3.7.0.

canonical

Print IP addresses in the canonical format: dot-separated decimal for IPv4 (192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1). Prevent use of the mixed IPv4-IPv6
representation when map-v4 is also included in FORMAT. For example, use ::ffff:c000:201

instead of ::ffff:192.0.2.1. Since SiLK 3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and
::ffff:192.0.2.1 as 3221225985 and 281473902969345, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
::ffff:192.0.2.1 as c00000201 and ffffc00000201, respectively.

zero-padded

Make all IP address strings contain the same number of characters by padding num-
bers with leading zeros. For example, print 192.0.2.1 as 192.000.002.001. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

Change addresses to IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock) prior
to formatting. Since SiLK 3.17.0.

SiLK-3.23.1 19

rwaddrcount(1) The SiLK Reference Guide

unmap-v6

Do nothing (rwaddrcount does not support IPv6 addresses as the key). Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release.

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in the canonical format. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release

--sort-ips

For the --print-recs and --print-ips output formats, the results are presented sorted by IP address.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwaddrcount’s textual output to a different location.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwaddrcount exits with
an error unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten.
If this switch is not given, the output is either sent to the pager or written to the standard output.

20 SiLK-3.23.1

The SiLK Reference Guide rwaddrcount(1)

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if value of the pager is determined to be the
empty string, no paging is performed and all output is written to the terminal.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwaddrcount searches for the site configuration file in the locations specified in the FILES section.

--legacy-timestamps

--legacy-timestamps=NUM

When NUM is not specified or is 1, this switch is equivalent to --timestamp-format=m/d/y.
Otherwise, the switch has no effect. This switch is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwaddrcount opens each named file
in turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

Deprecated Switches

The following switches are deprecated. They will be removed in SiLK 4.0.

--byte-min=BYTEMIN

Deprecated alias for --min-bytes.

--packet-min=PACKMIN

Deprecated alias for --min-packets.

--rec-min=RECMIN

Deprecated alias for --min-records.

--byte-max=BYTEMAX

Deprecated alias for --max-bytes.

--packet-max=PACKMAX

Deprecated alias for --max-packets.

--rec-max=RECMAX

Deprecated alias for --max-records.

SiLK-3.23.1 21

rwaddrcount(1) The SiLK Reference Guide

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To print a list of source IP addresses that appeared in exactly one TCP record during the first 12 hours of
2003-Sep-01, use:

$ rwfilter --start-date=2003/09/01:00 --end-date=2003/09/01:11 \

--proto=6 --pass=stdout \

| rwaddrcount --max-records=1 --print-ips

In general, to print out record information, use rwaddrcount with --print-recs

$ rwfilter --start-date=2003/01/17:00 --end-date=2003/01/17:23 \

--proto=6 --pass=stdout \

| rwaddrcount --print-rec --no-title | head -3

10.10.10.1| 65792| 147| 21| 2003/01/17T00:19:01| 2003/01/17T02:00:13|

10.10.10.2| 110744| 89| 7| 2003/01/17T01:21:42| 2003/01/17T01:39:21|

10.10.10.3| 864| 18| 6| 2003/01/17T00:20:33| 2003/01/17T01:25:38|

Replacements for rwaddrcount

We note some overlapping features between rwaddrcount and rwuniq(1). There is often more than one
way to perform the same task in the SiLK tool set.

Here’s a guide to replacing each of the outputs of rwaddrcount:

The --print-recs switch prints five pieces of information for each source or destination address:

$ rwaddrcount --print-recs data.rw

sIP|Bytes|Packets|Records| Start_Time| End_Time|

10.0.0.144| 1646| 4| 1|2007/05/09T18:01:41|2007/05/09T18:01:41|

10.14.203.121| 40| 1| 1|2007/05/09T18:31:54|2007/05/09T18:31:54|

10.14.203.122| 40| 1| 1|2007/05/09T18:32:43|2007/05/09T18:32:43|

10.15.6.14| 539| 3| 3|2007/05/09T18:03:05|2007/05/09T18:08:07|

12.0.101.22| 4365| 23| 2|2007/05/09T18:26:43|2007/05/09T18:43:46|

To do the same in rwuniq, specify either sip in --fields and the --values shown here:

$ rwuniq --fields=sip --values=bytes,packets,flows,stime,etime data.rw

sIP|Bytes|Packets|Records| min_sTime| max_eTime|

10.0.0.144| 1646| 4| 1|2007/05/09T18:01:41|2007/05/09T18:01:41|

10.14.203.121| 40| 1| 1|2007/05/09T18:31:54|2007/05/09T18:31:54|

10.14.203.122| 40| 1| 1|2007/05/09T18:32:43|2007/05/09T18:32:43|

10.15.6.14| 539| 3| 3|2007/05/09T18:03:05|2007/05/09T18:08:07|

12.0.101.22| 4365| 23| 2|2007/05/09T18:26:43|2007/05/09T18:43:46|

22 SiLK -3.23.1

The SiLK Reference Guide rwaddrcount(1)

When rwaddrcount includes --use-dest, change the --fields switch of rwuniq to dip. Replace the --
sort-ips switch of rwaddrcount with --sort-output in rwuniq.

The --print-stat switch in rwaddrcount prints a one-line summary of the data:

$ rwaddrcount --print-stat data.rw

| sIP_Uniq| Bytes| Packets| Records|

Total| 57727| 948620676| 2026581| 382578|

This is difficult to produce with rwuniq. If there is a field that you know is either empty or constant across
all records (such as nhip or in), you can use that as the key field in rwuniq.

$ rwuniq --fields=nhIP --values=distinct:sip,bytes,packets,flows data.rw

nhIP|sIP-Distinct| Bytes| Packets| Records|

0.0.0.0| 57727| 948620676| 2026581| 382578|

Note that class generally does not work since each type within a class produces its own row:

$ rwuniq --fields=class --values=distinct:sip,bytes,packets,flows data.rw

class|sIP-Distinct| Bytes| Packets| Records|

all| 8674| 260143344| 964621| 151447|

all| 55540| 688477332| 1061960| 6184399|

One trick is to use stime as the key with a very large --bin-time:

$ rwuniq --fields=stime --bin-time=2147483647 \

--values=distinct:sip,bytes,packets,flows data.rw

sTime|sIP-Distinct| Bytes| Packets| Records|

1970/01/01T00:00:00| 57727| 948620676| 2026581| 382578|

Finally, you can use separate invocations of rwfilter(1), rwset(1), and rwsetcat(1):

$ rwfilter --print-volume --all=stdout data.rw \

| rwset --sip=stdout \

| rwsetcat --count-ips

| Recs| Packets| Bytes| Files|

Total| 382578| 2026581| 948620676| 1|

Pass| 382578| 2026581| 948620676| |

Fail| 0| 0| 0| |

57727

rwaddrcount’s --print-ips switch prints the IP addresses as text:

$ rwaddrcount --print-ips data.rw

sIP

10.0.0.144

10.14.203.121

10.14.203.122

10.15.6.14

12.0.101.22

SiLK -3.23.1 23

rwaddrcount(1) The SiLK Reference Guide

A combination of rwset and rwsetcat is the best way to handle this:

$ rwset --sip-file=stdout data.rw | rwsetcat --print-ips

10.0.0.144

10.14.203.121

10.14.203.122

10.15.6.14

12.0.101.22

Alternatively, use rwuniq and the UNIX tool cut(1) to only print the first column:

$ rwuniq --fields=sIP data.rw \

| cut -d ’|’ -f 1

sIP

10.0.0.144

10.14.203.121

10.14.203.122

10.15.6.14

12.0.101.22

rwaddrcount allows you to restrict the output to bins that have a certain minimum or maximum count of
bytes, packets, or flows via --min-bytes, --max-bytes, --min-packets, --max-packets, --min-records,
and --max-records:

$ rwaddrcount --print-recs --min-byte=1024 --max-byte=2048 \

--max-records=1 data.rw

sIP|Bytes|Packets|Records| Start_Time| End_Time|

10.0.0.144| 1646| 4| 1|2007/05/09T18:01:41|2007/05/09T18:01:41|

10.14.203.121| 40| 1| 1|2007/05/09T18:31:54|2007/05/09T18:31:54|

10.14.203.122| 40| 1| 1|2007/05/09T18:32:43|2007/05/09T18:32:43|

rwuniq supports the same operations using the --bytes, --packets, and --flows switches, each of which
allows you to define a desired minimum and maximum value.

$ rwuniq --fields=sip --values=bytes,packets,records,stime,etime \

--bytes=1024-2048 --flows=1-1 data.rw

sIP|Bytes|Packets|Records| min_sTime| max_eTime|

10.0.0.144| 1646| 4| 1|2007/05/09T18:01:41|2007/05/09T18:01:41|

10.14.203.121| 40| 1| 1|2007/05/09T18:31:54|2007/05/09T18:31:54|

10.14.203.122| 40| 1| 1|2007/05/09T18:32:43|2007/05/09T18:32:43|

ENVIRONMENT

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

24 SiLK-3.23.1

The SiLK Reference Guide rwaddrcount(1)

SILK PAGER

When set to a non-empty string, rwaddrcount automatically invokes this program to display its
output a screen at a time. If set to an empty string, rwaddrcount does not automatically page its
output.

PAGER

When set and SILK PAGER is not set, rwaddrcount automatically invokes this program to display
its output a screen at a time.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwaddrcount may use this environment variable when searching for the SiLK site configura-
tion file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwaddrcount may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwaddrcount displays timestamps. (If both of those are false, the TZ environment variable
is ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwaddrcount --version.)

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SiLK-3.23.1 25

rwaddrcount(1) The SiLK Reference Guide

SEE ALSO

rwset(1), rwsetcat(1), rwstats(1), rwtotal(1), rwuniq(1), silk(7), tzset(3), environ(7)

NOTES

rwaddrcount only supports IPv4 addresses, and it will not be modified to support IPv6 addresses. To
produce output similar to rwaddrcount for IPv6 addresses, use rwuniq(1):

rwuniq --fields=sip --values=bytes,packets,records,stime,etime

When used in an IPv6 environment, rwaddrcount converts IPv6 flow records that contain addresses in
the ::ffff:0:0/96 prefix to IPv4 and processes them. IPv6 records having addresses outside of that prefix are
ignored.

rwaddrcount uses a fairly large hashtable to store data, but it is likely that as the amount of data expands,
the application will take more time to process data.

Similar binning of records are produced by rwstats(1), rwtotal(1), and rwuniq(1).

To generate a list of IP addresses without the volume information, use rwset(1).

26 SiLK-3.23.1

The SiLK Reference Guide rwaggbag(1)

rwaggbag

Build a binary Aggregate Bag from SiLK Flow records

SYNOPSIS

rwaggbag --keys=KEY --counters=COUNTER

[--note-strip] [--note-add=TEXT] [--note-file-add=FILE]

[--invocation-strip] [--print-filenames] [--copy-input=PATH]

[--compression-method=COMP_METHOD]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[--output-path=PATH]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwaggbag --help

rwaggbag --help-fields

rwaggbag --version

DESCRIPTION

rwaggbag reads SiLK Flow records and builds an Aggregate Bag file. To build an Aggregate Bag from
textual input, use rwaggbagbuild(1).

An Aggregate Bag is a binary file that maps a key to a counter, where the key and the counter are both
composed of one or more fields. For example, an Aggregate Bag could contain the sum of the packet count
and the sum of the byte count for each unique source IP and source port pair.

For each SiLK flow record rwaggbag reads, it extracts the values of the fields listed in the --keys switch,
combines those fields into a key, searches for an existing bin that has that key and creates a new bin for that
key if none is found, and adds the values for each of the fields listed in the --counters switch to the bin’s
counter. Both the --keys and --counters switches are required.

rwaggbag reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it
is read. When the --xargs switch is provided, rwaggbag reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

If rwaggbag runs out of memory, it will exit immediately. The output Aggregate Bag file remains behind
with a size of 0 bytes.

To print the contents of an Aggregate Bag as text, use rwaggbagcat(1). The rwaggbagbuild(1) tool can
create an Aggregate Bag from textual input. rwaggbagtool(1) allows you to manipulate binary Aggregate
Bag files.

SiLK-3.23.1 27

rwaggbag(1) The SiLK Reference Guide

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--keys=KEY

Create a key for binning flow records using the values of the comma-separated field(s) listed in KEY.
The field names are case-insensitive, a name may be abbreviated to its shortest unique prefix, and a
name may only be used one time. The list of available KEY fields are

sIPv4

source IP address when IPv4

sIPv6

source IP address when IPv6

dIPv4

destination IP address when IPv4

dIPv6

destination IP address when IPv6

sPort

source port for TCP or UDP, or equivalent

dPort

destination port for TCP or UDP, or equivalent

protocol

IP protocol

packets

count of packets recorded for this flow record

bytes

count of bytes recorded for this flow record

flags

bit-wise OR of TCP flags over all packets in the flow

sTime

starting time of the flow, in seconds resolution

duration

duration of the flow, in seconds resolution

eTime

ending time of the flow, in seconds resolution

sensor

numeric ID of the sensor where the flow was collected

input

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

output

router SNMP output interface or postVlanId

28 SiLK-3.23.1

The SiLK Reference Guide rwaggbag(1)

nhIPv4

router next hop IP address when IPv4

nhIPv6

router next hop IP address when IPv6

initialFlags

TCP flags on first packet in the flow as reported by yaf(1)

sessionFlags

bit-wise OR of TCP flags over all packets in the flow except the first as reported by yaf

attributes

flow attributes set by the flow generator

application

content of the flow as reported in the applabel field of yaf

class

class of the sensor at the collection point

type

type of the sensor at the collection point

icmpType

ICMP type value for ICMP and ICMPv6 flows, 0 otherwise

icmpCode

ICMP code value for ICMP and ICMPv6 flows, 0 otherwise

scc

the country code of the source IP address. Uses the mapping file specified by the
SILK COUNTRY CODES environment variable or the country codes.pmap mapping file, as de-
scribed in FILES. (See also ccfilter(3).) Since SiLK 3.19.0.

dcc

the country code of the destination IP address. See scc. Since SiLK 3.19.0.

--counters=COUNTER

Add to the bin determined by the fields in --key the values of the comma-separated field(s) listed in
COUNTER. The field names are case-insensitive, a name may be abbreviated to its shortest unique
prefix, and a name may only be used one time. The list of available COUNTER fields are

records

count of the number of flow records that match the key

sum-packets

the sum of the packet counts for flow records that match the key

sum-bytes

the sum of the byte counts for flow records that match the key

sum-duration

the sum of the durations (in seconds) for flow records that match the key

--note-strip

Do not copy the notes (annotations) from the input file(s) to the output file. When this switch is not
specified, notes from the input file(s) are copied to the output.

SiLK-3.23.1 29

rwaggbag(1) The SiLK Reference Guide

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--invocation-strip

Do not record any command line history: do not copy the invocation history from the input files to the
output file(s), and do not record the current command line invocation in the output. The invocation
may be viewed with rwfileinfo(1).

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwaggbag’s output to a different location.

--output-path=PATH

Write the binary Aggregate Bag output to PATH, where PATH is a filename, a named pipe, the
keyword stderr to write the output to the standard error, or the keyword stdout or - to write the
output to the standard output. If PATH names an existing file, rwaggbag exits with an error unless
the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwaggbag to exit with an error.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains. Only IP
addresses contained in IPv4 flow records will be added to the Aggregate Bag.

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flow records. When creating a bag whose key
is an IP address and the input contains IPv6 addresses outside of the ::ffff:0:0/96 netblock, this
policy is equivalent to force; otherwise it is equivalent to asv4.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

30 SiLK-3.23.1

The SiLK Reference Guide rwaggbag(1)

only

Process only flow records that are marked as IPv6. Only IP addresses contained in IPv6 flow
records will be added to the Aggregate Bag.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwaggbag searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwaggbag opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--help-fields

Print the names and descriptions of the keys and counters that may be used in the --keys and --
counters switches and exit. Since SiLK 3.22.0.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 31

rwaggbag(1) The SiLK Reference Guide

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To create an Aggregate Bag that sums the packet count for destination IPs addresses in the SiLK Flow file
data.rw :

$ rwaggbag --key=dipv6 --counter=sum-packets data.rw \

| rwaggbagcat

To sum the number of records, packet count, and byte count for all flow records

$ rwaggbag --key=dport --counter=records,sum-packets,sum-bytes \

--output-path=dport.aggbag data.rw

To count the number of records seen for each unique source port, destination port, and protocol:

$ rwaggbag --key=sport,dport,proto --counter=records data.rw \

| rwaggbagcat

ENVIRONMENT

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwaggbag
uses when mapping an IP to a country for the scc and dcc keys. The value may be a complete path
or a file relative to the SILK PATH. See the FILES section for standard locations of this file.

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwaggbag may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwaggbag may use this environment variable. See the FILES section for details.

32 SiLK-3.23.1

The SiLK Reference Guide rwaggbag(1)

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

$SILK COUNTRY CODES

$SILK PATH/share/silk/country codes.pmap

$SILK PATH/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the scc and dcc keys.

NOTES

rwaggbag and the other Aggregate Bag tools were introduced in SiLK 3.15.0.

SEE ALSO

rwaggbagbuild(1), rwaggbagcat(1), rwaggbagtool(1), rwbag(1), rwfileinfo(1), rwfilter(1),
rwnetmask(1), rwset(1), rwuniq(1), ccfilter(3), sensor.conf(5), silk(7), yaf(1), zlib(3)

SiLK-3.23.1 33

rwaggbagbuild(1) The SiLK Reference Guide

rwaggbagbuild

Create a binary aggregate bag from non-flow data

SYNOPSIS

rwaggbagbuild [--fields=FIELDS]

[--constant-field=FIELD=VALUE [--constant-field=FIELD=VALUE...]]

[--column-separator=CHAR] [--no-titles]

[--bad-input-lines=FILE] [--verbose] [--stop-on-error]

[--note-add=TEXT] [--note-file-add=FILE]

[--invocation-strip] [--compression-method=COMP_METHOD]

[--output-path=PATH] [--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE...]]}

rwaggbagbuild --help

rwaggbagbuild --help-fields

rwaggbagbuild --version

DESCRIPTION

rwaggbagbuild builds a binary Aggregate Bag file by reading one or more files containing textual input.
To build an Aggregate Bag from SiLK Flow records, use rwaggbag(1).

An Aggregate Bag is a binary file that maps a key to a counter, where the key and the counter are both
composed of one or more fields. For example, an Aggregate Bag could contain the sum of the packet count
and the sum of the byte count for each unique source IP and source port pair.

rwaggbagbuild reads its input from the files named on the command line or from the standard input when
no file names are specified, when --xargs is not present, and when the standard input is not a terminal. To
read the standard input in addition to the named files, use - or stdin as a file name. When the --xargs
switch is provided, rwaggbagbuild reads the names of the files to process from the named text file or from
the standard input if no file name argument is provided to the switch. The input to --xargs must contain
one file name per line.

The new Aggregate Bag file is written to the location specified by the --output-path switch. If it is not
provided, output is sent to the standard output when it is not connected to a terminal.

The Aggregate Bag file must have at least one field that it considers and key field and at least one field that
it considers a counter field. See the description of the --fields switch.

In general (and as detailed below), each line of the text input files becomes one entry in the Aggregate Bag
file. It is also possible to specify that each entry in the Aggregate Bag file contains additional fields, each
with a specific value. These fields are specified by the --constant-field switch whose argument is a field
name, an equals sign (’=’), and a textual representation of a value. The named field becomes one of the key
or counter fields in the Aggregate Bag file, and that field is given the specified value for each entry that is
read from an input file. See the --fields switch in the OPTIONS section for the names of the fields and the
acceptable forms of the textual input for each field.

The remainder of this section details how rwaggbagbuild processes each text input file to create an Ag-
gregate Bag file.

34 SiLK-3.23.1

The SiLK Reference Guide rwaggbagbuild(1)

When the --fields switch is specified, its argument specifies the key and counter fields that the new Aggregate
Bag file is to contain. If --fields is not specified, the first line of the first input file is expected to contain field
names, and those names determine the Aggregate Bag’s key and counter. A field name of ignore causes
rwaggbagbuild to ignore the values in that field when parsing the input.

The textual input is processed one line at a time. Comments begin with a ’#’-character and continue to the
end of the line; they are stripped from each line. After removing the comments, any line that is blank or
contains only whitespace is ignored.

All other lines must contain valid input, which is a set of fields separated by a delimiter. The default delimiter
is the virtual bar (’|’) and may be changed with the --column-separator switch. Whitespace around a
delimiter is allowed; however, using space or tab as the separator causes each space or tab character to be
treated as a field delimiter. The newline character is not a valid delimiter character since it is used to denote
records, and ’#’ is not a valid delimiter since it begins a comment.

The first line of each input file may contain delimiter-separated field names denoting in which order the fields
appear in this input file. As mentioned above, when the --fields switch is not given, the first line of the first
file determines the Aggregate Bag’s key and counter. To tell rwaggbagbuild to treat the first line of each
file as field values to be parsed, specify the --no-titles switch.

Every other line must contain delimiter-separated field values. A delimiter may follow the final field on a
line. rwaggbagbuild ignores lines that contain either too few or too many fields.

See the description of the --fields switch in the OPTIONS section for the names of the fields and the
acceptable forms of the textual input for each field.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--fields=FIELDS

Specify the fields in the input files. FIELDS is a comma separated list of field names. Field names are
case-insensitive, and a name may be abbreviated to the shortest unique prefix. Other than the ignore
field, a field name may not be specified more than once. The Aggregate Bag file must have at least
one key field and at least one counter field.

The names of the fields that are considered key fields, their descriptions, and the format of the input
that each expects are:

ignore

field that rwaggbagbuild is to skip

sIPv4

source IP address, IPv4 only; either the canonical dotted-quad format or an integer from 0 to
4294967295 inclusive

dIPv4

destination IP address, IPv4 only; uses the same format as sIPv4

nhIPv4

next hop IP address, IPv4 only; uses the same format as sIPv4

any-IPv4

a generic IPv4 address; uses the same format as sIPv4

SiLK-3.23.1 35

rwaggbagbuild(1) The SiLK Reference Guide

sIPv6

source IP address, IPv6 only; the canonical hex-encoded format for IPv6 addresses

dIPv6

destination IP address, IPv6 only; uses the same format as sIPv6

nhIPv6

next hop IP address, IPv6 only; uses the same format as sIPv6

any-IPv6

a generic IPv6 address; uses the same format as sIPv6

sPort

source port; an integer from 0 to 65535 inclusive

dPort

destination port; an integer from 0 to 65535 inclusive

any-port

a generic port; an integer from 0 to 65535 inclusive

protocol

IP protocol; an integer from 0 to 255 inclusive

packets

packet count; an integer from 1 to 4294967295 inclusive

bytes

byte count; an integer from 1 to 4294967295 inclusive

flags

bit-wise OR of TCP flags over all packets; a string containing F, S, R, P, A, U, E, C in upper- or
lowercase

initialFlags

TCP flags on the first packet; uses the same form as flags

sessionFlags

bit-wise OR of TCP flags on the second through final packet; uses the same form as flags

sTime

starting time in seconds; uses the form YYYY/MM/DD[:hh[:mm[:ss[.sss]]]] (any fractional sec-
onds value is dropped). A T may be used in place of : to separate the day and hour fields. A
floating point value between 536870912 and 2147483647 is also allowed and is treated as seconds
since the UNIX epoch.

eTime

ending time in seconds; uses the same format as sTime

any-time

a generic time in seconds; uses the same format as sTime

duration

duration of flow; a floating point value from 0.0 to 4294967.295

sensor

sensor name or ID at the collection point; a string as given in silk.conf(5)

class

class at collection point; a string as given in silk.conf

36 SiLK-3.23.1

The SiLK Reference Guide rwaggbagbuild(1)

type

type at collection point; a string as given in silk.conf

input

router SNMP ingress interface or vlanId; an integer from 0 to 65535

output

router SNMP egress interface or postVlanId; an integer from 0 to 65535

any-snmp

a generic SNMP value; an integer from 0 to 65535

attribute

flow attributes set by the flow generator:

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

T

flow generator prematurely created a record for a long-running connection due to a timeout
or a byte-count threshold

C

flow generator created a record as a continuation of a previous record for a connection that
exceeded a timeout or byte-count threshold

application

guess as to the content of the flow; as an integer from 0 to 65535

icmpType

ICMP type; an integer from 0 to 255 inclusive

icmpCode

ICMP code; an integer from 0 to 255 inclusive

scc

the country code of the source; accepts a two character string to use as the country of the source
IP. The code is not checked for validity against the country codes.pmap file. The code must be
ASCII and it may contain two letters, a letter followed by a number, or the string --. Since SiLK
3.19.0.

dcc

the country code of the destination. See scc. Since SiLK 3.19.0.

any-cc

a generic country code. See scc. Since SiLK 3.19.0.

custom-key

a generic key; an integer from 0 to 4294967295 inclusive

The names and descriptions of the fields that are considered counter fields are listed next. For each,
the type of input is an unsigned 64-bit number; that is, an integer from 0 to 18446744073709551615.

records

count of records that match the key

sum-packets

sum of packet counts

SiLK-3.23.1 37

rwaggbagbuild(1) The SiLK Reference Guide

sum-bytes

sum of byte counts

sum-duration

sum of duration values

custom-counter

a generic counter

--constant-field=FIELD=VALUE

For each entry (row) read from the input file(s), insert or replace a field named FIELD and set its
value to VALUE. VALUE is a textual representation of the field’s value as described in the description
of the --fields switch above. When FIELD is a counter field and the same key appears multiple times
in the input, VALUE is added to the counter multiple times. If a field named FIELD appears in an
input file, its value from that file is ignored. Specify the --constant-field switch multiple times to
insert multiple fields.

--column-separator=CHAR

When reading textual input, use the character CHAR as the delimiter between columns (fields) in
the input. The default column separator is the vertical pipe (’|’). rwaggbagbuild normally ignores
whitespace (space and tab) around the column separator; however, using space or tab as the separator
causes each space or tab character to be treated as a field delimiter. The newline character is not
a valid delimiter character since it is used to denote records, and ’#’ is not a valid delimiter since it
begins a comment.

--bad-input-lines=FILEPATH

When parsing textual input, copy any lines than cannot be parsed to FILEPATH. The strings stdout
and stderr may be used for the standard output and standard error, respectively. Each bad line
is prepended by the name of the source input file, a colon, the line number, and a colon. On exit,
rwaggbagbuild removes FILEPATH if all input lines were successfully parsed.

--verbose

When a textual input line fails to parse, print a message to the standard error describing the problem.
When this switch is not specified, parsing failures are not reported. rwaggbagbuild continues to
process the input after printing the message. To stop processing when a parsing error occurs, use
--stop-on-error.

--stop-on-error

When a textual input line fails to parse, print a message to the standard error describing the problem
and exit the program. When this occurs, the output file contains any records successfully created prior
to reading the bad input line. The default behavior of rwaggbagbuild is to silently ignore parsing
errors. To report parsing errors and continue processing the input, use --verbose.

--no-titles

Parse the first line of the input as field values. Normally when the --fields switch is specified, rwagg-
bagbuild examines the first line to determine if the line contains the names (titles) of fields and skips
the line if it does. rwaggbagbuild exits with an error when --no-titles is given but --fields is not.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

38 SiLK-3.23.1

The SiLK Reference Guide rwaggbagbuild(1)

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--invocation-strip

Do not record the command used to create the Aggregate Bag file in the output. When this switch
is not given, the invocation is written to the file’s header, and the invocation may be viewed with
rwfileinfo(1).

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--output-path=PATH

Write the binary Aggregate Bag output to PATH, where PATH is a filename, a named pipe, the
keyword stderr to write the output to the standard error, or the keyword stdout or - to write the
output to the standard output. If PATH names an existing file, rwaggbagbuild exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is written to the standard output. Attempting to write the binary
output to a terminal causes rwaggbagbuild to exit with an error.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwaggbagbuild searches for the site configuration file in the locations specified in the FILES section.

--xargs

SiLK-3.23.1 39

rwaggbagbuild(1) The SiLK Reference Guide

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwaggbagbuild opens each named file
in turn and reads text from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--help-fields

Print the names and descriptions of the keys and counters that may be used in the --fields and
--constant-field switches and exit. Since SiLK 3.22.0.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Assume the following textual data in the file rec.txt :

dIP|dPort| packets| bytes|

10.245.15.175| 80| 127| 12862|

192.168.251.186|29222| 131| 351213|

10.247.186.130| 80| 596| 38941|

192.168.239.224|29362| 600| 404478|

192.168.215.219| 80| 400| 32375|

10.255.252.19|28925| 404| 1052274|

192.168.255.249| 80| 112| 7412|

10.208.7.238|29246| 109| 112977|

192.168.254.127| 80| 111| 9759|

10.218.34.108|29700| 114| 461845|

To create an Aggregate Bag file from this data, provide the --fields switch with the names used by the
Aggregate Bag tools:

$ rwaggbagbuild --fields=dipv4,dport,sum-packets,sum-bytes \

--output-path=ab.aggbag rec.txt

Use the rwaggbagcat(1) tool to view it:

$ rwaggbagcat ab.aggbag

dIPv4|dPort| sum-packets| sum-bytes|

10.208.7.238|29246| 109| 112977|

10.218.34.108|29700| 114| 461845|

10.245.15.175| 80| 127| 12862|

10.247.186.130| 80| 596| 38941|

10.255.252.19|28925| 404| 1052274|

40 SiLK -3.23.1

The SiLK Reference Guide rwaggbagbuild(1)

192.168.215.219| 80| 400| 32375|

192.168.239.224|29362| 600| 404478|

192.168.251.186|29222| 131| 351213|

192.168.254.127| 80| 111| 9759|

192.168.255.249| 80| 112| 7412|

Create an Aggregate Bag from the destination port field and count the number of times each port appears,
ignore all fields except the dPort fields and use --constant-field to add a new field:

$ rwaggbagbuild --fields=ignore,dport,ignore,ignore \

--constant-field=record=1 \

| rwaggbagcat

dPort| records|

80| 5|

28925| 1|

29222| 1|

29246| 1|

29362| 1|

29700| 1|

Alternatively, use rwaggbagtool(1) to get the same information from the ab.aggbag file created above:

$ rwaggbagtool --select-fields=dport \

--insert-field=record=1 ab.aggbag \

| rwaggbagcat

dPort| records|

80| 5|

28925| 1|

29222| 1|

29246| 1|

29362| 1|

29700| 1|

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwaggbagbuild may use this environment variable when searching for the SiLK site configu-
ration file.

SiLK-3.23.1 41

rwaggbagbuild(1) The SiLK Reference Guide

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwaggbagbuild may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwaggbag(1), rwaggbagcat(1), rwaggbagtool(1), rwfileinfo(1), rwset(1), rwsetbuild(1), rwset-
cat(1), rwsettool(1), ccfilter(3), silk.conf(5), silk(7), zlib(3)

NOTES

rwaggbagbuild and the other Aggregate Bag tools were introduced in SiLK 3.15.0.

42 SiLK-3.23.1

The SiLK Reference Guide rwaggbagcat(1)

rwaggbagcat

Output a binary Aggregate Bag file as text

SYNOPSIS

rwaggbagcat [--fields=FIELDS

[--missing-field=FIELD=STRING [--missing-field=FIELD=STRING...]]]

[--timestamp-format=FORMAT] [--ip-format=FORMAT]

[--integer-sensors] [--integer-tcp-flags]

[--no-titles] [--no-columns] [--column-separator=C]

[--no-final-delimiter] [{--delimited | --delimited=C}]

[--output-path=PATH] [--pager=PAGER_PROG]

[--site-config-file=FILENAME]

[AGGBAGFILE [AGGBAGFILE...]]

rwaggbagcat --help

rwaggbagcat --help-fields

rwaggbagcat --version

DESCRIPTION

rwaggbagcat reads a binary Aggregate Bag as created by rwaggbag(1) or rwaggbagbuild(1), converts
it to text, and outputs it to the standard output, the pager, or the specified file.

As of SiLK 3.22.0, rwaggbagcat accepts a --fields switch to control the order in which the fields are printed.

rwaggbagcat reads the AGGBAGFILE s specified on the command line; if no AGGBAGFILE arguments
are given, rwaggbagcat attempts to read an Aggregate Bag from the standard input. To read the standard
input in addition to the named files, use - or stdin as an AGGBAGFILE name. If any input does not
contain an Aggregate Bag file, rwaggbagcat prints an error to the standard error and exits abnormally.

When multiple AGGBAGFILE s are specified on the command line, each is handled individually. To process
the files as a single Aggregate Bag, use rwaggbagtool(1) to combine the Aggregate Bags and pipe the
output of rwaggbagtool into rwaggbagcat. Using --fields in this situation allows for a consistent output
across the multiple files and causes the titles to appear only once. No value is printed if --fields names a
key or counter that is not present in one of the files.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--fields=FIELDS

Print only the key and/or counter fields given in this comma separated list. Fields are printed in
the order given in FIELDS, and keys and counters may appear in any order or not at all. Specifying

SiLK-3.23.1 43

rwaggbagcat(1) The SiLK Reference Guide

--fields only changes the order in which the columns are printed, it does not re-order the entries (rows)
in the Aggregate Bag file. If FIELDS includes fields not present in an input Aggregate Bag file, prints
the string specified for that field by --missing-field or an empty value. The title line is printed only
one time even if multiple Aggregate Bag files are read.

The names of the fields that may appear in FIELDS are:

sIPv4

source IP address, IPv4 only

dIPv4

destination IP address, IPv4 only

nhIPv4

next hop IP address, IPv4 only

any-IPv4

a generic IPv4 address

sIPv6

source IP address, IPv6 only

dIPv6

destination IP address, IPv6 only

nhIPv6

next hop IP address, IPv6 only

any-IPv6

a generic IPv6 address

sPort

source port

dPort

destination port

any-port

a generic port

protocol

IP protocol

packets

packet count

bytes

byte count

flags

bit-wise OR of TCP flags over all packets

initialFlags

TCP flags on the first packet

sessionFlags

bit-wise OR of TCP flags on the second through final packet

sTime

starting time in seconds

eTime

ending time in seconds

44 SiLK-3.23.1

The SiLK Reference Guide rwaggbagcat(1)

any-time

a generic time in seconds

duration

duration of flow

sensor

sensor name or ID at the collection point

class

class at collection point

type

type at collection point

input

router SNMP ingress interface or vlanId

output

router SNMP egress interface or postVlanId

any-snmp

a generic SNMP value

attribute

flow attributes set by the flow generator

application

guess as to the content of the flow

icmpType

ICMP type

icmpCode

ICMP code

scc

the country code of the source

dcc

the country code of the destination

any-cc

a generic country code

custom-key

a generic key

records

counter: count of records that match the key

sum-packets

counter: sum of packet counts

sum-bytes

counter: sum of byte counts

sum-duration

counter: sum of duration values

custom-counter

counter: a generic counter

SiLK-3.23.1 45

rwaggbagcat(1) The SiLK Reference Guide

Since SiLK 3.22.0.

--missing-field=FIELD=STRING

When --fields is active, print STRING as the value for FIELD when FIELD is not present in the
input Aggregate Bag file. The default value is the empty string. The switch may be repeated to set
the missing value string for multiple fields. rwaggbagcat exits with an error if FIELD is not present
in --fields or if this switch is specified but --fields is not. STRING may be any string. Since SiLK
3.22.0.

--timestamp-format=FORMAT

Specify the format, timezone, and/or modifier to use when printing timestamps. When this switch is not
specified, the SILK TIMESTAMP FORMAT environment variable is checked for a format, timezone,
and modifier. If it is empty or contains invalid values, timestamps are printed in the default format,
and the timezone is UTC unless SiLK was compiled with local timezone support. FORMAT is a
comma-separated list of a format, a timezone, and/or a modifier. The format is one of:

default

Print the timestamps as YYYY /MM /DDThh:mm:ss.sss.

iso

Print the timestamps as YYYY -MM -DD hh:mm:ss.sss.

m/d/y

Print the timestamps as MM /DD/YYYY hh:mm:ss.sss.

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

--ip-format=FORMAT

Specify how IP addresses are printed, where FORMAT is a comma-separated list of the arguments
described below. When this switch is not specified, the SILK IP FORMAT environment variable is
checked for a value and that format is used if it is valid. The default FORMAT is canonical.

canonical

Print IP addresses in the canonical format. If the column is IPv4, use dot-separated deci-
mal (192.0.2.1). If the column is IPv6, use colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

46 SiLK-3.23.1

The SiLK Reference Guide rwaggbagcat(1)

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively.

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

Change an IPv4 column to IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock)
prior to formatting. Since SiLK 3.17.0.

unmap-v6

For an IPv6 column, change any IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 net-
block) to IPv4 addresses prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-sensors

Print the integer ID of the sensor rather than its name.

--integer-tcp-flags

Print the TCP flag fields (flags, initialFlags, sessionFlags) as an integer value. Typically, the characters
F,S,R,P,A,U,E,C are used to represent the TCP flags.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

SiLK-3.23.1 47

rwaggbagcat(1) The SiLK Reference Guide

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwaggbagcat exits with
an error unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten.
If this option is not given, the output is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwaggbagcat searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--help-fields

Print the names and descriptions of the keys and counters that may be used in the --fields and
--missing-field switches and exit. Since SiLK 3.22.0.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The formatting switches on rwaggbagcat are similar to those on the other SiLK tools.

Creating and printing an Aggregate Bag file

First, use rwaggbag(1) to create an Aggregate Bag file from the SiLK Flow file data.rw :

$ rwaggbag --key=sport,dport --counter=sum-pack,sum-byte \

--output-path=ab.aggbag data.rw

To print the contents of the Aggregate Bag file:

48 SiLK -3.23.1

The SiLK Reference Guide rwaggbagcat(1)

$ rwaggbagcat ab.aggbag | head -4

sPort|dPort| sum-packets| sum-bytes|

0| 0| 73452| 6169968|

0| 769| 15052| 842912|

0| 771| 14176| 793856|

Reordering the columns

Use the --fields switch (added in SiLK 3.22.0) to control the order of the columns in the output or to select
only some columns:

$ rwaggbagcat --fields=dPort,sPort,sum-bytes ab.aggbag | head -4

dPort|sPort| sum-bytes|

0| 0| 6169968|

769| 0| 842912|

771| 0| 793856|

The --fields switch only changes the positions of the columns. The sPort field is still the primary key in
the output shown above.

The --fields switch may also include fields that are not in the input. By default, rwaggbagcat prints an
empty value for those fields, but the --missing-field switch may be used to display any string instead. The
argument to --missing-field is FIELD=STRING where FIELD is one of the fields in --fields.

$ rwaggbagcat --fields=sipv4,proto,dport,sum-bytes \

--missing=sipv4=n/a ab.aggbag | head -4

sIPv4|pro|dPort| sum-bytes|

n/a| | 0| 6169968|

n/a| | 769| 842912|

n/a| | 771| 793856|

Using --fields with IP addresses

When creating an Aggregate Bag file with the source IP address and protocol as keys, rwaggbagcat prints
the columns in a different order depending on whether the address is treated as IPv4 or IPv6.

When the key is the source IPv4 address and the protocol, the Aggregate Bag is built with the source address
as the primary key:

$ rwaggbag --key=sipv4,proto --counter=records data.rw \

| rwaggbagcat

sIPv4|pro| records|

10.4.52.235| 6| 1|

10.5.231.251| 6| 1|

10.9.77.117| 6| 1|

Reading the same file but treating the data as IPv6 results in the protocol being the primary key:

$ rwaggbag --key=sipv6,proto --counter=records data.rw \

| rwaggbagcat

SiLK -3.23.1 49

rwaggbagcat(1) The SiLK Reference Guide

pro| sIPv6| records|

1| ::ffff:10.40.151.242| 1|

1| ::ffff:10.44.140.138| 1|

1| ::ffff:10.53.204.62| 1|

In the latter case, the --fields may be used to display the source IPv6 address first, but the switch only
changes the positions of the columns, it does not reorder the entries (rows):

$ rwaggbag --key=sipv6,proto --counter=records data.rw \

| rwaggbagcat --fields=sipv6,proto,records

sIPv6|pro| records|

::ffff:10.40.151.242| 1| 1|

::ffff:10.44.140.138| 1| 1|

::ffff:10.53.204.62| 1| 1|

Removing the columns or the title from the output

To produce comma separated data:

rwaggbagcat --delimited=, /tmp/ab.aggbag | head -4

sPort,dPort,sum-packets,sum-bytes

0,0,73452,6169968

0,769,15052,842912

0,771,14176,793856

To remove the title:

$ rwaggbagcat --no-title ab.aggbag | head -4

0| 0| 73452| 6169968|

0| 769| 15052| 842912|

0| 771| 14176| 793856|

0| 2048| 14356| 1205904|

Customizing the IP and timestamp format

To change the format of IP addresses:

$ rwaggbag --key=sipv4,dipv4 --counter=sum-pack,sum-byte data.rw \

| rwaggbagcat --ip-format=decimal | head -4

sIPv4| dIPv4| sum-packets| sum-bytes|

168047851|3232295339| 255| 18260|

168159227|3232293505| 331| 536169|

168381813|3232282689| 563| 55386|

To change the format of timestamps:

$ rwaggbag --key=stime,etime --counter=sum-pack,sum-byte data.rw \

| rwaggbagcat --timestamp-format=epoch | head -4

50 SiLK -3.23.1

The SiLK Reference Guide rwaggbagcat(1)

sTime| eTime| sum-packets| sum-bytes|

1234396802|1234396802| 2| 259|

1234396802|1234398594| 526| 38736|

1234396803|1234396803| 9| 504|

ENVIRONMENT

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided.

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PAGER

When set to a non-empty string, rwaggbagcat automatically invokes this program to display its
output a screen at a time. If set to an empty string, rwaggbagcat does not automatically page its
output.

PAGER

When set and SILK PAGER is not set, rwaggbagcat automatically invokes this program to display
its output a screen at a time.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwaggbagcat may use this environment variable when searching for the SiLK site configura-
tion file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwaggbagcat may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwaggbagcat displays timestamps. (If both of those are false, the TZ environment variable
is ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwaggbagcat --version.)

SiLK-3.23.1 51

rwaggbagcat(1) The SiLK Reference Guide

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

NOTES

The --fields, --missing-field, and --help-fields switches were added in SiLK 3.22.0.

rwaggbagcat and the other Aggregate Bag tools were introduced in SiLK 3.15.0.

SEE ALSO

rwaggbag(1), rwaggbagbuild(1), rwaggbagtool(1), silk(7), tzset(3), environ(7)

52 SiLK-3.23.1

The SiLK Reference Guide rwaggbagtool(1)

rwaggbagtool

Manipulate binary Aggregate Bag files

SYNOPSIS

rwaggbagtool

[{ --remove-fields=REMOVE_LIST | --select-fields=SELECT_LIST

| --to-bag=BAG_KEY,BAG_COUNTER

| --to-ipset=FIELD [--ipset-record-version=VERSION] }]

[--insert-field=FIELD=VALUE [--insert-field=FIELD2=VALUE2...]]

[{ --add | --subtract | --divide }]

[--zero-divisor-result={error | remove | maximum | VALUE}]

[--scalar-multiply={VALUE | FIELD=VALUE}

[--scalar-multiply={VALUE | FIELD=VALUE}...]]

[--min-field=FIELD=VALUE [--min-field=FIELD=VALUE...]]

[--max-field=FIELD=VALUE [--max-field=FIELD=VALUE...]]

[--set-intersect=FIELD=FILE [--set-intersect=FIELD=FILE...]]

[--set-complement=FIELD=FILE [--set-complement=FIELD=FILE...]]

[--output-path=PATH [--modify-inplace [--backup-path=BACKUP]]]

[--note-strip] [--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD]

[--site-config-file=FILENAME]

[AGGBAG_FILE [AGGBAG_FILE ...]]

rwaggbagtool --help

rwaggbagtool --help-fields

rwaggbagtool --version

DESCRIPTION

rwaggbagtool performs operations on one or more Aggregate Bag files and creates a new Aggregate Bag
file, a new Bag file, or an new IPset file. An Aggregate Bag is a binary file that maps a key to a counter, where
the key and the counter are both composed of one or more fields. rwaggbag(1) and rwaggbagbuild(1)
are the primary tools used to create an Aggregate Bag file. rwaggbagcat(1) prints a binary Aggregate Bag
file as text.

The operations that rwaggbagtool supports are field manipulation (inserting or removing keys or counters),
adding, subtracting, and dividing counters (all files must have the same keys and counters) across multiple
Aggregate Bag files, multiplying all counters or only selected counters by a value, intersecting with an IPset,
selecting rows based on minimum and maximum values of keys and counters, and creating a new IPset or
Bag file.

rwaggbagtool processes the Aggregate Bag files listed on the command line. When no file names are
specified, rwaggbagtool attempts to read an Aggregate Bag from the standard input. To read the standard
input in addition to the named files, use - or stdin as a file name. If any input is not an Aggregate Bag
file, rwaggbagtool prints an error to the standard error and exits with an error status.

SiLK-3.23.1 53

rwaggbagtool(1) The SiLK Reference Guide

By default, rwaggbagtool’s output is written to the standard output. Use --output-path to specify a
different location. As of SiLK 3.21.0, rwaggbagtool supports the --modify-inplace switch which correctly
handles the case when an input file is also used as the output file. That switch causes rwaggbagtool to
write the output to a temporary file first and then replace the original output file. The --backup-path
switch may be used in conjunction with --modify-inplace to set the pathname where the original output
file is copied.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

The options are presented here in the order in which rwaggbagtool performs them: Field manipulation
switches are applied to each file when it is read; multi-file operation switches combine the Aggregate Bags
together; single-file operation switches are applied; filtering switches remove rows from the Aggregate Bag;
the result is output as an Aggregate Bag, a standard Bag, or as an IPset.

Field manipulation switches

The following switches allow modification of the fields in the Aggregate Bag file. The --remove-fields and
--select-fields switches are mutually exclusive, and they reduce the number of fields in the Aggregate Bag
input files. Those switches also conflict with --to-ipset and --to-bag which resemble field selectors. The
--insert-field switch is applied after --remove-fields or --select-fields, and it adds a field unless that field
is already present.

--remove-fields=REMOVE LIST

Remove the fields specified in REMOVE LIST from each of the Aggregate Bag input files, where
REMOVE LIST is a comma-separated list of field names. This switch may include field names that
are not in an Aggregate Bag input, and those field names are ignored. If a field name is included in this
list and in a --insert-field switch, the field is given the value specified by the --insert-field switch,
and the field is included in the output Aggregate Bag file. If removing a key field produces multiple
copies of a key, the counters of those keys are merged. rwaggbagbuild exits with an error when this
switch is used with --select-fields, --to-ipset, or --to-bag.

--select-fields=SELECT LIST

For each Aggregate Bag input file, only use the fields in SELECT LIST, a comma-separated list of field
names. Alternatively, consider this switch as removing all fields that are not included in SELECT LIST.
This switch may include field names that are not in an Aggregate Bag input, and those field names are
ignored. When a field name is included in this list and in a --insert-field switch, the field uses its value
from the input Aggregate Bag file if present, and it uses the value specified in the --insert-field switch
otherwise. If selecting only some key fields produces multiple copies of a key, the counters of those
keys are merged. rwaggbagbuild exits with an error when this switch is used with --remove-fields,
--to-ipset, or --to-bag.

--insert-field=FIELD=VALUE

For each entry read from an Aggregate Bag input file, insert a field named FIELD and set its value
to VALUE if one of the following is true: (1)the input file does not contain a field named FIELD or
(2)the input file does have a field named FIELD but it was removed by either (2a)being listed in the
--remove-fields list or (2b)not being listed in the --select-fields list. That is, this switch only inserts

54 SiLK-3.23.1

The SiLK Reference Guide rwaggbagtool(1)

FIELD when FIELD is not present in the input Aggregate Bag, but specifying FIELD in --remove-
fields removes it from the input. VALUE is a textual representation of the field’s value as described
in the description of the --fields switch in the rwaggbagbuild(1) tool. This switch may be repeated
in order to insert multiple fields. If --to-ipset or --to-bag is specified, --insert-field may only name
a field that is an argument to that switch.

Operations on multiple Aggregate Bag files

The following operations act on multiple Aggregate Bag files. These operations require all of the Aggregate
Bag files to have the same set of key fields and counter fields. (Use the field manipulation switches to ensure
this.) The values of the keys may differ, but the set of fields that comprise the key must match. It is an
error if multiple operations are specified.

--add

Sum each of the counters for each key for all the Aggregate Bag input files. The keys in the result are
the union of the set of keys that appear in all input files. Addition operations that overflow an unsigned
64-bit value are set to the maximum (18446744073709551615). If no other operation is specified, the
add operation is the default.

--subtract

Subtract from the counters in the first Aggregate Bag file the counters in the second Aggregate Bag
file, and repeat the process for each additional Aggregate Bag file. The keys in the result are a subset
of the keys that appear in the first file: If a key does not appear in the first Aggregate Bag file, its
counters are ignored in subsequent files. If a key does not appear in the second file, its counters in the
first file are unchanged. Subtraction operations that result in a negative value are set to zero. If all
counters for a key are zero, the key does not appear in the output.

--divide

Divide the counters in first Aggregate Bag file by the second Aggregate Bag file, and repeat the process
for each additional Aggregate Bag file. The keys in the result are a subset of the keys that appear
in the first file: If a key does not appear in the first Aggregate Bag file, its counters are ignored in
subsequent files. If a key does not appear in the second file, its counters are treated as zero and the
outcome is determined by the action specified by --zero-divisor-result. That option also determines
the result when the two Aggregate Bag files have matching keys but a counter in the second bag is zero.
If --zero-divisor-result is not given, rwaggbagtool exits with error if division by zero is detected.
Since Aggregate Bag files do not support floating point numbers, the result of the division is rounded
to the nearest integer (values ending in .5 are rounded up). Since SiLK 3.22.0.

While not an operation, the next switch is related to --divide and is described here.

--zero-divisor-result={ error | remove | maximum | VALUE }
Specify how to handle division by zero in the --divide operation, which can occur either because the
first Aggregate Bag file (the dividend) contains a key that does not exist in the second file (the divisor)
or because an individual counter in the divisor is zero. The supported arguments are:

error

Causes rwaggbagtool to exit with an error. This is the default when --zero-divisor-result is
not given.

remove

Tells rwaggbagtool to remove this key from the output.

SiLK-3.23.1 55

rwaggbagtool(1) The SiLK Reference Guide

nochange

Tells rwaggbagtool to leave the individual counter in the first Aggregate Bag unchanged.

maximum

Sets the individual counter to the maximum value supported, which is the maximum unsigned
64-bit value (18446744073709551615).

VALUE

Sets the individual counter to VALUE, which can be any unsigned 64-bit value (0 to
18446744073709551615 inclusive).

This switch has no effect when --divide is not used. Since SiLK 3.22.0.

Counter operations

The following switch modifies the counters in an Aggregate Bag file. The operation may be combined with
any of those from the previous section. This operation occurs after the above and before any filtering
operation.

--scalar-multiply=VALUE

--scalar-multiply=FIELD=VALUE

Multiply all counter fields or one counter field by a value. If the argument is a positive integer value
(1 or greater), multiply all counters by that value. If the argument contains an equals sign, treat the
part to the left as a counter’s field name and the part to the right as the multiplier for that field:
a non-negative integer value (0 or greater). The maximum VALUE is 18446744073709551615. This
switch may be repeated; when a counter name is repeated or the all-counters form is repeated, the
final multiplier is the product of all the values. Since SiLK 3.22.0.

Filtering switches

The following switches remove entries from the Aggregate Bag file based on a field’s value. These switches
are applied immediately before the output is generated.

--min-field=FIELD=VALUE

Remove from the Aggregate Bag file all entries where the value of the field FIELD is less than VALUE,
where VALUE is a textual representation of the field’s value as described in the description of the --
fields switch in the rwaggbagbuild(1) tool. This switch is ignored if FIELD is not present in the
Aggregate Bag. This switch may be repeated. Since SiLK 3.17.0.

--max-field=FIELD=VALUE

Remove from the Aggregate Bag file all entries where the value of the field FIELD is greater than
VALUE, where VALUE is a textual representation of the field’s value as described in the description
of the --fields switch in the rwaggbagbuild(1) tool. This switch is ignored if FIELD is not present
in the Aggregate Bag. This switch may be repeated. Since SiLK 3.17.0.

--set-intersect=FIELD=SET FILE

Read an IPset from the stream SET FILE, and remove from the Aggregate Bag file all entries where
the value of the field FIELD is not present in the IPset. SET FILE may be the name a file or the
string - or stdin to read the IPset from the standard input. This switch is ignored if FIELD is not
present in the Aggregate Bag. This switch may be repeated. Since SiLK 3.17.0.

56 SiLK-3.23.1

The SiLK Reference Guide rwaggbagtool(1)

--set-complement=FIELD=SET FILE

Read an IPset from the stream SET FILE, and remove from the Aggregate Bag file all entries where
the value of the field FIELD is present in the IPset. SET FILE may be the name a file or the string
- or stdin to read the IPset from the standard input. This switch is ignored if FIELD is not present
in the Aggregate Bag. This switch may be repeated. Since SiLK 3.17.0.

Output switches

The following switches control the output.

--to-bag=BAG KEY,BAG COUNTER

After operating on the Aggregate Bag input files, create a (normal) Bag file from the resulting Aggregate
Bag. Use the BAG KEY field as the key of the Bag, and the BAG COUNTER field as the counter
of the Bag. Write the Bag to the standard output or the destination specified by --output-path.
When this switch is used, the only legal field names that may be used in the --insert-field switch are
BAG KEY and BAG COUNTER. rwaggbagbuild exits with an error when this switch is used with
--remove-fields, --select-fields, or --to-ipset.

--to-ipset=FIELD

After operating on the Aggregate Bag input files, create an IPset file from the resulting Aggregate
Bag by treating the values in the field named FIELD as IP addresses, inserting the IP addresses into
the IPset, and writing the IPset to the standard output or the destination specified by --output-
path. When this switch is used, the only legal field name that may be used in the --insert-field
switch is FIELD. rwaggbagbuild exits with an error when this switch is used with --remove-fields,
--select-fields, or --to-bag.

--ipset-record-version=VERSION

Specify the format of the IPset records that are written to the output when the --to-ipset switch
is used. VERSION may be 2, 3, 4, 5 or the special value 0. When the switch is not provided, the
SILK IPSET RECORD VERSION environment variable is checked for a version. The default version
is 0.

0

Use the default version for an IPv4 IPset and an IPv6 IPset. Use the --help switch to see the
versions used for your SiLK installation.

2

Create a file that may hold only IPv4 addresses and is readable by all versions of SiLK.

3

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.0 and later.

4

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.7 and later. These
files are more compact that version 3 and often more compact than version 2.

5

Create a file that may hold only IPv6 addresses and is readable by SiLK 3.14 and later. When
this version is specified, IPsets containing only IPv4 addresses are written in version 4. These
files are usually more compact that version 4.

SiLK-3.23.1 57

rwaggbagtool(1) The SiLK Reference Guide

--output-path=PATH

Write the resulting Aggregate Bag, IPset (see --to-ipset), or Bag (see --to-bag) to PATH, where
PATH is a filename, a named pipe, the keyword stderr to write the output to the standard error,
or the keyword stdout or - to write the output to the standard output. If PATH names an ex-
isting file, rwaggbagtool exits with an error unless the --modify-inplace switch is given or the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If --output-path
is not given, the output is written to the standard output. Attempting to write the binary output to
a terminal causes rwaggbagtool to exit with an error.

--modify-inplace

Allow rwaggbagtool to overwrite an existing file and properly account for the output file (PATH)
also being an input file. When this switch is given, rwaggbagtool writes the output to a temporary
location first, then overwrites PATH. rwaggbagtool attempts to copy the permission, owner, and
group from the original file to the new file. The switch is ignored when PATH does not exist or the
output is the standard output or standard error. rwaggbagtool exits with an error when this switch
is given and PATH is not a regular file. If rwaggbagtool encounters an error or is interrupted prior
to closing the temporary file, the temporary file is removed. See also --backup-path. Since SiLK
3.21.0.

--backup-path=BACKUP

Move the file named by --output-path (PATH) to the path BACKUP immediately prior to moving
the temporary file created by --modify-inplace over PATH. If BACKUP names a directory, the file
is moved into that directory. This switch will overwrite an existing file. If PATH and BACKUP point
to the same location, the output is written to PATH and no backup is created. If BACKUP cannot
be created, the output is left in the temporary file and rwaggbagtool exits with a message and an
error. rwaggbagtool exits with an error if this switch is given without --modify-inplace. Since
SiLK 3.21.0.

--note-strip

Do not copy the notes (annotations) from the input files to the output file. Normally notes from the
input files are copied to the output.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

58 SiLK-3.23.1

The SiLK Reference Guide rwaggbagtool(1)

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

Miscellaneous switches

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwaggbagtool searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--help-fields

Print the names and descriptions of the fields that may be used in the command line options that
require a field name. Since SiLK 3.22.0.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Add two files

Read today’s incoming flow records by type and use rwaggbag(1) to create an Aggregate Bag file for each,
in.aggbag and inweb.aggbag, that count records using the protocol and both ports as the key. Add the
counters in the two files to create total.aggbag. Use rwaggbagcat(1) to display the result.

$ rwfilter --type=in --all=- \

| rwaggbag --key=sport,dport,proto --counter=records \

--output-path=in.aggbag

SiLK -3.23.1 59

rwaggbagtool(1) The SiLK Reference Guide

$ rwfilter --type=inweb --all=- \

| rwaggbag --key=sport,dport,proto --counter=records \

--output-path=inweb.aggbag

$ rwaggbagtool --add in.aggbag inweb.aggbag --output-path=total.aggbag

$ rwaggbagcat total.aggbag

Subtract a file

Subtract inweb.aggbag from total.aggbag.

$ rwaggbagtool --subtract total.aggbag inweb.aggbag \

| rwaggbagcat

Percent of traffic

Compute the percent of all incoming traffic per protocol and ports that was stored in the inweb type by
multiplying the counters in inweb.aggbag by 100 and dividing by total.aggbag.

$ rwaggbagtool --scalar-multiply=100 inweb.aggbag \

| rwaggbagtool --divide stdin total.aggbag \

| rwaggbagcat

Create a file

Create an Aggregate Bag file from data.rw where the ports are the key and that sums the bytes and packets.

$ rwaggbag --key=sport,dport \

--counter=sum-bytes,sum-packets data.rw \

--output-path=my-ab.aggbag

Choose selected fields

Using the previous file, get just the source port and byte count from the file my-ab.aggbag. One approach is
to remove the destination port and packet count.

$ rwaggbagtool --remove=dport,sum-packets my-ab.aggbag \

--output-path=source-bytes.aggbag

The other approach selects the source port and byte count.

$ rwaggbagtool --select=sport,sum-bytes my-ag.aggbag \

--output-path=source-bytes.aggbag

To replace the packet count in my-ab.aggbag with zeros, remove the field and insert it with the value you
want.

$ rwaggbagtool --remove=sum-packets --insert=sum-packets=0 \

my-ab.aggbag --output-path=zero-packets.aggbag

60 SiLK-3.23.1

The SiLK Reference Guide rwaggbagtool(1)

Convert to different formats

To create a regular Bag with the source port and byte count from my-ab.aggbag, use the --to-bag switch:

$ rwaggbagtool --to-bag=sport,sum-bytes my-ab.aggbag \

--output-path=sport-byte.bag

The --to-ipset switch works similarly:

$ rwaggbag --key=sipv6,dipv6 --counter=records data-v6.rw \

--output-path=ips.aggbag

$ rwaggbagtool --to-ipset=dipv6 --output-path=dip.set

ENVIRONMENT

SILK IPSET RECORD VERSION

This environment variable is used as the value for the --ipset-record-version when that switch is not
provided.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwaggbagtool may use this environment variable when searching for the SiLK site configu-
ration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwaggbagtool may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

SiLK-3.23.1 61

rwaggbagtool(1) The SiLK Reference Guide

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

NOTES

The Aggregate Bag tools were added in SiLK 3.15.0.

SiLK 3.17.0 added the --min-field, --max-field, --set-intersect, and --set-complement switches.

Support for country codes was added in SiLK 3.19.0.

The --modify-inplace switch was added in SiLK 3.21. When --backup-path is also given, there is a small
time window when the original file does not exist: the time between moving the original file to the backup
location and moving the temporary file into place.

SEE ALSO

rwaggbag(1), rwaggbagbuild(1), rwaggbagcat(1), rwfilter(1), rwfileinfo(1), silk(7), zlib(3)

62 SiLK-3.23.1

The SiLK Reference Guide rwappend(1)

rwappend

Append SiLK Flow file(s) to an existing SiLK Flow file

SYNOPSIS

rwappend [--create=[TEMPLATE_FILE]] [--print-statistics]

[--site-config-file=FILENAME]

TARGET_FILE SOURCE_FILE [SOURCE_FILE...]

rwappend --help

rwappend --version

DESCRIPTION

rwappend reads SiLK Flow records from the specified SOURCE FILE s and appends them to the TAR-
GET FILE. If stdin is used as the name of one of the SOURCE FILE s, SiLK flow records will be read from
the standard input.

When the TARGET FILE does not exist and the --create switch is not provided, rwappend will exit
with an error. When --create is specified and TARGET FILE does not exist, rwappend will create the
TARGET FILE using the same format, version, and byte-order as the specified TEMPLATE FILE. If no
TEMPLATE FILE is given, the TARGET FILE is created in the default format and version (the same
format that rwcat(1) would produce).

The TARGET FILE must be an actual file---it cannot be a named pipe or the standard output. In addition,
the header of TARGET FILE must not be compressed; that is, you cannot append to a file whose entire
contents has been compressed with gzip (those files normally end in the .gz extension).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--create

--create=TEMPLATE FILE

Create the TARGET FILE if it does not exist. The file will have the same format, version, and
byte-order as the TEMPLATE FILE if it is provided; otherwise the defaults are used. The TEM-
PLATE FILE will NOT be appended to TARGET FILE unless it also appears in as the name of a
SOURCE FILE.

--print-statistics

Print to the standard error the number of records read from each SOURCE FILE and the total number
of records appended to the TARGET FILE.

SiLK-3.23.1 63

rwappend(1) The SiLK Reference Guide

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwappend searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Standard usage where the file to append to, results.rw, exists:

$ rwappend results.rw sample5.rw sample6.rw

To append files sample*.rw to results.rw, or to create results.rw using the same format as the first file
argument (note that sample1.rw must be repeated):

$ rwappend results.rw --create=sample1.rw \

sample1.rw sample2.rw

If results.rw does not exist, the following two commands are equivalent:

$ rwappend --create results.rw sample1.rw sample2.rw

$ rwcat sample1.rw sample2.rw > results.rw

ENVIRONMENT

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwappend may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwappend may use this environment variable. See the FILES section for details.

64 SiLK-3.23.1

The SiLK Reference Guide rwappend(1)

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwcat(1), silk(7)

BUGS

When a SOURCE FILE contains IPv6 flow records and the TARGET FILE only supports IPv4 records,
rwappend converts IPv6 records that contain addresses in the ::ffff:0:0/96 prefix to IPv4 and writes them
to the TARGET FILE. rwappend silently ignores IPv6 records having addresses outside of that prefix.

rwappend makes some attempts to avoid appending a file to itself (which would eventually exhaust the
disk space) by comparing the names of files it is given; it should be smarter about this.

SiLK-3.23.1 65

rwbag(1) The SiLK Reference Guide

rwbag

Build a binary Bag from SiLK Flow records

SYNOPSIS

rwbag --bag-file=KEY,COUNTER,OUTPUTFILE

[--bag-file=KEY,COUNTER,OUTPUTFILE ...]

[{ --pmap-file=PATH | --pmap-file=MAPNAME:PATH }]

[--note-strip] [--note-add=TEXT] [--note-file-add=FILE]

[--invocation-strip] [--print-filenames] [--copy-input=PATH]

[--compression-method=COMP_METHOD]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwbag --help

rwbag --legacy-help

rwbag --version

LEGACY SYNOPSIS

rwbag [--sip-flows=OUTPUTFILE] [--dip-flows=OUTPUTFILE]

[--sport-flows=OUTPUTFILE] [--dport-flows=OUTPUTFILE]

[--proto-flows=OUTPUTFILE] [--sensor-flows=OUTPUTFILE]

[--input-flows=OUTPUTFILE] [--output-flows=OUTPUTFILE]

[--nhip-flows=OUTPUTFILE]

[--sip-packets=OUTPUTFILE] [--dip-packets=OUTPUTFILE]

[--sport-packets=OUTPUTFILE] [--dport-packets=OUTPUTFILE]

[--proto-packets=OUTPUTFILE] [--sensor-packets=OUTPUTFILE]

[--input-packets=OUTPUTFILE] [--output-packets=OUTPUTFILE]

[--nhip-packets=OUTPUTFILE]

[--sip-bytes=OUTPUTFILE] [--dip-bytes=OUTPUTFILE]

[--sport-bytes=OUTPUTFILE] [--dport-bytes=OUTPUTFILE]

[--proto-bytes=OUTPUTFILE] [--sensor-bytes=OUTPUTFILE]

[--input-bytes=OUTPUTFILE] [--output-bytes=OUTPUTFILE]

[--nhip-bytes=OUTPUTFILE]

[--note-add=TEXT] [--note-file-add=FILE]

[--print-filenames] [--copy-input=PATH]

[--compression-method=COMP_METHOD]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

DESCRIPTION

rwbag reads SiLK Flow records and builds one or more Bag files. A Bag is similar to a set but each key
is associated with a counter. Usually the key is some aspect of a flow record (an IP address, a port, the

66 SiLK-3.23.1

The SiLK Reference Guide rwbag(1)

protocol, et cetera), and the counter is a volume (such as the number of flow records or the sum or bytes or
packets) for the flow records that match that key. A Bag file supports a single key field and a single counter
field; use the Aggregate Bag tools (e.g., rwaggbag(1)) when the key or counter contains multiple fields.

The --bag-file switch is required and it specifies how to create a Bag file. The argument to the switch names
the key field to use for the bag, the counter field, and the location where the bag file is to be written. The
switch may be repeated to create multiple Bag files.

rwbag reads SiLK Flow records from the files named on the command line or from the standard input when
no file names are specified and --xargs is not present. To read the standard input in addition to the named
files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it is read.
When the --xargs switch is provided, rwbag reads the names of the files to process from the named text
file or from the standard input if no file name argument is provided to the switch. The input to --xargs
must contain one file name per line.

If adding a value to a key would cause the value to overflow the maximum value that Bags support, the
key’s value will be set to the maximum and processing will continue. In addition, if this is the first value to
overflow in this Bag, a warning will be printed to the standard error.

If rwbag runs out of memory, it will exit immediately. The output Bag files will remain behind, each with
a size of 0 bytes.

Use rwbagcat(1) to see the contents of a bag. To create a bag from textual input or from an IPset, use
rwbagbuild(1). rwbagtool(1) allows you to manipulate binary bag files.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--bag-file=KEY,COUNTER,OUTPUTFILE

Bin flow records by unique KEY, compute the COUNTER for each bin, and write the result to OUT-
PUTFILE. The list of available KEY and COUNTER values are given immediately below. OUT-
PUTFILE is the name of a non-existent file, a named pipe, or the keyword stdout or - to write the
binary Bag to the standard output. Repeat the --bag-file switch to create multiple Bag files in a
single pass over the data. Only one OUTPUTFILE may use the standard output. See LEGACY BAG
CREATION SWITCHES for deprecated methods to create Bag files. This switch or one of legacy
equivalents is required. Since SiLK 3.12.0.

rwbag supports the following names for KEY. The case of KEY is ignored.

sIPv4

source IP address, either IPv4 or IPv6

sIPv6

source IP address, either IPv4 or IPv6

dIPv4

destination IP address, either IPv4 or IPv6

dIPv6

destination IP address, either IPv4 or IPv6

sPort

source port for TCP or UDP, or equivalent

SiLK-3.23.1 67

rwbag(1) The SiLK Reference Guide

dPort

destination port for TCP or UDP, or equivalent

protocol

IP protocol

packets

count of packets recorded for this flow record

bytes

count of bytes recorded for this flow record

flags

bit-wise OR of TCP flags over all packets in the flow

sTime

starting time of the flow, in seconds resolution

duration

duration of the flow, in seconds resolution

eTime

ending time of the flow, in seconds resolution

sensor

numeric ID of the sensor where the flow was collected

input

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

output

router SNMP output interface or postVlanId

nhIPv4

router next hop IP address, either IPv4 or IPv6

nhIPv6

router next hop IP address, either IPv4 or IPv6

initialFlags

TCP flags on first packet in the flow

sessionFlags

bit-wise OR of TCP flags over all packets except the first in the flow

attributes

flow attributes set by the flow generator

application

guess as to the content of the flow

sip-country

the country code of the source IP address. Uses the mapping file specified by the
SILK COUNTRY CODES environment variable or the country codes.pmap mapping file, as de-
scribed in FILES. (See also ccfilter(3).) Since SiLK 3.12.0.

scc

an alias for sip-country

dip-country

the country code of the destination IP address

68 SiLK-3.23.1

The SiLK Reference Guide rwbag(1)

dcc

an alias for dip-country

sip-pmap:MAPNAME

the value that the source IP address maps to in the mapping file whose map-name is MAPNAME.
The type of that prefix map must be IPv4-address or IPv6-address. Use --pmap-file to load the
mapping file and optionally set its map-name. Since the MAPNAME must be known when the
--bag-file switch is parsed, the --pmap-file switch(es) should precede the --bag-file switch(es).

dip-pmap:MAPNAME

the value that the destination IP address maps to in the mapping file whose map-name is MAP-
NAME. See sip-pmap:MAPNAME.

sport-pmap:MAPNAME

the value that the protocol/source-port pair maps to in the mapping file whose map-name is
MAPNAME. The type of that prefix map must be proto-port. Use --pmap-file to load the
mapping file and optionally set its map-name. Since the MAPNAME must be known when the
--bag-file switch is parsed, the --pmap-file switch(es) should precede the --bag-file switch(es).

dport-pmap:MAPNAME

the value that the protocol/destination-port pair maps to in the mapping file whose map-name is
MAPNAME. See sport-pmap:MAPNAME.

rwbag supports the following names for COUNTER. The case of COUNTER is ignored.

records

count of the number of flow records that match the key

flows

an alias for records

sum-packets

the sum of the packet counts for flow records that match the key

packets

an alias for sum-packets

sum-bytes

the sum of the byte counts for flow records that match the key

bytes

an alias for sum-bytes

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the the prefix map file from PATH for use when the key part of the argument to the --bag-file
switch is one of sip-pmap, dip-pmap, sport-pmap, or dport-pmap. Specify PATH as - or stdin to
read from the standard input. If MAPNAME is specified, it overrides the map-name contained in the
prefix map file itself. If no map-name is available, rwbag exits with an error. The switch may be
repeated to load multiple prefix map files; each file must have a unique map-name. To create a prefix
map file, use rwpmapbuild(1). Since SiLK 3.12.0.

--note-strip

Do not copy the notes (annotations) from the input files to the output file(s). When this switch is not
specified, notes from the input files are copied to the output. Since SiLK 3.12.2.

SiLK-3.23.1 69

rwbag(1) The SiLK Reference Guide

--note-add=TEXT

Add the specified TEXT to the header of every output file as an annotation. This switch may be
repeated to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of every output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--invocation-strip

Do not record any command line history: do not copy the invocation history from the input files to the
output file(s), and do not record the current command line invocation in the output. The invocation
may be viewed with rwfileinfo(1). Since SiLK 3.12.0.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as no Bag file is being written there.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains. Only IP
addresses contained in IPv4 flow records will be added to the bag(s).

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flow records. When creating a bag whose key
is an IP address and the input contains IPv6 addresses outside of the ::ffff:0:0/96 netblock, this
policy is equivalent to force; otherwise it is equivalent to asv4.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Process only flow records that are marked as IPv6. Only IP addresses contained in IPv6 flow
records will be added to the bag(s).

Regardless of the IPv6 policy, when all IPv6 addresses in the bag are in the ::ffff:0:0/96 netblock,
rwbag treats them as IPv4 addresses and writes an IPv4 bag. When any other IPv6 addresses are
present in the bag, the IPv4 addresses in the bag are mapped into the ::ffff:0:0/96 netblock and rwbag
writes an IPv6 bag.

70 SiLK-3.23.1

The SiLK Reference Guide rwbag(1)

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwbag searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwbag opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--legacy-help

Print help, including legacy switches. See the LEGACY BAG CREATION SWITCHES section below
for these switches.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 71

rwbag(1) The SiLK Reference Guide

LEGACY BAG CREATION SWITCHES

The following switches are deprecated as of SiLK 3.12.0. These switches may be used in conjunction with
the --bag-file switch.

--sip-flows=OUTPUTFILE

Equivalent to --bag-file=sIPv4,records,OUTPUTFILE. Count number of flows by unique source IP.

--sip-packets=OUTPUTFILE

Equivalent to --bag-file=sIPv4,sum-packets,OUTPUTFILE. Count number of packets by unique
source IP.

--sip-bytes=OUTPUTFILE

Equivalent to --bag-file=sIPv4,sum-bytes,OUTPUTFILE. Count number of bytes by unique source
IP.

--dip-flows=OUTPUTFILE

Equivalent to --bag-file=dIPv4,records,OUTPUTFILE. Count number of flows by unique destination
IP.

--dip-packets=OUTPUTFILE

Equivalent to --bag-file=dIPv4,sum-packets,OUTPUTFILE. Count number of packets by unique des-
tination IP.

--dip-bytes=OUTPUTFILE

Equivalent to --bag-file=dIPv4,sum-bytes,OUTPUTFILE. Count number of bytes by unique destina-
tion IP.

--sport-flows=OUTPUTFILE

Equivalent to --bag-file=sPort,records,OUTPUTFILE. Count number of flows by unique source port.

--sport-packets=OUTPUTFILE

Equivalent to --bag-file=sPort,sum-packets,OUTPUTFILE. Count number of packets by unique
source port.

--sport-bytes=OUTPUTFILE

Equivalent to --bag-file=sPort,sum-bytes,OUTPUTFILE. Count number of bytes by unique source
port.

--dport-flows=OUTPUTFILE

Equivalent to --bag-file=dPort,records,OUTPUTFILE. Count number of flows by unique destination
port.

--dport-packets=OUTPUTFILE

Equivalent to --bag-file=dPort,sum-packets,OUTPUTFILE. Count number of packets by unique des-
tination port.

--dport-bytes=OUTPUTFILE

Equivalent to --bag-file=dPort,sum-bytes,OUTPUTFILE. Count number of bytes by unique destina-
tion port.

72 SiLK-3.23.1

The SiLK Reference Guide rwbag(1)

--proto-flows=OUTPUTFILE

Equivalent to --bag-file=protocol,records,OUTPUTFILE. Count number of flows by unique protocol.

--proto-packets=OUTPUTFILE

Equivalent to --bag-file=protocol,sum-packets,OUTPUTFILE. Count number of packets by unique
protocol.

--proto-bytes=OUTPUTFILE

Equivalent to --bag-file=protocol,sum-bytes,OUTPUTFILE. Count number of bytes by unique pro-
tocol.

--sensor-flows=OUTPUTFILE

Equivalent to --bag-file=sensor,records,OUTPUTFILE. Count number of flows by unique sensor ID.

--sensor-packets=OUTPUTFILE

Equivalent to --bag-file=sensor,sum-packets,OUTPUTFILE. Count number of packets by unique sen-
sor ID.

--sensor-bytes=OUTPUTFILE

Equivalent to --bag-file=sensor,sum-bytes,OUTPUTFILE. Count number of bytes by unique sensor
ID.

--input-flows=OUTPUTFILE

Equivalent to --bag-file=input,records,OUTPUTFILE. Count number of flows by unique input inter-
face index.

--input-packets=OUTPUTFILE

Equivalent to --bag-file=input,sum-packets,OUTPUTFILE. Count number of packets by unique input
interface index.

--input-bytes=OUTPUTFILE

Equivalent to --bag-file=input,sum-bytes,OUTPUTFILE. Count number of bytes by unique input
interface index.

--output-flows=OUTPUTFILE

Equivalent to --bag-file=output,records,OUTPUTFILE. Count number of flows by unique output
interface index.

--output-packets=OUTPUTFILE

Equivalent to --bag-file=output,sum-packets,OUTPUTFILE. Count number of packets by unique
output interface index.

--output-bytes=OUTPUTFILE

Equivalent to --bag-file=output,sum-bytes,OUTPUTFILE. Count number of bytes by unique output
interface index.

--nhip-flows=OUTPUTFILE

Equivalent to --bag-file=nhIPv4,records,OUTPUTFILE. Count number of flows by unique next hop
IP.

--nhip-packets=OUTPUTFILE

Equivalent to --bag-file=nhIPv4,sum-packets,OUTPUTFILE. Count number of packets by unique
next hop IP.

SiLK-3.23.1 73

rwbag(1) The SiLK Reference Guide

--nhip-bytes=OUTPUTFILE

Equivalent to --bag-file=nhIPv4,sum-bytes,OUTPUTFILE. Count number of bytes by unique next
hop IP.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Bag of Protocol:Byte

Read the SiLK Flow file data.rw and create the Bag proto-byte.bag that contains the total byte-count seen
for each protocol by using protocol as the key and sum-bytes as the counter:

$ rwbag --bag-file=protocol,sum-bytes,proto-byte.bag data.rw

Use rwbagcat(1) to view the result:

$ rwbagcat proto-byte.bag

1| 10695328|

6| 120536195111|

17| 24500079|

Specify the output path as - to pass the Bag file from rwbag directly into rwbagcat.

$ rwbag --bag-file=protocol,sum-bytes,- data.rw \

| rwbagcat

1| 10695328|

6| 120536195111|

17| 24500079|

Compare that to this rwuniq(1) command.

$ rwuniq --field=protocol --value=bytes --sort-output data.rw

pro| Bytes|

1| 10695328|

6| 120536195111|

17| 24500079|

One advantage of Bag files over rwuniq is that the data remains in binary form where it can be manipulated
by rwbagtool(1).

Two Bags in a Single Pass

Read records from rwfilter(1) and build Bag files sip-flow.bag and dip-flow.bag that count the number of
flows seen for each source address and for each destination address, respectively.

74 SiLK -3.23.1

The SiLK Reference Guide rwbag(1)

$ rwfilter ... --pass=stdout \

| rwbag --bag-file=sipv4,records,sip-flow.bag \

--bag-file=dipv4,records,dip-flow.bag

Using a Network Prefix

To create sip16-byte.bag that contains the number of bytes seen for each /16 found in the source address
field, use the rwnetmask(1) tool prior to feeding the input to rwbag:

$ rwfilter ... --pass=stdout \

| rwnetmask --4sip-prefix-length=16 \

| rwbag --bag-file=sipv4,sum-bytes,sip16-byte.bag

$ rwbagcat sip16-byte.bag | head -4

10.4.0.0| 18260|

10.5.0.0| 536169|

10.9.0.0| 55386|

10.11.0.0| 5110438|

To print the IP addresses of an existing Bag into /16 prefixes, use the --network-structure switch of
rwbagcat(1).

$ rwfilter ... --pass=stdout \

| rwbag --bag-file=sipv4,sum-bytes,- \

| rwbagcat --network-structure=B \

| head -4

10.4.0.0/16| 18260|

10.5.0.0/16| 536169|

10.9.0.0/16| 55386|

10.11.0.0/16| 5110438|

Bag of Country Codes

As of SiLK 3.12.0, a Bag file may contain a country code as its key. Create scc-pkt.bag that sums the packet
count by country.

$ rwbag --bag-file=sip-country,sum-packets,scc-pkt.bag

$ rwbagcat scc-pkt.bag

--| 840|

a1| 284|

a2| 1|

ae| 8|

Bag of Prefix Map Values

rwbag and rwbagbuild(1) can use a prefix map file as the key in a Bag file as of SiLK 3.12.0. For example,
to lookup each source address in the prefix map file ip-map.pmap that maps from address to ”type of service”,
use the --pmap-file switch to specify the prefix map file, and specify the Bag’s key as sip-pmap:map-name,
where map-name is either the map-name stored in the prefix map file or a name that is provided as part of
the --pmap-file argument. (A prefix map’s map-name is available via the rwfileinfo(1) command.)

SiLK -3.23.1 75

rwbag(1) The SiLK Reference Guide

$ rwfileinfo --field=prefix-map ip-map.pmap

ip-map.pmap:

prefix-map v1: service-host

$

$ rwbag --pmap-file=ip-map.pmap \

--bag-file=sip-pmap:service-host,bytes,srvhost.bag \

data.rw

Multiple --pmap-file switches may be specified which may be useful when generating multiple Bag files in a
single invocation. On the command line, the --pmap-file switch that defines the map-name must preceded
the --bag-file where the map-name is used.

The prefix map file is not stored as part of the Bag, so you must provide the name of the prefix map when
running rwbagcat.

$ rwbagcat srvhost.bag

rwbagcat: The --pmap-file switch is required for \

Bags containing sip-pmap keys

$ rwbagcat --pmap-file=ip-map.pmap srvhost.bag

external| 59950837766|

internal| 60602999159|

ntp| 588316|

dns| 14404581|

dhcp| 2560696|

rwbag also has support for prefix map files that map from a protocol-port pair to a label. The proto-
port.pmap file does not have a map-name so a name must be provided on the rwbag command line.

$ rwfileinfo --field=prefix-map proto-port.pmap

proto-port.pmap:

$

$ rwbag --pmap-file=srvport:proto-port.pmap \

--bag-file=sip-pmap:srvport,flows,srvport.bag \

data.rw

$ rwbagcat --pmap-file=proto-port.pmap srvport.bag | head -4

ICMP| 15622|

UDP| 62216|

UDP/DNS| 62216|

UDP/DHCP| 15614|

ENVIRONMENT

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwbag uses
when mapping an IP to a country for the sip-country and dip-country keys. The value may be a
complete path or a file relative to the SILK PATH. See the FILES section for standard locations of
this file.

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

76 SiLK-3.23.1

The SiLK Reference Guide rwbag(1)

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwbag may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwbag may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

$SILK COUNTRY CODES

$SILK PATH/share/silk/country codes.pmap

$SILK PATH/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the sip-country and dip-country

keys.

SEE ALSO

rwbagbuild(1), rwbagcat(1), rwbagtool(1), rwaggbag(1), rwfileinfo(1), rwfilter(1), rwnet-
mask(1), rwpmapbuild(1), rwuniq(1), ccfilter(3), sensor.conf(5), silk(7), zlib(3)

SiLK-3.23.1 77

rwbagbuild(1) The SiLK Reference Guide

rwbagbuild

Create a binary Bag from non-flow data

SYNOPSIS

rwbagbuild { --set-input=SETFILE | --bag-input=TEXTFILE }

[--delimiter=C] [--proto-port-delimiter=C]

[--default-count=DEFAULTCOUNT]

[--key-type=FIELD_TYPE] [--counter-type=FIELD_TYPE]

[{ --pmap-file=PATH | --pmap-file=MAPNAME:PATH }]

[--note-add=TEXT] [--note-file-add=FILE]

[--invocation-strip] [--compression-method=COMP_METHOD]

[--output-path=PATH]

rwbagbuild --help

rwbagbuild --version

DESCRIPTION

rwbagbuild builds a binary Bag file from an IPset file or from textual input. A Bag is a set of keys where
each key is associated with a counter. Usually the key is some aspect of a flow record (an IP address, a port,
the protocol, et cetera), and the counter is a volume (such as the number of flow records or the sum or bytes
or packets) for the flow records that match that key.

Either --set-input or --bag-input must be provided to specify the type and the location of the input file.
To read from the standard input, specify stdin or - as the argument to the switch.

Each occurrence of a unique key adds a counter value to the Bag file for that key, where the counter is the
value specified by --default-count, a value specified on a line in the textual input, or a fallback value of
1. If the addition causes an overflow of the maximum counter value (18446744073709551614), the counter
is set to the maximum. A message is printed to the standard error the first time an overflow condition is
detected.

SET INPUT

When creating a Bag from an IPset, the count associated with each IP address is the value specified by the
--default-count switch or 1 if the switch is not provided.

If the --key-type is sip-country, dip-country, or any-country, each IP address is mapped to its country
code using the country code mapping file (see FILES) and that key is added to the Bag file with the
--default-count value.

If the --key-type is sip-pmap, dip-pmap, or any-ip-pmap, each IP address is mapped to a value found in
the prefix map file specified in --pmap-file and that value is added to the Bag file with the --default-count
value.

78 SiLK-3.23.1

The SiLK Reference Guide rwbagbuild(1)

BAG (TEXTUAL) INPUT

The textual input read from the argument to the --bag-input switch is processed a line at a time. Comments
begin with a ’#’-character and continue to the end of the line; they are stripped from each line. Any line that
is blank or contains only whitespace is ignored. All other lines must contain a valid key or key-counter pair;
whitespace around the key and counter is ignored. The key and counter are separated by a one-character
delimiter. The default delimiter is vertical bar (’|’); use --delimiter to specify a different delimiter.

Each line that is not ignored must begin with a key. The accepted formats of the key are described below.

When the --default-count switch is given, rwbagtool only parses the key and ignores everything on a line
to the right of the first delimiter. To re-iterate, the --default-count switch overrides any counter present
on the line.

If the delimiter is not present on a line, rwbagtool parses the key and adds the --default-count value (or
the fallback value of 1) to the Bag for that key.

When --default-count is not given, any text between the first delimiter and optional second delimiter on a
line is treated as the counter. If the counter contains only whitespace, the counter for the key is incremented
by 1; otherwise, the counter must be a (decimal) number from 0 to 18446744073709551614 inclusive. If a
second delimiter is present, it and any text that follows it is ignored.

rwbagbuild prints an error and exits when a key or counter cannot be parsed.

Format of the counter

The counter is any non-negative (decimal) integer value from 0 to 18446744073709551614 inclusive (the
maximum is one less than the maximum unsigned 64-bit value). When writing the Bag file, keys whose
counter is zero are not written to the file.

Format of the Key

The key is a 32-bit integer, an IP address, a CIDR block, a SiLK IPWildcard, or a pair of numbers when
the key-type is a protocol-port prefix map file.

For key-types that use fewer than 32-bits, rwbagbuild does not verify the validity of the key. For example,
it is possible to have 257 as a key in Bag whose key-type is protocol.

rwbagbuild parses specific key-types as follows:

sIPv4, dIPv4, nhIPv4, any-IPv4

key is an IPv4 address or a 32-bit value; key-type set to corresponding IPv6 type when an IPv6 address
is present. A CIDR block or SiLK IPWildcard representing multiple addresses adds multiple entries
to the Bag

sIPv6, dIPv6, nhIPv6, any-IPv6

key is an IPv6 address. An IPv4 address is mapped into the ::ffff:0:0/96 netblock. All keys must be
IP addresses (integers are not allowed).

flags, initialFlags, sessionFlags

key is the numeric value of the flags, 17 = FIN|ACK

sTime, eTime, any-time

key is seconds since the UNIX epoch

duration

key represents seconds

SiLK-3.23.1 79

rwbagbuild(1) The SiLK Reference Guide

sensor

key is the numeric sensor ID

sip-country, dip-country, any-country

key is an IP address; the country codes.pmap prefix map file is used to map the IP to a country code
that is stored in the Bag

sip-pmap, dip-pmap, any-ip-pmap

key is an IP address; the specified --prefix-map file is used to map the IP to a value that is stored in
the Bag

sport-pmap, dport-pmap, any-port-pmap

key is comprised of two numbers separated by a delimiter: a protocol (8-bit number) and a port (16-bit
number). Those values are looked up in the specified --prefix-map file and the result is stored in the
Bag. The delimiter separating the protocol and port may be set by --proto-port-delimiter. If not
explicitly set, it is the same as the delimiter specified to --delimiter. The default delimiter is ’|’.

attributes

these bits of the key are relevant, though any 32-bit value is accepted: 0x08=F, 0x10=S, 0x20=T,
0x40=C

class, type

key is treated as a number

An IP address or integer key must be expressed in one of the following formats. rwbagbuild complains if
the key field contains a mixture of IPv6 addresses and integer values.

• Dotted decimal---all 4 octets are required:

10.1.2.4

• An unsigned 32-bit integer:

167838212

• An IPv6 address in canonical format (when SiLK has been compiled with IPv6 support):

2001:db8:a:1::2:4

::ffff:10.1.2.4

• Any of the above with a CIDR designation---for dotted decimal all four octets are still required:

10.1.2.4/31

167838212/31

2001:db8:a:1::2:4/127

::ffff:10.1.2.4/31

• SiLK IP wildcard notation. A SiLK IP Wildcard can represent multiple IPv4 or IPv6 addresses. An
IP Wildcard contains an IP in its canonical format, except each part of the IP (where part is an octet
for IPv4 or a hexadectet for IPv6) may be a single value, a range, a comma separated list of values
and ranges, or the letter x to signify all values for that part of the IP (that is, 0-255 for IPv4). You
may not specify a CIDR suffix when using the IP Wildcard notation.

10.x.1-2.4,5

2001:db8:a:x::1-2:4,5

80 SiLK-3.23.1

The SiLK Reference Guide rwbagbuild(1)

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

The first two switches control the type of input; exactly one must be provided:

--set-input=SETFILE

Create a Bag from an IPset. SETFILE is a filename, a named pipe, or the keyword stdin or - to
read the IPset from the standard input. Counts have a volume of 1 when the --default-count switch
is not specified. (IPsets are typically created by rwset(1) or rwsetbuild(1).)

--bag-input=TEXTFILE

Create a Bag from a delimited text file. TEXTFILE is a filename, a named pipe, or the keyword stdin

or - to read the text from the standard input. See the DESCRIPTION section for the syntax of the
TEXTFILE.

--delimiter=C

Expect the character C between each key-counter pair in the TEXTFILE read by the --bag-input
switch. The default delimiter is the vertical pipe (’|’). The delimiter is ignored if the --set-input
switch is specified. When the delimiter is a whitespace character, any amount of whitespace may
surround and separate the key and counter. Since ’#’ is used to denote comments and newline is used
to denote records, neither is a valid delimiter character.

--proto-port-delimiter=C

Expect the character C between the protocol and port that comprise a key when the --key-type is
sport-pmap, dport-pmap, or any-port-pmap. Unless this switch is specified, rwbagbuild expects the
key-counter delimiter to appear between the protocol and port.

--default-count=DEFAULTCOUNT

Override the counts of all values in the input text or IPset with the value of DEFAULTCOUNT.
DEFAULTCOUNT must be a positive integer from 1 to 18446744073709551614 inclusive.

--key-type=FIELD TYPE

Write a entry into the header of the Bag file that specifies the key contains FIELD TYPE values.
When this switch is not specified, the key type of the Bag is set to custom. The FIELD TYPE is case
insensitive. The supported FIELD TYPE s are:

sIPv4

source IP address, IPv4 only

dIPv4

destination IP address, IPv4 only

sPort

source port

dPort

destination port

protocol

IP protocol

SiLK-3.23.1 81

rwbagbuild(1) The SiLK Reference Guide

packets

packets, see also sum-packets

bytes

bytes, see also sum-bytes

flags

an unsigned bitwise OR of TCP flags

sTime

starting time of the flow record, seconds resolution

duration

duration of the flow record, seconds resolution

eTime

ending time of the flow record, seconds resolution

sensor

sensor ID

input

SNMP input

output

SNMP output

nhIPv4

next hop IP address, IPv4 only

initialFlags

TCP flags on first packet in the flow

sessionFlags

bitwise OR of TCP flags on all packets in the flow except the first

attributes

flow attributes set by the flow generator

application

guess as to the content of the flow, as set by the flow generator

class

class of the sensor

type

type of the sensor

icmpTypeCode

an encoded version of the ICMP type and code, where the type is in the upper byte and the code
is in the lower byte

sIPv6

source IP, IPv6

dIPv6

destination IP, IPv6

nhIPv6

next hop IP, IPv6

records

count of flows

82 SiLK-3.23.1

The SiLK Reference Guide rwbagbuild(1)

sum-packets

sum of packet counts

sum-bytes

sum of byte counts

sum-duration

sum of duration values

any-IPv4

a generic IPv4 address

any-IPv6

a generic IPv6 address

any-port

a generic port

any-snmp

a generic SNMP value

any-time

a generic time value, in seconds resolution

sip-country

the country code of the source IP address. For textual input, the key column must contain an IP
address or an integer. rwbagbuild maps the IP address to a country code and stores the country
code in the bag. Uses the mapping file specified by the SILK COUNTRY CODES environment
variable or the country codes.pmap mapping file, as described in FILES. (See also ccfilter(3).)
Since SiLK 3.12.0.

dip-country

the country code of the destination IP. See sip-country. Since SiLK 3.12.0.

any-country

the country code of any IP address. See sip-country. Since SiLK 3.12.0.

sip-pmap

a prefix map value found from a source IP address. Maps each IP address in the key column to a
value from a prefix map file and stores the value in the bag. The type of the prefix map must be
IPv4-address or IPv4-address. Use the --pmap-file switch to specify the path to the file. Since
SiLK 3.12.0.

dip-pmap

a prefix map value found from a destination IP address. See sip-pmap. Since SiLK 3.12.0.

any-ip-pmap:PMAP PATH

a prefix map value found from any IP address. See sip-pmap. Since SiLK 3.12.0.

sport-pmap

a prefix map value found from a protocol/source-port pair. Each key must contain two values, a
protocol and a port. Maps each protocol/port pair to a value from a prefix map file and stores
the value in the bag. The type of the prefix map must be proto-port. Use the --pmap-file switch
to specify the path to the file. Since SiLK 3.12.0.

dport-pmap

a prefix map value found from a protocol/destination-port pair. See sport-pmap. Since SiLK
3.12.0.

any-port-pmap

a prefix map value found from a protocol/port pair. See sport-pmap. Since SiLK 3.12.0.

SiLK-3.23.1 83

rwbagbuild(1) The SiLK Reference Guide

custom

a number

--counter-type=FIELD TYPE

Write a entry into the header of the Bag file that specifies the counter contains FIELD TYPE values.
When this switch is not specified, the counter type of the Bag is set to custom. Although the supported
FIELD TYPE s are the same as those for the key, the value is always treated as a number that can be
summed. rwbagbuild does not use the country code or prefix map when parsing the value field.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

When the key-type is one of sip-pmap, dip-pmap, any-ip-pmap, sport-pmap, dport-pmap, or
any-port-pmap, use the prefix map file located at PATH to map the key to a string. Specify PATH
as - or stdin to read from the standard input. A map-name may be included in the argument to
the switch, but rwbagbuild currently does not use the map-name. To create a prefix map file, use
rwpmapbuild(1). Since SiLK 3.12.0.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--invocation-strip

Do not record the command used to create the Bag file in the output. When this switch is not given,
the invocation is written to the file’s header, and the invocation may be viewed with rwfileinfo(1).
Since SiLK 3.12.0.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

84 SiLK-3.23.1

The SiLK Reference Guide rwbagbuild(1)

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--output-path=PATH

Write the binary Bag output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output. If PATH names an existing file, rwbagtool exits with an error unless the SILK CLOBBER
environment variable is set, in which case PATH is overwritten. If this switch is not given, the output is
written to the standard output. Attempting to write the binary output to a terminal causes rwbagtool
to exit with an error.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Create a bag with IP addresses as keys from a text file

Assume the file mybag.txt contains the following lines, where each line contains an IP address, a comma as
a delimiter, a count, and ends with a newline.

192.168.0.1,5

192.168.0.2,500

192.168.0.3,3

192.168.0.4,14

192.168.0.5,5

To build a bag with it:

$ rwbagbuild --bag-input=mybag.txt --delimiter=, > mybag.bag

Use rwbagcat(1) to view its contents:

$ rwbagcat mybag.bag

192.168.0.1| 5|

192.168.0.2| 500|

192.168.0.3| 3|

192.168.0.4| 14|

192.168.0.5| 5|

SiLK-3.23.1 85

rwbagbuild(1) The SiLK Reference Guide

Create a bag with protocols as keys from a text file

To create a Bag of protocol data from the text file myproto.txt :

1| 4|

6| 138|

17| 131|

use

$ rwbagbuild --key-type=proto --bag-input=myproto.txt > myproto.bag

$ rwbagcat myproto.bag

1| 4|

6| 138|

17| 131|

When the --key-type switch is specified, rwbagcat knows the keys should be printed as integers, and
rwfileinfo(1) shows the type of the key:

$ rwfileinfo --fields=bag myproto.bag

myproto.bag:

bag key: protocol @ 4 octets; counter: custom @ 8 octets

Without the --key-type switch, rwbagbuild assumes the integers in myproto.txt represent IP addresses:

$ rwbagbuild --bag-input=myproto.txt | rwbagcat

0.0.0.1| 4|

0.0.0.6| 138|

0.0.0.17| 131|

Although the --key-format switch on rwbagcat may be used to choose how the keys are displayed, it is
generally better to use the --key-type switch when creating the bag.

$ rwbagbuild --bag-input=myproto.txt | rwbagcat --key-format=decimal 1| 4| 6| 138| 17| 131|

Create a bag and override the existing counter

To ignore the counts that exist in myproto.txt and set the counts for each protocol to 1, use the --default-
count switch which overrides the existing value:

$ rwbagbuild --key-type=protocol --bag-input=myproto.txt \

--default-count=1 --output-path=myproto1.bag

$ rwbagcat myproto1.bag

1| 1|

6| 1|

17| 1|

86 SiLK -3.23.1

The SiLK Reference Guide rwbagbuild(1)

Create a bag from multiple text files

To create a bag from multiple text files (X.txt, Y.txt, and Z.txt), use the UNIX cat(1) utility to concatenate
the files and have rwbagbuild read the combined input. To avoid creating a temporary file, feed the output
of cat as the standard input to rwbagbuild.

$ cat X.txt Y.txt Z.txt \

| rwbagbuild --bag-input=- --output-path=xyz.bag

For each key that appears in multiple input files, rwbagbuild sums the counters for the key.

Create a bag with IP addresses as keys from an IPset file

Given the IP set myset.set, create a bag where every entry in the bag has a count of 3:

$ rwbagbuild --set-input=myset.set --default-count=3 \

--out=mybag2.bag

Create a bag from multiple IPset files

Suppose we have three IPset files, A.set, B.set, and C.set :

$ rwsetcat A.set

10.0.0.1

10.0.0.2

$ rwsetcat B.set

10.0.0.2

10.0.0.3

$ rwsetcat C.set

10.0.0.1

10.0.0.2

10.0.0.4

We want to create a bag file from these IPset files where the count for each IP address is the number of files
that IP appears in. rwbagbuild accepts a single file as an argument, so we cannot do the following:

$ rwbagbuild --set-input=A.set --set-input=B.set ... # WRONG!

(Even if we could repeat the --set-input switch, specifying it multiple times would be annoying if we had
300 files instead of only 3.)

Since IPset files are (mathematical) sets, joining them together first with rwsettool(1) and then running
rwbagbuild causes each IP address to get a count of 1:

$ rwsettool --union A.set B.set C.set \

| rwbagbuild --set-input=- \

| rwbagcat

10.0.0.1| 1|

10.0.0.2| 1|

10.0.0.3| 1|

10.0.0.4| 1|

SiLK-3.23.1 87

rwbagbuild(1) The SiLK Reference Guide

When rwbagbuild is processing textual input, it sums the counters for keys that appear in the input
multiple times. We can use rwsetcat(1) to convert each IPset file to text and feed that as single textual
stream to rwbagbuild. Use the --cidr-blocks switch on rwsetcat to reduce the amount of input that
rwbagbuild must process. This is probably the best approach to the problem:

$ rwsetcat --cidr-block *.set | rwbagbuild --bag-input=- > total1.bag

$ rwbagcat total1.bag

10.0.0.1| 2|

10.0.0.2| 3|

10.0.0.3| 1|

10.0.0.4| 1|

A less efficient solution is to convert each IPset to a bag and then use rwbagtool(1) to add the bags
together:

$ for i in *.set ; do

rwbagbuild --set-input=$i --output-path=/tmp/$i.bag ;

done

$ rwbagtool --add /tmp/*.set.bag > total2.bag

$ rm /tmp/*.set.bag

There is no need to create a bag file for each IPset; we can get by with only two bag files, the final bag
file, total3.bag, and a temporary file, tmp.bag. We initialize total3.bag to an empty bag. As we loop over
each IPset, rwbagbuild converts the IPset to a bag on its standard output, rwbagtool creates tmp.bag by
adding its standard input to total3.bag, and we rename tmp.bag to total3.bag :

$ rwbagbuild --bag-input=/dev/null --output-path=total3.bag

$ for i in *.set ; do

rwbagbuild --set-input=$i \

| rwbagtool --output-path=tmp.bag --add total3.bag stdin ;

/bin/mv tmp.bag total3.bag ;

done

$ rwbagcat total3.bag

10.0.0.1| 2|

10.0.0.2| 3|

10.0.0.3| 1|

10.0.0.4| 1|

Create a bag where the key is the country code

As of SiLK 3.12.0, a Bag file may contain a country code as its key. In rwbagbuild, specify the --key-type
as sip-country, dip-country, or any-country. That key-type works with either textual input or IPset
input. The form of the textual input when mapping an IP address to a country code is identical to that
when building an ordinary bag.

$ rwbagbuild --bag-input=mybag.txt --delimiter=, \

--key-type=any-country --output-path=scc1.bag

$ rwbagcat scc1.bag

--| 527|

88 SiLK -3.23.1

The SiLK Reference Guide rwbagbuild(1)

$ rwbagbuild --set-input=A.set --key-type=any-country \

--output-path=scc2.bag

$ rwbagcat scc2.bag

--| 2|

Create a bag using a prefix map value as the key

rwbagbuild and rwbag(1) can use a prefix map file as the key in a Bag file as of SiLK 3.12.0. Use the
--pmap-file switch to specify the prefix map file, and specify the --key-type using one of the types that
end in -pmap.

For a prefix map that maps by IP addresses, use a key-type of sip-pmap, dip-pmap, or any-ip-pmap. The
input may be an IPset or text. The form of the textual input is the same as for a normal bag file.

$ rwbagbuild --set-input=A.set --key-type=sip-pmap \

--pmap-file=ip-map.pmap --output=test1.bag

$ rwbagbuild --bag-input=mybag.txt --delimiter=, \

--key-type=sip-pmap --pmap-file=ip-map.pmap \

--output-path=test2.bag

The prefix map file is not stored as part of the Bag, so you must provide the name of the prefix map when
running rwbagcat(1).

$ rwbagcat --pmap-file=ip-map.pmap test2.bag

internal| 527|

For a prefix map file that maps by protocol-port pairs, the textual input must contain either three column
(protocol, port, counter) or two columns (protocol and port) which uses the --default-counter.

$ cat proto-port-count.txt

6| 25| 800|

6| 80| 5642|

6| 22

$ rwbagbuild --key-type=sport-pmap \

--bag-input=proto-port-count.txt \

--pmap-file=proto-port-map.pmap \

--output-path=service.bag

$ rwbagcat --pmap-file=port-map.pmap service.bag

TCP/SSH| 1|

TCP/SMTP| 800|

TCP/HTTP| 5642|

Delimiter examples

A single value followed by an optional delimiter is treated as a key. The counter for those keys is set to 1.
A delimiter may follow the count, and any text after that delimiter is ignored. When the counter is 0, the
key is not inserted into the Bag.

SiLK -3.23.1 89

rwbagbuild(1) The SiLK Reference Guide

$ cat sport.txt

0

1|

2|3

4|5|

6|7|8|

9|10|||||

11|0

$ rwbagbuild --bag-input=sport.txt --key-type=sport \

| rwbagcat

0| 1|

1| 1|

2| 3|

4| 5|

6| 7|

9| 10|

The --default-counter switch overrides the count.

$ rwbagbuild --bag-input=sport.txt --key-type=sport --default-count=1 \

| rwbagcat

0| 1|

1| 1|

2| 1|

4| 1|

6| 1|

9| 1|

11| 1|

In fact, the --default-counter switch causes rwbagbuild to ignore all text after the delimiter that follows
the key.

$ echo ’12|13 14’ | rwbagbuild --bag-input=- --output=/dev/null

rwbagbuild: Error parsing line 1: Extra text after count

rwbagbuild: Error creating bag from text bag

$ echo ’12|13 14’ | rwbagbuild --bag-input=- --default-count=1 \

| rwbagcat --key-format=decimal

12| 1|

ENVIRONMENT

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwbagbuild
uses when mapping an IP to a country for the sip-country, dip-country, or any-country keys. The
value may be a complete path or a file relative to the SILK PATH. See the FILES section for standard
locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

90 SiLK-3.23.1

The SiLK Reference Guide rwbagbuild(1)

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK PATH

This environment variable gives the root of the install tree. When searching for the country code
mapping file, rwbagbuild may use this environment variable. See the FILES section for details.

FILES

$SILK COUNTRY CODES

$SILK PATH/share/silk/country codes.pmap

$SILK PATH/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the sip-country, dip-country, and
any-country key-types.

SEE ALSO

rwbag(1), rwbagcat(1), rwbagtool(1), rwfileinfo(1), rwpmapbuild(1), rwset(1), rwsetbuild(1),
rwsetcat(1), rwsettool(1), ccfilter(3), silk(7), zlib(3), cat(1)

BUGS

rwbagbuild should verify the key’s value is within the allowed range for the specified --key-type.

rwbagbuild should accept non-numeric values for some fields, such as times and TCP flags.

The --default-count switch is poorly named.

SiLK-3.23.1 91

rwbagcat(1) The SiLK Reference Guide

rwbagcat

Output a binary Bag file as text

SYNOPSIS

rwbagcat [--network-structure[=STRUCTURE] | --bin-ips[=SCALE]

| --sort-counters[=ORDER]]

[--print-statistics[=OUTFILE]]

[--minkey=VALUE] [--maxkey=VALUE] [--mask-set=PATH]

[--mincounter=VALUE] [--maxcounter=VALUE] [--zero-counts]

[{ --pmap-file=PATH | --pmap-file=MAPNAME:PATH }]

[--key-format=FORMAT] [--integer-keys] [--zero-pad-ips]

[--no-columns] [--column-separator=C]

[--no-final-delimiter] [{--delimited | --delimited=C}]

[--output-path=PATH] [--pager=PAGER_PROG]

[--site-config-file=FILENAME]

[BAGFILE [BAGFILE...]]

rwbagcat --help

rwbagcat --version

DESCRIPTION

rwbagcat reads a binary Bag as created by rwbag(1) or rwbagbuild(1), converts it to text, and writes it
to the standard output, to the pager, or to the specified output file. It can also print various statistics and
summary information about the Bag.

As of SiLK 3.12.0, rwbagcat uses information in the Bag file’s header to determine how to display the key
column.

• A key that is an IP address is printed in the canonical format. Specifically, IPs are printed in the
IPv4 canonical format if the Bag contains only IPv4 addresses; otherwise, in the IPv6 canonical format
(with IPv4 mapped into the ::ffff:0:0/96 netblock). May be modified by --key-format.

• A key that is a time is printed as a human-readable timestamp. May be modified by --key-format.

• A sensor key prints the name of the sensor. The decimal and hexadecimal arguments to --key-format
may be used.

• A key holding TCP Flags is printed using the characters F,S,R,P,A,U,E,C. The decimal and
hexadecimal arguments to --key-format may be used.

• A key holding SiLK attributes is printed using the characters T,C,F,S. The decimal and hexadecimal

arguments to --key-format may be used.

• A country code key uses the abbreviations defined by ISO 3166-1 (see for example https://www.iso.
org/iso-3166-country-codes.html or https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2) or the follow-
ing special codes: -- N/A (e.g. private and experimental reserved addresses); a1 anonymous proxy; a2
satellite provider; o1 other.

92 SiLK-3.23.1

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

The SiLK Reference Guide rwbagcat(1)

• A key holding a value from prefix map requires that the --pmap-file switch be specified to display the
value.

In addition, rwbagcat exits with an error when asked to use an IP format to display keys that are not IP
addresses.

rwbagcat reads the BAGFILE s specified on the command line; if no BAGFILE arguments are given,
rwbagcat attempts to read the Bag from the standard input. BAGFILE may be the keyword stdin or a
hyphen (-) to allow rwbagcat to print data from both files and piped input. If any input does not contain
a Bag, rwbagcat prints an error to the standard error and exits abnormally.

When multiple BAGFILE s are specified on the command line, each is handled individually. To process
the files as a single Bag, use rwbagtool(1) to combine the bags and pipe the output of rwbagtool into
rwbagcat.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--network-structure

--network-structure=STRUCTURE

For each numeric value in STRUCTURE, group the IPs in the Bag into a netblock of that size and print
the number of hosts, the sum of the counters, and, optionally, print the number of smaller, occupied
netblocks that each larger netblock contains. When STRUCTURE begins with v6:, the IPs in the
Bag are treated as IPv6 addresses, and any IPv4 addresses are mapped into the ::ffff:0:0/96 netblock.
Otherwise, the IPs are treated as IPv4 addresses, and any IPv6 address outside the ::ffff:0:0/96 netblock
is ignored. Aside from the initial v6: (or v4:, for consistency), STRUCTURE has one of following
forms:

1. NETBLOCK LIST/SUMMARY LIST. Group IPs into the sizes specified in either NET-
BLOCK LIST or SUMMARY LIST. rwbagcat prints a row for each occupied netblock specified
in NETBLOCK LIST, where the row lists the base IP of the netblock, the sum of the counters for
that netblock, the number of hosts, and the number of smaller, occupied netblocks having a size
that appears in either NETBLOCK LIST or SUMMARY LIST. (The values in SUMMARY LIST
are only summarized; they are not printed.)

2. NETBLOCK LIST/. Similar to the first form, except all occupied netblocks are printed, and
there are no netblocks that are only summarized.

3. NETBLOCK LISTS. When the character S appears anywhere in the NETBLOCK LIST, rw-
bagcat provides a default value for the SUMMARY LIST. That default is 8,16,24,27 for IPv4,
and 48,64 for IPv6.

4. NETBLOCK LIST. When neither S nor / appear in STRUCTURE, the output does not include
the number of smaller, occupied netblocks.

5. Empty. When STRUCTURE is empty or only contains v6: or v4:, the NETBLOCK LIST prints
a single row for the total network (the /0 netblock) giving the number of hosts, the sum of the
counters, and the number of smaller, occupied netblocks using the same default list specified in
form 3.

SiLK-3.23.1 93

rwbagcat(1) The SiLK Reference Guide

NETBLOCK LIST and SUMMARY LIST contain a comma separated list of numbers between 0 (the
total network) and the size for an individual host (32 for IPv4 or 128 for IPv6). The characters T and H

may be used as aliases for 0 and the host netblock, respectively. In addition, when parsing the lists as
IPv4 netblocks, the characters A, B, C, and X are supported as aliases for 8, 16, 24, and 27, respectively.
A comma is not required between adjacent letters. The --network-structure switch disables printing
of the IPs in the Bag file; specify the H argument to the switch to print each individual IP address and
its counter.

The --network-structure switch may not be combined with the --bin-ips or --sort-counters
switches. As of SiLK 3.12.0, rwbagcat exits with an error if the --network-structure switch is
used on a Bag file whose key-type is neither custom nor an IP address type.

--bin-ips

--bin-ips=SCALE

Invert the bag and count the total number of unique keys for a given value of the volume bin. For
example, turn a Bag {sip:flow} into {flow:count(sip)}. SCALE is a string containing the value linear,
binary, or decimal.

• The default behavior is linear: Each distinct counter gets its own bin. Any counter in the input
Bag file that is larger than the maximum possible key will be attributed to the maximum key;
to prevent this, specify --maxcounter=4294967295 which discards bins whose counter value does
not fit into a key.

• binary creates a bag of {log2(flow):count(sip)}. Bin n contains counts in the range
[2^n, 2^(n+1)).

• decimal creates one hundred bins for each counter in the range [1,100), and one hundred bins for
each counter in the range [100,1000), each counter in the range [1000,10000), etc. Counters are
logarithmically distributed among the bins.

The --bin-ips switch may not be combined with the --network-structure or --sort-counters
switches. See also the --invert switch on rwbagtool(1) which inverts a bag using a linear scale
and creates a new binary bag file.

--sort-counters

--sort-counters=ORDER

Sort the output so the counters are presented in either decreasing or increasing order. Typically the
output is sorted by the keys. If the ORDER argument is not given to the switch, the counters are
printed in decreasing order. Valid values for ORDER are

decreasing

Print the maximum counter first. This is the default.

increasing

Print the minimum counter first.

When two counters have the same value, the smaller key is displayed first. The --sort-counters switch
may not be combined with the --network-structure or --bin-ips switches. Since SiLK 3.12.2.

--print-statistics

--print-statistics=OUTFILE

Print a breakdown of the network hosts seen, and print general statistics about the keys and counters.
When --print-statistics is specified, no other output is produced unless one of --sort-counters, --
network-structure, or --bin-ips is also specified. When the OUTFILE argument is not given, the

94 SiLK-3.23.1

The SiLK Reference Guide rwbagcat(1)

statistics are written to the standard output or to the pager if output is to a terminal. OUTFILE is a
filename, named pipe, the keyword stderr to write to the standard error, or the keyword stdout or
- to write to the standard output. If OUTFILE names an existing file, rwbagcat exits with an error
unless the SILK CLOBBER environment variable is set, in which case OUTFILE is overwritten. The
output statistics produced by this switch are:

• count of unique keys

• sum of all the counters

• minimum key

• maximum key

• minimum counter

• maximum counter

• mean of counters

• variance of counters

• standard deviation of counters

• skew of counters

• kurtosis of counters

• count of nodes allocated

• total bytes allocated for nodes

• count of leaves allocated

• total bytes allocated for leaves

• density of the data

--minkey=VALUE

Output records whose key value is at least VALUE. VALUE may be an IP address or an integer in the
range 0 to 4294967295 inclusive. The default is to print all records with a non-zero counter.

--maxkey=VALUE

Output records whose key value is not more than VALUE. VALUE may be an IP address or an integer
in the range 0 to 4294967295 inclusive. The default is to print all records with a non-zero counter.

--mask-set=PATH

Output records whose key appears in the binary IPset read from the file PATH. (To build an IPset, use
rwset(1) or rwsetbuild(1).) When used with --minkey and/or --maxkey, output records whose
key is in the IPset and is also within when the specified range. As of SiLK 3.12.0, rwbagcat exits
with an error if the --mask-set switch is used on a Bag file whose key-type is neither custom nor an
IP address type.

--mincounter=VALUE

Output records whose counter value is at least VALUE. VALUE is an integer in the range 1 to
18446744073709551615. The default is to print all records with a non-zero counter; use --zero-counts
to show records whose counter is 0.

--maxcounter=VALUE

Output records whose counter value is not more than VALUE. VALUE is an integer in the range 1 to
18446744073709551615, with the default being the maximum counter value.

SiLK-3.23.1 95

rwbagcat(1) The SiLK Reference Guide

--zero-counts

Print keys whose counter is zero. Normally, keys with a counter of zero are suppressed since all keys
have a default counter of zero. In order to use this flag, either --mask-set or both --minkey and
--maxkey must be specified. When this switch is specified, any counter limit explicitly set by the
--maxcounter switch is also applied.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Use the prefix map file located at PATH to map the key to a string when the type of the Bag’s key is
one of sip-pmap, dip-pmap, any-ip-pmap, sport-pmap, dport-pmap, or any-port-pmap. This switch
is required for Bag files whose key was derived from a prefix map file. The type of the prefix map file
must match the key’s type, but a different prefix map file may be used. Specify PATH as - or stdin
to read from the standard input. A map-name may be included in the argument to the switch, but
rwbagcat currently does not use the map-name. To create a prefix map file, use rwpmapbuild(1).
Since SiLK 3.12.0.

--key-format=FORMAT

Specify the format to use when printing a key, where FORMAT is a comma-separated list of the
arguments described below. When this switch is not specified, rwbagcat uses the key’s type to
determine how to format the key, and a key whose type is unknown or custom is assumed to be an IP
address. rwbagcat exits with an error if the specified format is incompatible with the key’s type (for
example, attempting to format a timestamp as an IP address).

decimal

Print keys as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1 as
3221225985 and 42540766411282592856903984951653826561, respectively. May be combined
with zero-padded and either map-v4 or unmap-v6. rwbagcat exits with an error when this
format is used on a Bag file whose key-type is a timestamp.

hexadecimal

Print keys as integers in hexadecimal format. For example, print 192.0.2.1 and 2001:db8::1

as c00000201 and 20010db8000000000000000000000001, respectively. May be combined with
zero-padded and either map-v4 or unmap-v6. rwbagcat exits with an error when this format is
used on a Bag file whose key-type is a timestamp. Note: This setting does not apply to CIDR
prefix values which are printed as decimal.

canonical

Print keys as IP addresses in the canonical format. If the key is an IPv4 address, use dotted decimal
(192.0.2.1). If the key is an IPv6 address, use colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1). May be combined with zero-padded and either map-v4 or unmap-v6. As of
SiLK 3.12.0, rwbagcat exits with an error when this format is used on a Bag file whose key-type
is neither custom nor an IP address type.

no-mixed

Print keys as IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not
used the mixed IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of
::ffff:192.0.2.1. May be combined with zero-padded and either map-v4 or unmap-v6. rw-
bagcat exits with an error when this format is used on a Bag file whose key-type is neither custom
nor an IP address type. Since SiLK 3.17.0.

96 SiLK-3.23.1

The SiLK Reference Guide rwbagcat(1)

map-v4

When the Bag’s key is an IPv4 address, change all IPv4 addresses to IPv4-mapped IPv6 addresses
(addresses in the ::ffff:0:0/96 netblock) prior to formatting. May be combined with one of the
above settings. rwbagcat exits with an error when this format is used on a Bag file whose
key-type is neither custom nor an IP address type. Since SiLK 3.17.0.

unmap-v6

When the Bag’s key is an IPv6 address, change any IPv4-mapped IPv6 addresses (addresses in
the ::ffff:0:0/96 netblock) to IPv4 addresses prior to formatting. May be combined with any one
of the above settings except map-v4. rwbagcat exits with an error when this format is used on
a Bag file whose key-type is neither custom nor an IP address type. Since SiLK 3.17.0.

zero-padded

Make all formatted key strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal. As of SiLK 3.18.0, the values of CIDR prefix
are also zero-padded. rwbagcat exits with an error when this format is used on a Bag file whose
key-type is a timestamp.

force-ipv6

Print keys using the format map-v4,no-mixed. May be combined with zero-padded. As of SiLK
3.12.0, rwbagcat exits with an error when this format is used on a Bag file whose key-type is
neither custom nor an IP address type.

timestamp

Print keys as time in standard SiLK format: yyyy/mm/ddThh:mm:ss. May be combined with
utc or localtime. May only be used on keys whose type is custom or a time value. Since SiLK
3.12.0.

iso-time

Print keys as time in the ISO time format yyyy-mm-dd hh:mm:ss. May be combined with utc or
localtime. May only be used on keys whose type is custom or a time value. Since SiLK 3.12.0.

m/d/y

Print keys as time in the format mm/dd/yyyy hh:mm:ss. May be combined with utc or local-
time. May only be used on keys whose type is custom or a time value. Since SiLK 3.12.0.

utc

Print the keys as time in UTC. If no other time-related key-format is provided, formats the time
using the timestamp format. May only be used on keys whose type is custom or a time value.
Since SiLK 3.12.0.

localtime

Print as the keys as time and get the timezone from either the TZ environment variable or local
machine. If no other time-related key-format is provided, formats the time using the timestamp
format. May only be used on keys whose type is custom or a time value. Since SiLK 3.12.0.

epoch

Print keys as seconds since UNIX epoch. May only be used on keys whose type is custom or a
time value. Since SiLK 3.12.0.

--integer-keys

This switch is equivalent to --key-format=decimal, it is deprecated as of SiLK 3.7.0, and it will be
removed in the SiLK 4.0 release.

SiLK-3.23.1 97

rwbagcat(1) The SiLK Reference Guide

--zero-pad-ips

This switch is equivalent to --key-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it
will be removed in the SiLK 4.0 release.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed. When the
network summary is requested (--network-structure=S), the separator is always printed before the
summary column and never after that column.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--output-path=PATH

Write the textual output of the --network-structure, --bin-ips, or --sort-counters switch to PATH,
where PATH is a filename, a named pipe, the keyword stderr to write the output to the standard
error, or the keyword stdout or - to write the output to the standard output (and bypass the paging
program). If PATH names an existing file, rwbagcat exits with an error unless the SILK CLOBBER
environment variable is set, in which case PATH is overwritten. If this option is not given, the output
is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwbagcat searches for the site configuration file in the locations specified in the FILES section. Since
SiLK 3.15.0.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

98 SiLK-3.23.1

The SiLK Reference Guide rwbagcat(1)

Printing a bag

To print the contents of the bag file mybag.bag :

$ rwbagcat mybag.bag

172.23.1.1| 5|

172.23.1.2| 231|

172.23.1.3| 9|

172.23.1.4| 19|

192.168.0.100| 1|

192.168.0.101| 1|

192.168.0.160| 15|

192.168.20.161| 1|

192.168.20.162| 5|

192.168.20.163| 5|

Displaying number of hosts by network

To print the bag with a full network breakdown:

$ rwbagcat --network-structure=TABCHX mybag.bag

172.23.1.1 | 5|

172.23.1.2 | 231|

172.23.1.3 | 9|

172.23.1.4 | 19|

172.23.1.0/27 | 264|

172.23.1.0/24 | 264|

172.23.0.0/16 | 264|

172.0.0.0/8 | 264|

192.168.0.100 | 1|

192.168.0.101 | 1|

192.168.0.96/27 | 2|

192.168.0.160 | 15|

192.168.0.160/27 | 15|

192.168.0.0/24 | 17|

192.168.20.161 | 1|

192.168.20.162 | 5|

192.168.20.163 | 5|

192.168.20.160/27 | 11|

192.168.20.0/24 | 11|

192.168.0.0/16 | 28|

192.0.0.0/8 | 28|

TOTAL | 292|

In the above, lines that include a CIDR prefix display the sum of the preceding hosts. For example, there
are 264 hosts in the 172.23.1.0/27 net-block.

To show an abbreviated network structure by class A and C only, including summary information:

$ rwbagcat --network-structure=ACS mybag.bag

172.23.1.0/24 | 264| 4 hosts in 1 /27

SiLK -3.23.1 99

rwbagcat(1) The SiLK Reference Guide

172.0.0.0/8 | 264| 4 hosts in 1 /16, 1 /24, and 1 /27

192.168.0.0/24 | 17| 3 hosts in 2 /27s

192.168.20.0/24 | 11| 3 hosts in 1 /27

192.0.0.0/8 | 28| 6 hosts in 1 /16, 2 /24s, and 3 /27s

Overriding the key type

Suppose a key-type of a bag file is duration:

$ rwfileinfo --field=bag Bag2.bag

Bag2.bag:

bag key: duration @ 4 octets; counter: custom @ 8 octets

rwbagcat complains when the --key-format switch lists a format that it thinks is ”nonsensical” for that
type of key.

$ rwbagcat --key-format=utc Bag2.bag

rwbagcat: Invalid key-format ’utc’:

Nonsensical for Bag containing duration keys

$ rwbagcat --key-format=canonical Bag2.bag

rwbagcat: Invalid key-format ’canonical’:

Nonsensical for Bag containing duration keys

To use the --key-format one time and leave the key-type in the Bag file unchanged, you may merge the
bag with an empty bag file: Use rwbagbuild(1) to create an empty bag that uses the custom key type,
add the empty bag to Bag2.bag using rwbagtool(1), then display the result:

$ rwbagbuild --bag-input=/dev/null \

| rwbagtool --add Bag2.bag stdin \

| rwbagcat --key-format=utc

1970/01/01T00:00:01| 1|

1970/01/01T00:00:04| 2|

1970/01/01T00:00:07| 32|

1970/01/01T00:00:08| 2|

$ rwbagbuild --bag-input=/dev/null \

| rwbagtool --add Bag2.bag - \

| rwbagcat --key-format=canonical

0.0.0.1| 1|

0.0.0.4| 2|

0.0.0.7| 32|

0.0.0.8| 2|

To rewrite the bag file with a different key type, print the bag file as text and use rwbagbuild to build a
new bag file:

$ rwbagcat Bag2.bag \

| rwbagbuild --bag-input=- --key-type=sipv4

100 SiLK-3.23.1

The SiLK Reference Guide rwbagcat(1)

Inverting a bag

Inverting a bag means counting the number of times each counter appears in the bag.

To bin the number of IP addresses that had each flow count:

$ rwbagcat --bin-ips mybag.bag

1| 3|

5| 3|

9| 1|

15| 1|

19| 1|

231| 1|

The output shows that the bag contains 3 source hosts that had a single flow, 3 hosts that had 5 flows, and
four hosts that each had a unique flow count (9, 15, 19, and 231).

For a log2 breakdown of the counts:

$ rwbagcat --bin-ips=binary mybag.bag

2^0 to 2^1-1| 3|

2^2 to 2^3-1| 3|

2^3 to 2^4-1| 2|

2^4 to 2^5-1| 1|

2^7 to 2^8-1| 1|

Sorting the bag by counter value

rwbagcat normally presents the data in order of increasing key value. To sort based on the counter value,
specify the --sort-counter switch. When sorting by the counter value, the default order is from maximum
counter to minimum counter.

$ rwbagcat --sort-counter mybag.bag

172.23.1.2| 231|

172.23.1.4| 19|

192.168.0.160| 15|

172.23.1.3| 9|

172.23.1.1| 5|

192.168.20.162| 5|

192.168.20.163| 5|

192.168.0.100| 1|

192.168.0.101| 1|

192.168.20.161| 1|

To change the sort order, specify the increasing argument to the --sort-counter switch:

$ rwbagcat --sort-counter=increasing mybag.bag

192.168.0.100| 1|

192.168.0.101| 1|

192.168.20.161| 1|

172.23.1.1| 5|

SiLK -3.23.1 101

rwbagcat(1) The SiLK Reference Guide

192.168.20.162| 5|

192.168.20.163| 5|

172.23.1.3| 9|

192.168.0.160| 15|

172.23.1.4| 19|

172.23.1.2| 231|

For keys have the same counter value, the order of the keys is consistent (always from low to high) regardless
how the counters are sorted. The following output is limited to those keys whose value is 5. The output
is first shown without the --sort-counter switch, then with the data sorted by increasing and decreasing
counter value.

$ rwbagcat --delim=, mybag.bag | grep ,5

172.23.1.1,5

192.168.20.162,5

192.168.20.163,5

$ rwbagcat --delim=, --sort-counter=increasing mybag.bag | grep ,5

172.23.1.1,5

192.168.20.162,5

192.168.20.163,5

$ rwbagcat --delim=, --sort-counter=decreasing mybag.bag | grep ,5

172.23.1.1,5

192.168.20.162,5

192.168.20.163,5

Displaying bags that use prefix map values as the key

rwbag(1) and rwbagbuild(1) can use a prefix map file as the key in a bag file as of SiLK 3.12.0. When
attempting to display these Bag files, you must specify the --pmap-file switch on the rwbagcat command
line for it to map each prefix map value to its label. If the --pmap-file is not given, rwbagcat displays an
error.

$ rwbagcat service.bag

rwbagcat: The --pmap-file switch is required for \

Bags containing sport-pmap keys

In addition, the type of the prefix map file must match the key-type in the bag file: a prefix map type
of IPv4-address or IPv6-address when the key was mapped from an IP address, and a prefix map type of
proto-port when the key was mapped from a protocol-port pair. The type of key in a bag may be determined
by rwfileinfo(1).

$ rwfileinfo --fields=bag service.bag

service.bag:

bag key: sport-pmap @ 4 octets; counter: custom @ 8 octets

$ rwbagcat --pmap-file=ip-map.pmap service.bag

rwbagcat: Cannot use IPv4-address prefix map for \

Bag containing sport-pmap keys

102 SiLK -3.23.1

The SiLK Reference Guide rwbagcat(1)

$ rwbagcat --pmap-file=port-map.pmap service.bag

TCP/SSH| 1|

TCP/SMTP| 800|

TCP/HTTP| 5642|

The only check rwbagcat makes is whether the prefix map file is the correct type. A different prefix map
file may be used. If a value in the bag file does not have an index in the prefix map file, the numeric index
of the label is displayed as shown in the following example which creates a prefix map with a single label.

$ echo ’label 1 none’ \

| rwpmapbuild --mode=proto-port --input-path=- \

--output-path=tmp.pmap

$ rwbagcat --pmap-file=tmp.pmap service.bag

7| 1|

8| 800|

9| 5642|

Displaying statistics

$ rwbagcat --print-statistics mybag.bag

Statistics

number of keys: 10

sum of counters: 292

minimum key: 172.23.1.1

maximum key: 192.168.20.163

minimum counter: 1

maximum counter: 231

mean: 29.2

variance: 5064

standard deviation: 71.16

skew: 2.246

kurtosis: 8.1

nodes allocated: 0 (0 bytes)

counter density: inf%

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PAGER

When set to a non-empty string, rwbagcat automatically invokes this program to display its output
a screen at a time. If set to an empty string, rwbagcat does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwbagcat automatically invokes this program to display its
output a screen at a time.

SiLK-3.23.1 103

rwbagcat(1) The SiLK Reference Guide

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwbagcat may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwbagcat may use this environment variable. See the FILES section for details.

TZ

When the argument to the --key-format switch includes localtime or when a SiLK installation is
built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwbagcat displays timestamps. (If both of those are false, the TZ environment variable is
ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwbagcat --version.)

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwbag(1), rwbagbuild(1), rwbagtool(1), rwpmapbuild(1), rwfileinfo(1), rwset(1), rwsetbuild(1),
silk(7), tzset(3), environ(7)

104 SiLK-3.23.1

The SiLK Reference Guide rwbagtool(1)

rwbagtool

Perform high-level operations on binary Bag files

SYNOPSIS

rwbagtool { --add | --subtract | --minimize | --maximize

| --divide | --scalar-multiply=VALUE

| --compare={lt | le | eq | ge | gt} }

[--intersect=SETFILE | --complement-intersect=SETFILE]

[--mincounter=VALUE] [--maxcounter=VALUE]

[--minkey=VALUE] [--maxkey=VALUE]

[--invert] [--coverset] [--ipset-record-version=VERSION]

[--output-path=PATH [--modify-inplace [--backup-path=BACKUP]]]

[--note-strip] [--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD]

[BAGFILE[BAGFILE...]]

rwbagtool --help

rwbagtool --version

DESCRIPTION

rwbagtool performs various operations on binary Bag files (key-counter associations) and creates a new
Bag file or an IPset file. rwbagtool can add Bags together, subtract a subset of data from a Bag, divide
a Bag by another, compare the counters of two Bag files, perform key intersection of a Bag with an IPset,
extract the keys of a Bag as an IPset, or filter Bag entries based on their key or counter values.

rwbagtool reads Bags from the files and named pipes specified on the command line. If no file names
are given on the command line, rwbagtool attempts to read a Bag from the standard input. The names
stdin or - may be used to force rwbagtool to read from the standard input. The resulting Bag or IPset
is written to the location specified by the --output-path switch or to the standard output if that switch is
not provided. If a BAGFILE does not contain a Bag or an attempt is made to read binary input or write
binary output to the terminal,, rwbagtool prints an error to the standard error and exits abnormally.

In SiLK 3.21.0, rwbagtool added the --modify-inplace switch which correctly handles the case when an
input file is also used as the output file. That switch causes rwbagtool to write the output to a temporary
file first and then replace the original output file. The --backup-path switch may be used in conjunction
with --modify-inplace to set the pathname where the original output file is copied.

A Bag is a set where each key is associated with a counter. rwbag(1) and rwbagbuild(1) are the primary
tools used to create a Bag file. rwbagcat(1) prints a binary Bag file as text.

SiLK 3.15.0 introduced Aggregate Bags that are capable of storing multiple keys and counters. See rwagg-
bag(1), rwaggbagbuild(1), rwaggbagcat(1), and rwaggbagtool(1) for more information.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required

SiLK-3.23.1 105

rwbagtool(1) The SiLK Reference Guide

for options that take optional parameters.

Operation switches

The first set of options are mutually exclusive; only one may be specified. If none are specified, the counters
in the Bag files are summed.

--add

Sum the counters for each key for all Bag files given on the command line. At least one Bag file must
be specified, and any number of additional Bag files may be given. If a key is not present in an input
file, a counter of zero is used. The result contains the union of the keys from the input Bag files. When
no operation switch is specified on the command line, the add operation is the default. If addition
causes a counter to exceed the maximum value, rwbagtool exits with an error.

--subtract

Subtract from the first Bag file all subsequent Bag files. At least one Bag file must be specified, and any
number of additional Bag files may be given. If a key does not appear in the first Bag file, rwbagtool
assumes it has a value of 0. If subtracting a key’s counters results in a non-positive number, the key
does appear in the resulting Bag file. The result contains a subset of the keys in the first Bag file.

--minimize

Cause the output to contain the minimum counter seen for each key. Keys that do not appear in all
input Bags do not appear in the output. At least one Bag file must be specified, and any number of
additional Bag files may be given.

--maximize

Cause the output to contain the maximum counter seen for each key. The output contains each key
that appears in any input Bag. At least one Bag file must be specified, and any number of additional
Bag files may be given.

--divide

Divide the first Bag file by the second Bag file. It is an error if only one Bag file or more than two
Bag files are given. Every key in the first Bag file must appear in the second file; the second Bag may
have keys that do not appear in the first, and those keys do not appear in the output. Since Bags do
not support floating point numbers, the result of the division is rounded to the nearest integer (values
ending in .5 are rounded up). If the result of the division is less than 0.5, the key does not appear in
the output.

--scalar-multiply=VALUE

Multiply each counter in the Bag file by the scalar VALUE, where VALUE is an integer in the range 1
to 18446744073709551614. This switch requires a single Bag as input. On overflow, the lower 64-bits
of the result are used as the counter’s value.

--compare=OPERATION

Compare the key/counter pairs in exactly two Bag files. It is an error if only one Bag file or more
than two Bag files are specified. The keys in the output Bag are only those for which the comparison
denoted by OPERATION is true when comparing the key’s counter in the first Bag with the key’s
counter in the second Bag. The counters for all keys in the output have the value 1. Any key that does
not appear in both input Bag files does not appear in the result. The possible OPERATION values
are the strings:

106 SiLK-3.23.1

The SiLK Reference Guide rwbagtool(1)

lt

GetCounter(Bag1, key) < GetCounter(Bag2, key)

le

GetCounter(Bag1, key) <= GetCounter(Bag2, key)

eq

GetCounter(Bag1, key) == GetCounter(Bag2, key)

ge

GetCounter(Bag1, key) >= GetCounter(Bag2, key)

gt

GetCounter(Bag1, key) > GetCounter(Bag2, key)

Masking/Limiting switches

The result of the above operation is an intermediate Bag file. The following switches are applied next to
remove entries from the intermediate Bag:

--intersect=SETFILE

Mask the keys in the intermediate Bag using the set in SETFILE. SETFILE is the name of a file or a
named pipe containing an IPset, or the name stdin or - to have rwbagtool read the IPset from the
standard input. If SETFILE does not contain an IPset, rwbagtool prints an error to stderr and exits
abnormally. Only key/counter pairs where the key matches an entry in SETFILE are written to the
output. (IPsets are typically created by rwset(1) or rwsetbuild(1).)

--complement-intersect=SETFILE

As --intersect, but only writes key/counter pairs for keys which do not match an entry in SETFILE.

--mincounter=VALUE

Cause the output to contain only those entries whose counter value is VALUE or higher. The allowable
range is 1 to the maximum counter value (18446744073709551614); the default is 1.

--maxcounter=VALUE

Cause the output to contain only those entries whose counter value is VALUE or lower. The allowable
range is 1 to the maximum counter value; the default is the maximum counter value.

--minkey=VALUE

Cause the output to contain only those entries whose key value is VALUE or higher. Default is 0 (or
0.0.0.0). Accepts input as an integer or as an IP address in dotted decimal notation.

--maxkey=VALUE

Cause the output to contain only those entries whose key value is VALUE or higher. Default is
4294967295 (or 255.255.255.255). Accepts input as an integer or as an IP address in dotted decimal
notation.

Output switches

The following switches control the output.

SiLK-3.23.1 107

rwbagtool(1) The SiLK Reference Guide

--invert

Generate a new Bag whose keys are the counters in the intermediate Bag and whose counter is the
number of times the counter was seen. For example, this turns the Bag {sip:flow} into the Bag
{flow:count(sip)}. Any counter in the intermediate Bag that is larger than the maximum possible key
is attributed to the counter for the maximum key; to prevent this, specify --maxcounter=4294967295

which removes all key-counter pairs whose counters do not fit into a key. (The --bin-ips switch on
rwbagcat(1) allows one to invert a Bag file as it is being printed.) If inverting the Bag causes a
counter to exceed the maximum value, rwbagtool exits with an error.

--coverset

Instead of creating a Bag file as the output, write an IPset which contains the keys contained in the
intermediate Bag.

--ipset-record-version=VERSION

Specify the format of the IPset records that are written to the output when the --coverset switch
is used. VERSION may be 2, 3, 4, 5 or the special value 0. When the switch is not provided, the
SILK IPSET RECORD VERSION environment variable is checked for a version. The default version
is 0. Since SiLK 3.11.0.

0

Use the default version for an IPv4 IPset and an IPv6 IPset. Use the --help switch to see the
versions used for your SiLK installation.

2

Create a file that may hold only IPv4 addresses and is readable by all versions of SiLK.

3

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.0 and later.

4

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.7 and later. These
files are more compact that version 3 and often more compact than version 2.

5

Create a file that may hold only IPv6 addresses and is readable by SiLK 3.14 and later. When
this version is specified, IPsets containing only IPv4 addresses are written in version 4. These
files are usually more compact that version 4.

--output-path=PATH

Write the resulting Bag or IPset to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwbagtool exits with an error unless the
--modify-inplace switch is given or the SILK CLOBBER environment variable is set, in which case
PATH is overwritten. If --output-path is not given, the output is written to the standard output.
Attempting to write the binary output to a terminal causes rwbagtool to exit with an error.

--modify-inplace

Allow rwbagtool to overwrite an existing file and properly account for the output file (PATH) also
being an input file. When this switch is given, rwbagtool writes the output to a temporary location
first, then overwrites PATH. rwbagtool attempts to copy the permission, owner, and group from the
original file to the new file. The switch is ignored when PATH does not exist or the output is the
standard output or standard error. rwbagtool exits with an error when this switch is given and PATH
is not a regular file. If rwbagtool encounters an error or is interrupted prior to closing the temporary
file, the temporary file is removed. See also --backup-path. Since SiLK 3.21.0.

108 SiLK-3.23.1

The SiLK Reference Guide rwbagtool(1)

--backup-path=BACKUP

Move the file named by --output-path (PATH) to the path BACKUP immediately prior to moving
the temporary file created by --modify-inplace over PATH. If BACKUP names a directory, the file
is moved into that directory. This switch will overwrite an existing file. If PATH and BACKUP point
to the same location, the output is written to PATH and no backup is created. If BACKUP cannot
be created, the output is left in the temporary file and rwbagtool exits with a message and an error.
rwbagtool exits with an error if this switch is given without --modify-inplace. Since SiLK 3.21.0.

--note-strip

Do not copy the notes (annotations) from the input files to the output file. Normally notes from the
input files are copied to the output.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--help

Print the available options and exit.

SiLK-3.23.1 109

rwbagtool(1) The SiLK Reference Guide

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The examples assume the following contents for the files:

Bag1.bag Bag2.bag Bag3.bag Bag4.bag Mask.set

3| 10| 1| 1| 2| 8| 1| 1| 2

4| 7| 4| 2| 4| 10| 4| 3| 4

6| 14| 7| 32| 6| 14| 6| 4| 6

7| 23| 8| 2| 7| 12| 7| 4| 8

8| 2| 9| 8| 8| 6|

The examples use rwbagcat(1) to print the contents of the Bag files.

Adding Bag Files

Adding Bag files produces a Bag whose keys are the set union of the keys in the input Bags. The counter
for each key is the sum of the key’s counters in each input Bag.

$ rwbagtool --add Bag1.bag Bag2.bag > Bag-sum.bag

$ rwbagcat --key-format=decimal Bag-sum.bag

1| 1|

3| 10|

4| 9|

6| 14|

7| 55|

8| 4|

$ rwbagtool --add Bag1.bag Bag2.bag Bag3.bag > Bag-sum2.bag

$ rwbagcat --key-format=decimal Bag-sum2.bag

1| 1|

2| 8|

3| 10|

4| 19|

6| 28|

7| 67|

8| 4|

9| 8|

Subtracting Bag Files

The --subtract switch subtracts from the key/counter pairs in the first Bag file the key/counter pairs in all
other Bag file arguments. Keys that are not present in the first argument are ignored. If subtraction results
in a counter value of zero or less, the key is removed from the result.

110 SiLK -3.23.1

The SiLK Reference Guide rwbagtool(1)

$ rwbagtool --subtract Bag1.bag Bag2.bag > Bag-diff.bag

$ rwbagcat --key-format=decimal Bag-diff.bag

3| 10|

4| 5|

6| 14|

$ rwbagtool --subtract Bag2.bag Bag1.bag > Bag-diff2.bag

$ rwbagcat --key-format=decimal Bag-diff2.bag

1| 1|

7| 9|

Getting the Minimum Value

The output produced by the --minimize switch contains only the keys that appear in all of input Bags. For
each key, the counter is the minimum value for that key in any input Bag.

$ rwbagtool --minimize Bag1.bag Bag2.bag Bag3.bag > Bag-min.bag

$ rwbagcat --key-format=decimal Bag-min.bag

4| 2|

7| 12|

Getting the Maximum Value

The keys of the Bag file produced by --maximize are the same as the keys produced by --add; that is, the
union of all keys in the input files. For each key, its counter is the maximum value seen for that key in any
single input Bag file.

$ rwbagtool --maximize Bag1.bag Bag2.bag Bag3.bag > Bag-max.bag

$ rwbagcat --key-format=decimal Bag-max.bag

1| 1|

2| 8|

3| 10|

4| 10|

6| 14|

7| 32|

8| 2|

9| 8|

Dividing Bag Files

The --divide switch requires exactly two Bag files as input. The keys in the first Bag argument must be
either the same as or a subset of those in the second argument. The counter for each key in the first Bag
file is divided by that key’s counter in the second file. If the result of the division is less than 0.5, the key is
not included in the output.

$ rwbagtool --divide Bag2.bag Bag4.bag > Bag-div1.bag

$ rwbagcat --key-format=decimal Bag-div1.bag

1| 1|

4| 1|

7| 8|

SiLK-3.23.1 111

rwbagtool(1) The SiLK Reference Guide

When the order of the Bag file arguments is reversed an error is reported.

$ rwbagtool --divide Bag4.bag Bag2.bag > Bag-div2.bag

rwbagtool: Error dividing bags; key 6 not in divisor bag

To work around this issue, use the --coverset switch to create a copy of Bag4.bag that contains only the
keys in Bag2.bag.

$ rwbagtool --coverset Bag2.bag > Bag2-keys.set

$ rwbagtool --intersect=Bag2-keys.set Bag4.bag > Bag4-small.bag

$ rwbagtool --divide Bag4-small.bag Bag2.bag > Bag-div2.bag

$ rwbagcat --key-format=decimal Bag-div2.bag

1| 1|

4| 2|

8| 3|

The following command is the same as the above except the IPset and Bag files are piped between the tools
instead of being written to disk:

$ rwbagtool --coverset Bag2.bag \

| rwbagtool --intersect=- Bag4.bag \

| rwbagtool --divide - Bag2.bag \

| rwbagcat --key-format=decimal

1| 1|

4| 2|

8| 3|

Scalar Multiplication

The --scalar-multiply switch multiplies each counter in the input Bag by the specified value. Exactly one
Bag file argument is required.

$ rwbagtool --scalar-multiply=7 Bag1.bag > Bag-multiply.bag

$ rwbagcat --key-format=decimal Bag-multiply.bag

3| 70|

4| 49|

6| 98|

7| 161|

8| 14|

Use two rwbagtool commands if multiple operations are desired.

$ rwbagtool --add Bag1.bag Bag2.bag \

| rwbagtool --scalar-multiply=3 --output-path=Bag12-multi.bag

$ rwbagcat --key-format=decimal Bag12-multi.bag

1| 3|

3| 30|

4| 27|

6| 42|

7| 165|

8| 12|

112 SiLK-3.23.1

The SiLK Reference Guide rwbagtool(1)

Comparing Bag Files

The --compare switch takes an argument that specifies how to compare the counters in two Bag files, and
it requires exactly two Bag files as input. For each key that appears in both Bag files, the counter value in
the first file is compared to counter value in the second file. If the comparison is true, the key appears in
the resulting Bag file with a counter of 1. If the comparison is false, the key is not present in the output file.
Keys that appear in only one of the input files are ignored.

The following comparisons operate on Bag1.bag and Bag2.bag which have as common keys 4, 7, and 8.

Find counters in Bag1.bag that are less than those in Bag2.bag :

$ rwbagtool --compare=lt Bag1.bag Bag2.bag > Bag-lt.bag

$ rwbagcat --key-format=decimal Bag-lt.bag

7| 1|

Find counters in Bag1.bag that are less than or equal to those in Bag2.bag :

$ rwbagtool --compare=le Bag1.bag Bag2.bag > Bag-le.bag

$ rwbagcat --key-format=decimal Bag-le.bag

7| 1|

8| 1|

Find counters in Bag1.bag that are equal to those in Bag2.bag :

$ rwbagtool --compare=eq Bag1.bag Bag2.bag > Bag-eq.bag

$ rwbagcat --key-format=decimal Bag-eq.bag

8| 1|

Find counters in Bag1.bag that are greater than or equal to those in Bag2.bag :

$ rwbagtool --compare=ge Bag1.bag Bag2.bag > Bag-ge.bag

$ rwbagcat --key-format=decimal Bag-ge.bag

4| 1|

8| 1|

Find counters in Bag1.bag that are greater than those in Bag2.bag :

$ rwbagtool --compare=gt Bag1.bag Bag2.bag > Bag-gt.bag

$ rwbagcat --key-format=decimal Bag-gt.bag

4| 1|

Making a Cover Set

A cover set is an IPset file that contains the keys that are present in any of the input Bag files. In other
words, it is the union of the keys converted to an IPset. Since an operation switch is not provided in
this command, an implicit --add operation is performed on the Bag files prior to creating the cover set.
(rwsetcat(1) prints the contents of an IPset file as text.)

SiLK -3.23.1 113

rwbagtool(1) The SiLK Reference Guide

$ rwbagtool --coverset Bag1.bag Bag2.bag Bag3.bag > Cover.set

$ rwsetcat --key-format=decimal Cover.set

1

2

3

4

6

7

8

9

One use of a cover set is to limit the contents of a Bag file to keys that are present in a second Bag file:

$ rwbagtool --coverset --output-path=Cover.set Bag1.bag

$ rwbagtool --intersect=Cover.set Bag2.bag > Bag1-mask-Bag2.bag

$ rwbagcat --key-format=decimal Bag1-mask-Bag2.bag

4| 2|

7| 32|

8| 2|

To mask the contents of Bag2.bag by the keys that are not present in Bag1.bag :

$ rwbagtool --complement-intersect=Cover.set Bag2.bag \

> Bag1-notmask-Bag2.bag

$ rwbagcat --key-format=decimal Bag1-notmask-Bag2.bag

1| 1|

Inverting a Bag

The output of the --invert switch is a Bag file that counts the number of times each counter is present in
the input Bag file.

$ rwbagtool --invert Bag1.bag > Bag-inv1.bag

$ rwbagcat --key-format=decimal Bag-inv1.bag

2| 1|

7| 1|

10| 1|

14| 1|

23| 1|

$ rwbagtool --invert Bag2.bag > Bag-inv2.bag

$ rwbagcat --key-format=decimal Bag-inv2.bag

1| 1|

2| 2|

32| 1|

$ rwbagtool --invert Bag3.bag > Bag-inv3.bag

$ rwbagcat --key-format=decimal Bag-inv3.bag

8| 2|

114 SiLK-3.23.1

The SiLK Reference Guide rwbagtool(1)

10| 1|

12| 1|

14| 1|

When multiple Bag files are specified on the command line, the files are added prior to creating the inverted
Bag. Even though the counter 2 appears three times in the files Bag1.bag and Bag2.bag, the key 2 is not
present in the following since the add operation is performed first.

$ rwbagtool --invert Bag1.bag Bag2.bag \

| rwbagcat --key-format=decimal

1| 1|

4| 1|

9| 1|

10| 1|

14| 1|

55| 1|

Masking Bag Files

The --intersect switch takes an IPset file as an argument and limits the keys of the Bag produced by
rwbagtool to only those keys that appear in the IPset file.

$ rwbagtool --intersect=Mask.set Bag1.bag > Bag-mask.bag

$ rwbagcat --key-format=decimal Bag-mask.bag

4| 7|

6| 14|

8| 2|

The --complement-intersect switch limits the output to only those keys that do not appear in the IPset
file.

$ rwbagtool --complement-intersect=Mask.set Bag1.bag > Bag-mask2.bag

$ rwbagcat --key-format=decimal Bag-mask2.bag

3| 10|

7| 23|

See also the next section.

Restricting the Output

In addition to limiting the result of rwbagtool to keys that appear or do not appear in an IPset file (cf.
previous section), numeric limits may be used to restrict the keys or counters that in the resulting Bag file
with use of the --minkey, --maxkey, --mincounter, and --maxcounter switches.

$ rwbagtool --add --maxkey=5 Bag1.bag Bag2.bag > Bag-res1.bag

$ rwbagcat --key-format=decimal Bag-res1.bag

1| 1|

3| 10|

4| 9|

SiLK -3.23.1 115

rwbagtool(1) The SiLK Reference Guide

$ rwbagtool --minkey=3 --maxkey=6 Bag1.bag > Bag-res2.bag

$ rwbagcat --key-format=decimal Bag-res2.bag

3| 10|

4| 9|

6| 14|

$ rwbagtool --mincounter=20 Bag1.bag Bag2.bag > Bag-res3.bag

$ rwbagcat --key-format=decimal Bag-res3.bag

7| 55|

$ rwbagtool --subtract --maxcounter=9 Bag1.bag Bag2.bag \

> Bag-res4.bag

$ rwbagcat --key-format=decimal Bag-res4.bag

4| 5|

Changing a File’s Format

To share a Bag file with a user who has a version of SiLK that includes different compression libraries, it
may be necessary to change the the compression-method of the Bag.

It is not possible to change the compression-method directly. A new file must be created first, and then you
may then replace the old file with the new file.

To create a new file that uses a different compression-method of the Bag file A.bag, use rwbagtool with the
--add switch and specify the desired argument:

$ rwbagtool --add --compression=none --output-path=A1.bag A.bag

Changing the Key Type or Counter Type

Unfortunately, the Bag tools do not allow changing the key type or counter type of a Bag file. To change
the types, use rwbagcat(1) to write the Bag as text and rwbagbuild(1) to convert the text back to a Bag
file.

$ rwbagcat Bag1.bag \

| rwbagbuild --bag-input=- --output-path=Bag1-typed.bag \

--key-type=sport --counter-type=sum-bytes

Use rwfileinfo(1) to see the type of the key and counter.

$ rwfileinfo --field=bag Bag1-typed.bag

Bag1-typed.bag:

bag key: sPort @ 4 octets; counter: sum-bytes @ 8 octets

Alternatively, one may use PySiLK (see pysilk(3)) to modify the key type and counter type.

$ cat bag-type.py

import sys

from silk import *

116 SiLK -3.23.1

The SiLK Reference Guide rwbagtool(1)

key_type = sys.argv[1]

counter_type = sys.argv[2]

old_file = sys.argv[3]

new_file = sys.argv[4]

old = Bag.load(old_file, key_type=IPv4Addr)

new = Bag(old, key_type=key_type, counter_type=counter_type)

new.save(new_file)

$

$ python bag-type.py sipv4 sum-packets Bag1.bag Bag1-type2.bag

$ rwfileinfo --field=bag Bag1-type2.bag

Bag1-type2.bag:

bag key: sIPv4 @ 4 octets; counter: sum-packets @ 8 octets

ENVIRONMENT

SILK IPSET RECORD VERSION

This environment variable is used as the value for the --ipset-record-version when that switch is not
provided. Since SiLK 3.7.0.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

NOTES

The --modify-inplace switch was added in SiLK 3.21. When --backup-path is also given, there is a small
time window when the original file does not exist: the time between moving the original file to the backup
location and moving the temporary file into place.

rwbagtool should handle counter overflow more consistently and gracefully.

SEE ALSO

rwbag(1), rwbagbuild(1), rwbagcat(1), rwfileinfo(1), rwset(1), rwsetbuild(1), rwsetcat(1),
rwaggbag(1), rwaggbagbuild(1), rwaggbagcat(1), rwaggbagtool(1), silk(7), zlib(3)

SiLK-3.23.1 117

rwcat(1) The SiLK Reference Guide

rwcat

Concatenate SiLK Flow files into single stream

SYNOPSIS

rwcat [--output-path=PATH] [--note-add=TEXT] [--note-file-add=FILE]

[--print-filenames] [--byte-order={big | little | native}]

[--ipv4-output] [--milliseconds]

[--compression-method=COMP_METHOD]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE...]]}

rwcat --help

rwcat --version

DESCRIPTION

rwcat reads SiLK Flow records and writes the records in the standard binary SiLK format to the specified
output-path; rwcat writes the records to the standard output when stdout is not the terminal and --output-
path is not provided.

rwcat reads SiLK Flow records from the files named on the command line or from the standard input when
no file names are specified and --xargs is not present. To read the standard input in addition to the named
files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it is read.
When the --xargs switch is provided, rwcat reads the names of the files to process from the named text file
or from the standard input if no file name argument is provided to the switch. The input to --xargs must
contain one file name per line.

rwcat does not copy the invocation history and annotations (notes) from the header(s) of the source file(s)
to the destination file. The --note-add or --note-file-add switch may be used to add a new annotation to
the destination file.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output to the
standard output. If PATH names an existing file, rwcat exits with an error unless the SILK CLOBBER
environment variable is set, in which case PATH is overwritten. When PATH ends in .gz, the output
is compressed using the library associated with gzip(1). If this switch is not given, the output is
written to the standard output. Attempting to write the binary output to a terminal causes rwcat to
exit with an error.

118 SiLK-3.23.1

The SiLK Reference Guide rwcat(1)

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--byte-order=ENDIAN

Set the byte order for the output SiLK Flow records. The argument is one of the following:

native

Use the byte order of the machine where rwcat is running. This is the default.

big

Use network byte order (big endian) for the output.

little

Write the output in little endian format.

--ipv4-output

Force the output to contain only IPv4 flow records. When this switch is specified, IPv6 flow records
that contain addresses in the ::ffff:0:0/96 prefix are converted to IPv4 and written to the output, and
all other IPv6 records are ignored. When SiLK has not been compiled with IPv6 support, rwcat acts
as if this switch were always in effect.

--milliseconds

Force the output to use record formats and versions that use millisecond timestamps. This makes the
output compatible with releases of SiLK prior to SiLK 3.23.0. To read the output, SiLK 3.10.0 or later
is required, and if the byte-count, packet-count, or SNMP values (in and out) exceed the maximum
supported that version of SiLK, the value is set to its maximum. Since SiLK 3.23.0.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

SiLK-3.23.1 119

rwcat(1) The SiLK Reference Guide

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--print-filenames

Print the names of input files and the number of records each file contains as the files are read.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwcat searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwcat opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To combine the results of several rwfilter(1) runs---stored in the files run1.rw, run2.rw, ... runN.rw ---
together to create the file combined.rw, you can use:

$ rwcat --output=combined.rw *.rw

If the shell complains about too many arguments, you can use the UNIX find(1) function and pipe its
output to rwcat:

$ find . -name ’*.rw’ -print \

| rwcat --xargs --output=combined.rw

120 SiLK-3.23.1

The SiLK Reference Guide rwcat(1)

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwcat may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwcat may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfilter(1), rwfileinfo(1), silk(7), gzip(1), find(1), zlib(3)

BUGS

Although rwcat will read from the standard input, this feature should be used with caution. rwcat will
treat the standard input as a single file, as it has no way to know when one file ends and the next begins.
The following will not work:

$ cat run1.rw run2.rw | rwcat --output=combined.rw # WRONG!

The header of run2.rw will be treated as data of run1.rw, resulting in corrupt output.

SiLK-3.23.1 121

rwcombine(1) The SiLK Reference Guide

rwcombine

Combine flows denoting a long-lived session into a single flow

SYNOPSIS

rwcombine [--actions=ACTIONS] [--ignore-fields=FIELDS]

[--max-idle-time=NUM]

[{--print-statistics | --print-statistics=FILENAME}]

[--temp-directory=DIR_PATH] [--buffer-size=SIZE]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD] [--print-filenames]

[--output-path=PATH] [--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwcombine --help

rwcombine --help-fields

rwcombine --version

DESCRIPTION

rwcombine reads SiLK Flow records from one or more input sources, searches for flow records where the
attributes field denotes records that were prematurely created or were continuations of prematurely created
flows, and attempts to combine those records into a single record. All the unmodified SiLK records and the
combined records are written to the file specified by the --output-path switch or to the standard output
when the --output-path switch is not provided and the standard output is not connected to a terminal.

Some flow exporters, such as yaf(1), provide fields that describe characteristics about the flow record, and
these characteristics are stored in the attributes field of SiLK Flow records. The two flags that rwcombine
considers are:

T

The flow generator prematurely created a record for a long-lived session due to the connection’s lifetime
reaching the active timeout of the flow generator. (Also, when yaf is run with the --silk switch, it
prematurely creates a flow and marks it with T if the byte count of the flow cannot be stored in a
32-bit value.)

C

The flow generator created this flow as a continuation of long-running connection, where the previous
flow for this connection met a timeout. (yaf only sets this flag when it is invoked with the --silk
switch.)

A very long-running session may be represented by multiple flow records, where the first record is marked
with the T flag, the final record is marked with the C flag, and intermediate records are marked with both C

(this record continues an earlier flow) and T (this record also met the active time-out). rwcombine attempts
to combine these multiple flow records into a single record.

122 SiLK-3.23.1

The SiLK Reference Guide rwcombine(1)

The input to rwcombine does not need to be sorted. As part of its processing, rwcombine may re-order
the records before writing them.

rwcombine reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it
is read. When the --xargs switch is provided, rwcombine reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

Algorithm

The algorithm rwcombine uses to combine records is

1. rwcombine reads SiLK flow records, examines the attributes field on each record, and immediately
writes to the destination stream all records where both the time-out flag (T) and the continuation flag
(C) are not set. Records where one or both of those flags are set are stored until all input records have
been read.

2. rwcombine groups the stored records into bins where the following fields for each record in each bin
are identical: sIP, dIP, sPort, dPort, protocol, sensor, in, out, nhIP, application, class, and type.

3. For each bin, the records are stored by time (sTime and eTime).

4. Within a bin, rwcombine combines two records into a single record when the attributes field of the
first record has the T (time-out) flag set and the second record has the C (continuation) flag set. When
combining records, the bytes field and packets fields are summed, the initialFlags from the first record
is used, the sessionFlags field becomes the bit-wise OR of both sessionFlags fields and the second
record’s initialFlags field, and the eTime is set to that of the second flow.

5. If the second record’s T flag was set, rwcombine checks to see if the third record’s C flag is set. If it
is, the third record becomes part of the new record.

6. The previous step repeats for the records in the bin until the bin contains a single record, the most
recently added record did not have the T flag set, or the next record in the bin does not have the C flag
set.

7. After examining a bin, rwcombine writes the record(s) the bin contains to the destination stream.

8. Steps 3 through 7 are repeated for each bin.

The --ignore-fields switch allows the user to remove fields from the set that rwcombine uses when grouping
records in Step 2.

When combining two records into one (Step 4), rwcombine completely disregards the difference between
the first record’s end-time and the second record’s start-time (the idle time). To tell rwcombine not to
combine those records when the difference is greater than a limit, specify that value as the argument to the
--max-idle-time switch.

To see information on the number of flows combined and the minimum and maximum idle times, specify the
--print-statistics switch.

During its processing, rwcombine will try to allocate a large (near 2GB) in-memory array to hold the
records. (You may use the --buffer-size switch to change this maximum buffer size.) If more records
are read than will fit into memory, the in-core records are temporarily stored on disk as described by the

SiLK-3.23.1 123

rwcombine(1) The SiLK Reference Guide

--temp-directory switch. When all records have been read, the on-disk files are merged to produce the
output.

By default, the temporary files are stored in the /tmp directory. Because the sizes of the temporary files may
be large, it is strongly recommended that /tmp not be used as the temporary directory, and rwcombine will
print a warning when /tmp is used. To modify the temporary directory used by rwcombine, provide the
--temp-directory switch, set the SILK TMPDIR environment variable, or set the TMPDIR environment
variable.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--actions=ACTIONS

Select the type of action(s) that rwcombine should take to combine the input records. The default
action is all, and the following actions are supported:

all

Perform all the actions described below.

timeout

Combine into a single flow record those records where the timeout flags in the attributes field
indicate that the flow exporter has divided a long-lived session into multiple flow records.

This switch is provided for future expansion of rwcombine, since at present rwcombine supports a
single action. When writing a script that uses rwcombine, specify --action=timeout for compati-
bility with future versions of rwcombine.

--ignore-fields=FIELDS

Ignore the fields listed in FIELDS when determining if two flow records should be grouped into the
same bin; that is, treat FIELDS as being identical across all flows. By default, rwcombine puts
records into a bin when the records have identical values for the following fields: sIP, dIP, sPort, dPort,
protocol, sensor, in, out, nhIP, application, class, and type.

FIELDS is a comma separated list of field-names, field-integers, and ranges of field-integers; a range
is specified by separating the start and end of the range with a hyphen (-). Field-names are case-
insensitive. Example:

--ignore-fields=sensor,12-15

The list of supported fields are:

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

124 SiLK-3.23.1

The SiLK Reference Guide rwcombine(1)

dPort,4

destination port for TCP and UDP, or equivalent

protocol,5

IP protocol

sensor,12

name or ID of sensor at the collection point

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

nhIP,15

router next hop IP

class,20,type,21

class and type of sensor at the collection point (represented internally by a single value)

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf(1), will inspect the contents of the packets that make up a flow and use traffic
signatures to label the content of the flow. SiLK calls this label the application; yaf refers to it as
the appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

--max-idle-time=NUM

Do not combine flow records when the start time of the second flow record begins NUM seconds after
the end time of the first flow record. NUM may be a floating point value. If not specified, the maximum
idle time may be considered infinite.

--print-statistics

--print-statistics=FILENAME

Print to the standard error or to the specified FILENAME the number of flows records read and written,
the number of flows that did not require combining, the number of flows combined, the number that
could not be combined, and minimum and maximum idle time between combined flow records.

--temp-directory=DIR PATH

Specify the name of the directory in which to store data files temporarily when more records have
been read that will fit into RAM. This switch overrides the directory specified in the SILK TMPDIR
environment variable, which overrides the directory specified in the TMPDIR variable, which overrides
the default, /tmp.

--buffer-size=SIZE

Set the maximum size of the buffer to use for holding the records, in bytes. A larger buffer means
fewer temporary files need to be created, reducing the I/O wait times. The default maximum for this
buffer is near 2GB. The SIZE may be given as an ordinary integer, or as a real number followed by
a suffix K, M or G, which represents the numerical value multiplied by 1,024 (kilo), 1,048,576 (mega),
and 1,073,741,824 (giga), respectively. For example, 1.5K represents 1,536 bytes, or one and one-half
kilobytes. (This value does not represent the absolute maximum amount of RAM that rwcombine
will allocate, since additional buffers will be allocated for reading the input and writing the output.)

SiLK-3.23.1 125

rwcombine(1) The SiLK Reference Guide

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwcombine exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwcombine to exit with an error.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--print-filenames

Print to the standard error the names of input files as they are opened.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwcombine searches for the site configuration file in the locations specified in the FILES section.

126 SiLK-3.23.1

The SiLK Reference Guide rwcombine(1)

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwcombine opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--help-fields

Print the description and alias(es) of each field and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Use rwfilter(1) to find ssh flow records that involve the host 192.168.126.252. The output from rwcut(1)
shows the flow exporter split this long-lived ssh session into multiple flow records:

$ rwfilter --saddr=192.168.126.252 --dport=22 --pass=- data.rw \

| rwcut --fields=flags,attributes,stime,etime

flags|attribut| sTime| eTime|

S PA |T |2009/02/13T00:29:59.563|2009/02/13T00:59:39.668|

PA |TC |2009/02/13T00:59:39.668|2009/02/13T01:29:19.478|

PA |TC |2009/02/13T01:29:19.478|2009/02/13T01:58:48.890|

PA |TC |2009/02/13T01:58:48.891|2009/02/13T02:28:43.599|

F PA | C |2009/02/13T02:28:43.600|2009/02/13T02:32:58.272|

Here is the other half of that conversation:

$ rwfilter --daddr=192.168.126.252 --sport=22 --pass=- data.rw \

| rwcut --fields=flags,attributes,stime,etime

flags|attribut| sTime| eTime|

S PA |T |2009/02/13T00:30:00.060|2009/02/13T00:59:39.667|

PA |TC |2009/02/13T00:59:39.670|2009/02/13T01:29:19.478|

PA |TC |2009/02/13T01:29:19.481|2009/02/13T01:58:48.890|

PA |TC |2009/02/13T01:58:48.893|2009/02/13T02:28:43.599|

F PA | C |2009/02/13T02:28:43.600|2009/02/13T02:32:58.271|

Use rwuniq(1) to compute the byte and packet counts for that ssh session:

$ rwfilter --any-addr=192.168.126.252 --aport=22 --pass=- data.rw \

| rwuniq --fields=sip,dip,sport,dport --values=records,byte,packets

sIP| dIP|sPort|dPort|Records| Bytes|Packets|

10.11.156.107|192.168.126.252| 22|28975| 5|4677240| 3881|

192.168.126.252| 10.11.156.107|28975| 22| 5| 281939| 3891|

SiLK-3.23.1 127

rwcombine(1) The SiLK Reference Guide

Invoke rwcombine on these records and store the result in the file combined.rw :

$ rwfilter --any-addr=192.168.126.252 --aport=22 --pass=- data.rw \

| rwcombine --print-statistics --output-path=combined.rw

FLOW RECORD COUNTS:

Read: 10

Initially Complete: - 0 *

Sorted & Examined: = 10

Missing end: - 0 *

Missing start & end: - 0 *

Missing start: - 0 *

Prior to combining: = 10

Eliminated: - 8

Made complete: = 2 *

Written: 2 (sum of *)

IDLE TIMES:

Minimum: 0:00:00:00.000

Penultimate: 0:00:00:00.000

Maximum: 0:00:00:00.003

View the resulting records:

$ rwcut --fields=sip,dip,sport,dport,bytes,packets,flags combined.rw

sIP| dIP|sPort|dPort| bytes|packets| flags|

10.11.156.107|192.168.126.252| 22|28975|4677240| 3881|FS PA |

192.168.126.252| 10.11.156.107|28975| 22| 281939| 3891|FS PA |

$ rwcut --fields=sip,attributes,stime,etime combined.rw

sIP|attribut| sTime| eTime|

10.11.156.107| |2009/02/13T00:30:00.060|2009/02/13T02:32:58.271|

192.168.126.252| |2009/02/13T00:29:59.563|2009/02/13T02:32:58.272|

ENVIRONMENT

SILK TMPDIR

When set and --temp-directory is not specified, rwcombine writes the temporary files it creates to
this directory. SILK TMPDIR overrides the value of TMPDIR.

TMPDIR

When set and SILK TMPDIR is not set, rwcombine writes the temporary files it creates to this
directory.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

128 SiLK-3.23.1

The SiLK Reference Guide rwcombine(1)

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwcombine may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwcombine may use this environment variable. See the FILES section for details.

SILK TEMPFILE DEBUG

When set to 1, rwcombine prints debugging messages to the standard error as it creates, re-opens,
and removes temporary files.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK TMPDIR}/

${TMPDIR}/

/tmp/

Directory in which to create temporary files.

SEE ALSO

rwfilter(1), rwcut(1), rwuniq(1), rwfileinfo(1), sensor.conf(5), silk(7), yaf(1), zlib(3)

NOTES

The first release of rwcombine occurred in SiLK 3.9.0.

SiLK-3.23.1 129

rwcompare(1) The SiLK Reference Guide

rwcompare

Compare the records in two SiLK Flow files

SYNOPSIS

rwcompare [--quiet] [--site-config-file] FILE1 FILE2

rwcompare --help

rwcompare --version

DESCRIPTION

rwcompare opens the two files named on the command and compares the SiLK Flow records they contain.
If the records are identical, rwcompare exits with status 0. If any of the records differ, rwcompare prints
a message and exits with status 1. If there is an issue reading either file, an error is printed and the exit
status is 2. Use the --quiet switch to suppress all output (error messages included). You may use - or stdin
for one of the file names, in which case rwcompare reads from the standard input.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--quiet

Do not print a message if the files differ, and do not an print error message if a file cannot be opened
or read.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwcombine searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. Some input lines are split over
multiple lines in order to improve readability, and a backslash (\) is used to indicate such lines. The examples
assume the existence of the file data.rw that contains SiLK Flow records. The exit status of the most recent
command is available in the shell variable $?.

Compare a file with itself:

130 SiLK -3.23.1

The SiLK Reference Guide rwcompare(1)

$ rwcompare data.rw data.rw

$ echo $?

0

Compare a file with itself, where one instance of the file is read from the standard input:

$ rwcat data.rw | rwcompare - data.rw

$ echo $?

0

Use rwsort(1) to modify one instance of the file and compare the results:

$ rwsort --fields=proto data.rw | rwcompare - data.rw

- data.rw differ: record 1

$ echo $?

1

Run the command again and use the --quiet switch:

$ rwsort --fields=proto data.rw | rwcompare --quiet - data.rw

$ echo $?

1

Compare the file with input containing two copies of the file:

$ rwcat data.rw data.rw | rwcompare data.rw -

data.rw - differ: EOF data.rw

$ echo $?

1

Compare the file with /dev/null :

$ rwcompare --quiet /dev/null data.rw

$ echo $?

2

rwcompare checks whether two files have the same records in the same order. To compare two arbitrary
files, use rwsort(1) to reorder the records. Make certain to provide enough fields to the rwsort command
so that the records are in the same order.

$ rwsort --fields=1-10,12-15,20-29 data.rw > /tmp/sorted-data.rw

$ rwsort --fields=1-10,12-15,20-29 other-data.rw \

| rwcompare /tmp/sorted-data.rw -

/tmp/sorted-data.rw - differ: record 103363

SiLK-3.23.1 131

rwcompare(1) The SiLK Reference Guide

ENVIRONMENT

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwcombine may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwcombine may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfileinfo(1), rwcat(1), rwsort(1), silk(7)

132 SiLK-3.23.1

The SiLK Reference Guide rwcount(1)

rwcount

Print traffic summary across time

SYNOPSIS

rwcount [--bin-size=SIZE] [--load-scheme=LOADSCHEME]

[--start-time=START_TIME] [--end-time=END_TIME]

[--skip-zeroes] [--bin-slots] [--epoch-slots]

[--timestamp-format=FORMAT] [--no-titles]

[--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG] [--site-config-file=FILENAME]

[{--legacy-timestamps | --legacy-timestamps={1,0}}]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwcount --help

rwcount --version

DESCRIPTION

rwcount summarizes SiLK flow records across time. It counts the records in the input stream, and groups
their byte and packet totals into time bins. rwcount produces textual output with one row for each bin.

rwcount reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as
it is read. When the --xargs switch is provided, rwcount reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

rwcount splits each flow record into bins whose size is determined by the argument to the --bin-size switch.
When that switch is not provided, rwcount uses 30-second bins by default.

By default, the first row of data rwcount prints is the bin containing the starting time of the earliest record
that appears in the input. rwcount then prints a row for every bin until it reaches the bin containing the
most recent ending time. Rows whose counts are zero are printed unless the --skip-zero switch is specified.

The --start-time and --end-time switches tell rwcount to use a specific time for the first row and the
final row. The --start-time switch always sets the time stamp on the first bin to the specified time. With
the --end-time switch, rwcount computes a maximum end-time by setting any unspecified hour, minute,
second, and millisecond field to its maximum value, and the final bin is that which contains the maximum
end-time.

When --start-time and --end-time are both specified, rwcount reserves the memory for the bins before
it begins processing the records. If the memory cannot be allocated, rwcount exits. If this happens, try
reducing the time span or increasing the bin-size.

SiLK-3.23.1 133

rwcount(1) The SiLK Reference Guide

Load Scheme

A router or other flow generator summarizes the traffic it sees into records. In addition to the five-tuple
(source port and address, destination port and address, and protocol), the record has its start time, end
time, total byte count, and total packet count. There is no way to know how the bytes and packets were
distributed during the duration of the record: their distribution could be front-loaded, back-loaded, uniform,
et cetera.

When the start and end times of a individual flow record put that record into a single bin, rwcount can
simply add that record’s volume (byte and packet counts) to the bin.

When the duration of a flow record causes it to span multiple bins, rwcount must to told how to allocate
the volume among the bins. The --load-scheme switch determines this, and it has supports the following
allocation schemes:

time-proportional

Each bin a flow spans is allocated a percentage of the flow’s volume proportional to the amount of the
flow’s active time that spans the bin. Specifically, rwcount divides the total volume of the flow by
the duration of the flow, and multiplies the quotient by the time spent in the bin. This models a flow
where the volume/second ratio is uniform throughout the flow.

bin-uniform

Each bin a flow spans is allocated an equal portion of the flow’s volume. rwcount divides the volume
of the flow by the number of bins the flow spans, and adds the quotient to each of the bins. In this
scheme, the volume/bin ratio is uniform.

start-spike

The bin that contains the flow’s start time is allocated all of the flow’s volume regardless of the flow’s
duration. rwcount adds the total volume for the flow into the bin containing the start time of the
flow. This models a flow that is front-loaded to the point where the entire volume is a single spike
occurring in the initial millisecond of flow.

middle-spike

The bin that contains the midpoint between the flow’s start time and end time is allocated all of the
flow’s volume regardless of the flow’s duration.

end-spike

The bin that contains the flow’s end time is allocated all of the flow’s volume regardless of the flow’s
duration. This models a flow that is back-loaded to the point where the entire volume is a single spike
occurring in final millisecond of the flow.

maximum-volume

Each bin the flow spans is allocated all of the flow’s volume. rwcount adds the entire volume for the
flow into every bin that contains any part of the flow. In theory, the distribution of the bytes in the
record could be a spike that occurs at any point during the flow’s duration. This scheme allows one to
determine, in aggregate, the maximum possible volume that could have occurred during this bin. In
this scheme, the Records column gives the number of records that were active during the bin.

minimum-volume

For a record that spans multiple bins, each bin is allocated none of the flow’s volume. That is, rwcount
acts as though the volume for the flow occurred in some other bin. Since it is possible that a record
that spans multiple bins did not contribute any volume to the current bin, this scheme allows one to

134 SiLK-3.23.1

The SiLK Reference Guide rwcount(1)

determine, in aggregate, the minimum possible volume that may have occurred during this bin. The
Records column in this scheme, as in the maximum-volume scheme, gives the number of flow records
that were active during the bin.

Be aware that the ”spike” load-schemes allocate the entire flow to a single bin. This can create the impression
that there is more traffic occurring during a particular time window that the physical network supports.

The maximum-volume and minimum-volume schemes are used to compute the maximum and minimum vol-
umes that could have been transferred during any one bin. maximum-volume intentionally over-counts the
flow volume and minimum-volume intentionally under-counts.

To see the effect of the various load-schemes, suppose rwcount is using 60-second bins and the input contains
two records. The first record begins at 12:03:50, ends at 12:06:20, and contains 9,000 bytes (60 bytes/second
for 150 seconds). This record may contribute to bins at 12:03, 12:04, 12:05, and 12:06. The second record
begins at 12:04:05 and lasts 15 seconds; this record’s volume always contributes its 200 bytes to the 12:04
bin. The --load-scheme option splits the byte-counts of the records as follows:

BIN 12:03:00 12:04:00 12:05:00 12:06:00

time-proportional 600 3800 3600 1200

bin-uniform 2250 2450 2250 2250

start-spike 9000 200 0 0

middle-spike 0 200 9000 0

end-spike 0 200 0 9000

maximum-volume 9000 9200 9000 9000

minimum-volume 0 200 0 0

For the record that spans multiple bins: the time-proportional scheme assumes 60 bytes/second, the
bin-uniform scheme divides the volume evenly by the four bins, the middle-spike scheme assumes
all the volume occurs at 12:05:05, the maximum-volume scheme adds the volume to every bin, and the
minimum-volume scheme ignores the record.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--bin-size=SIZE

Denote the size of each time bin, in seconds; defaults to 30 seconds. rwcount supports millisecond
size bins; SIZE may be a floating point value equal to or greater than than 0.001.

--load-scheme=LOADSCHEME

Specify how a flow record that spans multiple bins allocates its bytes and packets among the bins.
The default scheme is time-proportional, which assumes the volume/second ratio of the flow record
is constant. See the Load Scheme section for additional information on the load-scheme choices. The
LOADSCHEME may be one of the following names or numbers; names may be abbreviated to the
shortest prefix that is unique.

time-proportional,4

Allocate the volume in proportion to the amount of time the flow spent in the bin.

SiLK-3.23.1 135

rwcount(1) The SiLK Reference Guide

bin-uniform,0

Allocate the volume evenly across the bins that contain any part of the flow’s duration.

start-spike,1

Allocate the entire volume to the bin containing the start time of the flow.

middle-spike,3

Allocate the entire volume to the bin containing the time at the midpoint of the flow.

end-spike,2

Allocate the entire volume to the bin containing the end time of the flow.

maximum-volume,5

Allocate the entire volume to all of the bins containing any part of the flow.

minimum-volume,6

Allocate the flow’s volume to a bin only if the flow is completely contained within the bin; otherwise
ignore the flow.

--start-time=START TIME

Set the time of the first bin to START TIME. When this switch is not given, the first bin is one
that holds the starting time of the earliest record. The START TIME may be specified in a format
of yyyy/mm/dd[:HH[:MM[:SS[.sss]]]] (or T may be used in place of : to separate the day and
hour). The time must be specified to at least day precision, and unspecified hour, minute, second,
and millisecond values are set to zero. Whether the date strings represent times in UTC or the local
timezone depend on how SiLK was compiled, which can be determined from the Timezone support

setting in the output from rwcount --version. Alternatively, the time may be specified as seconds
since the UNIX epoch, and an unspecified milliseconds value is set to 0.

--end-time=END TIME

Set the time of the final bin to END TIME. When this switch is not given, the final bin is one that holds
the ending time of the latest record. The format of END TIME is the same as that for START TIME.
Unspecified hour, minute, second, and millisecond values are set to 23, 59, 59, and 999 respectively.
When END TIME is specified as seconds since the UNIX epoch, an unspecified milliseconds value is
set to 999. When both --start-time and --end-time are used, the END TIME is adjusted so that
the final bin represents a complete interval.

--skip-zeroes

Disable printing of bins with no traffic. By default, all bins are printed.

--bin-slots

Use the internal bin index as the label for each bin in the output; the default is to label each bin with
the time in a human-readable format.

--epoch-slots

Use the UNIX epoch time (number of seconds since midnight UTC on 1970-01-01) as the label for each
bin in the output; the default is to label each bin with the time in a human-readable format. This
switch is equivalent to --timestamp-format=epoch. This switch is deprecated as of SiLK 3.11.0,
and it will be removed in the SiLK 4.0 release.

--timestamp-format=FORMAT

Specify the format and/or timezone to use when printing timestamps. When this switch is not spec-
ified, the SILK TIMESTAMP FORMAT environment variable is checked for a default format and/or
timezone. If it is empty or contains invalid values, timestamps are printed in the default format,
and the timezone is UTC unless SiLK was compiled with local timezone support. FORMAT is a
comma-separated list of a format and/or a timezone. The format is one of:

136 SiLK-3.23.1

The SiLK Reference Guide rwcount(1)

default

Print the timestamps as YYYY /MM /DD Thh :mm :ss .

iso

Print the timestamps as YYYY -MM -DD hh :mm :ss .

m/d/y

Print the timestamps as MM /DD /YYYY hh :mm :ss .

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwcount’s textual output to a different location.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwcount exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is either sent to the pager or written to the standard output.

SiLK-3.23.1 137

rwcount(1) The SiLK Reference Guide

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwcount searches for the site configuration file in the locations specified in the FILES section.

--legacy-timestamps

--legacy-timestamps=NUM

When NUM is not specified or is 1, this switch is equivalent to --timestamp-format=m/d/y.
Otherwise, the switch has no effect. This switch is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwcount opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

--start-epoch=START TIME

Alias the --start-time switch. This switch is deprecated as of SiLK 3.8.0.

--end-epoch=START TIME

Alias the --end-time switch. This switch is deprecated as of SiLK 3.8.0.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To count all web traffic on Feb 12, 2009, into 1 hour bins:

$ rwfilter --pass=stdout --start-date=2009/02/12:00 \

--end-date=2009/02/12:23 --proto=6 --aport=80 \

| rwcount --bin-size=3600

Date| Records| Bytes| Packets|

2009/02/12T00:00:00| 1490.49| 578270918.16| 463951.55|

2009/02/12T01:00:00| 1459.33| 596455716.52| 457487.80|

2009/02/12T02:00:00| 1529.06| 562602842.44| 451456.41|

2009/02/12T03:00:00| 1503.89| 562683116.38| 455554.81|

2009/02/12T04:00:00| 1561.89| 590554569.78| 489273.81|

....

138 SiLK-3.23.1

The SiLK Reference Guide rwcount(1)

To bin the records according to their start times, use the --load-scheme switch:

$ rwfilter ... --pass=stdout \

| rwcount --bin-size=3600 --load-scheme=1

Date| Records| Bytes| Packets|

2009/02/12T00:00:00| 1494.00| 580350969.00| 464952.00|

2009/02/12T01:00:00| 1462.00| 596145212.00| 457871.00|

2009/02/12T02:00:00| 1526.00| 561629416.00| 451088.00|

2009/02/12T03:00:00| 1502.00| 563500618.00| 455262.00|

2009/02/12T04:00:00| 1562.00| 589265818.00| 489279.00|

...

To bin the records by their end times: $ rwfilter ... --pass=stdout \ | rwcount --bin-size=3600 --
load-scheme=2 Date| Records| Bytes| Packets| 2009/02/12T00:00:00| 1488.00| 577132372.00| 463393.00|
2009/02/12T01:00:00| 1458.00| 596956697.00| 457376.00| 2009/02/12T02:00:00| 1530.00| 562806395.00|
451551.00| 2009/02/12T03:00:00| 1506.00| 562101791.00| 455671.00| 2009/02/12T04:00:00| 1562.00|
591408602.00| 489371.00| ...

To force the hourly bins to run from 30 minutes past the hour, use the --start-time switch:

$ rwfilter ... --pass=stdout \

| rwcount --bin-size=3600 --start-time=2002/12/31:23:30

Date| Records| Bytes| Packets|

2009/02/12T00:30:00| 1483.26| 581251364.04| 456554.40|

2009/02/12T01:30:00| 1494.00| 575037453.00| 449280.00|

2009/02/12T02:30:00| 1486.36| 559700466.61| 447700.15|

2009/02/12T03:30:00| 1555.23| 588882400.58| 480724.48|

2009/02/12T04:30:00| 1537.79| 564756248.52| 472003.45|

...

ENVIRONMENT

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwcount automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwcount does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwcount automatically invokes this program to display its
output a screen at a time.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SiLK-3.23.1 139

rwcount(1) The SiLK Reference Guide

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwcount may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwcount may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwcount displays timestamps. (If both of those are false, the TZ environment variable is
ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on
the TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the
local timezone, check the Timezone support value in the output of rwcount --version.) The TZ
environment variable is also used when rwcount parses the timestamp specified in the --start-time
or --end-time switches if SiLK is built with local timezone support.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfilter(1), rwuniq(1), silk(7), tzset(3), environ(7)

BUGS

Unlike rwuniq(1), rwcount does not support counting the number of distinct IPs in a bin. However, using
the --bin-time switch on rwuniq can provide time-based binning similar to what rwcount supports. Note
that rwuniq always bins by the each record’s start-time (similar to rwcount --load-factor=1), and there
is no support in rwuniq for dividing a SiLK record among multiple time bins.

140 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

rwcut

Print selected fields of binary SiLK Flow records

SYNOPSIS

rwcut [{--fields=FIELDS | --all-fields}]

{[--start-rec-num=START_NUM] [--end-rec-num=END_NUM]

| [--tail-recs=TAIL_START_NUM]}

[--num-recs=REC_COUNT] [--dry-run] [--icmp-type-and-code]

[--timestamp-format=FORMAT] [--epoch-time]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--integer-sensors] [--integer-tcp-flags]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG] [--site-config-file=FILENAME]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[{--legacy-timestamps | --legacy-timestamps={1,0}}]

[--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--python-file=PATH [--python-file=PATH ...]]

[--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--pmap-column-width=NUM]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwcut [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help

rwcut [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help-fields

rwcut --version

DESCRIPTION

rwcut reads binary SiLK Flow records and prints the user-selected record attributes (or fields) to the
terminal in a textual, bar-delimited (|) format. See the EXAMPLES section below for sample output.

rwcut reads SiLK Flow records from the files named on the command line or from the standard input when
no file names are specified and --xargs is not present. To read the standard input in addition to the named
files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it is read.
When the --xargs switch is provided, rwcut reads the names of the files to process from the named text file
or from the standard input if no file name argument is provided to the switch. The input to --xargs must
contain one file name per line.

The user may provide the --fields switch to select the record attributes to print. When --fields is not
specified rwcut prints the source and destination IP address, source and destination port, protocol, packet
count, byte count, TCP flags, start time, duration, end time, and the sensor name. The fields are printed in
the order in which they occur in the --fields switch. Fields may be repeated.

A subset of the input records may be selected by using the --start-rec-num, --end-rec-num, --num-recs,
and --tail-recs switches.

SiLK-3.23.1 141

rwcut(1) The SiLK Reference Guide

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--fields=FIELDS

FIELDS contains the list of flow attributes (a.k.a. fields or columns) to print. The columns will be
displayed in the order the fields are specified. Fields may be repeated. FIELDS is a comma separated
list of field-names, field-integers, and ranges of field-integers; a range is specified by separating the
start and end of the range with a hyphen (-). Field-names are case-insensitive. Example:

--fields=stime,10,1-5

If the --fields switch is not given, FIELDS defaults to:

sIP,dIP,sPort,dPort,protocol,packets,bytes,flags,sTime,dur,eTime,sensor

The complete list of built-in fields that the SiLK tool suite supports follows, though note that not all
fields are present in all SiLK file formats; when a field is not present, its value is 0.

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

dPort,4

destination port for TCP and UDP, or equivalent

protocol,5

IP protocol

packets,pkts,6

packet count

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sTime,9

starting time of flow in microsecond resolution

duration,10

duration of flow in microsecond resolution

eTime,11

end time of flow in microsecond resolution

sensor,12

name or ID of sensor at the collection point

142 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

class,20

class of sensor at the collection point

type,21

type of sensor at the collection point

iType

the ICMP type value for ICMP or ICMPv6 flows and empty for non-ICMP flows. This field was
introduced in SiLK 3.8.1.

iCode

the ICMP code value for ICMP or ICMPv6 flows and empty for non-ICMP flows. See note at
iType.

icmpTypeCode,25

equivalent to iType,iCode. This field is deprecated as of SiLK 3.8.1.

Many SiLK file formats do not store the following fields and their values will always be 0; they are
listed here for completeness:

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

nhIP,15

router next hop IP

Enhanced flow metering software (such as yaf(1)) may provide flow information elements in addition
to those found in NetFlow. SiLK stores some of these elements in the fields named below. For flows
without this additional information, the field’s value is always 0.

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags on the second through final packets in the flow

attributes,28

flow attributes set by the flow generator:

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

T

flow generator prematurely created a record for a long-running connection due to a timeout.
(When the flow generator yaf(1) is run with the --silk switch, it will prematurely create a
flow and mark it with T if the byte count of the flow cannot be stored in a 32-bit value.)

C

flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout (or a byte threshold in the case of yaf).

SiLK-3.23.1 143

rwcut(1) The SiLK Reference Guide

Consider a long-running ssh session that exceeds the flow generator’s active timeout. (This is the
active timeout since the flow generator creates a flow for a connection that still has activity). The
flow generator will create multiple flow records for this ssh session, each spanning some portion of
the total session. The first flow record will be marked with a T indicating that it hit the timeout.
The second through next-to-last records will be marked with TC indicating that this flow both
timed out and is a continuation of a flow that timed out. The final flow will be marked with a C,
indicating that it was created as a continuation of an active flow.

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf, will inspect the contents of the packets that make up a flow and use traffic signatures
to label the content of the flow. SiLK calls this label the application; yaf refers to it as the
appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

The following fields provide a way to label the IPs or ports on a record. These fields require external
files to provide the mapping from the IP or port to the label:

sType,16

for the source IP address, the value 0 if the address is non-routable, 1 if it is internal, or 2
if it is routable and external. Uses the mapping file specified by the SILK ADDRESS TYPES
environment variable, or the address types.pmap mapping file, as described in addrtype(3).

dType,17

as sType for the destination IP address

scc,18

for the source IP address, a two-letter country code abbreviation denoting the country where
that IP address is located. Uses the mapping file specified by the SILK COUNTRY CODES
environment variable, or the country codes.pmap mapping file, as described in ccfilter(3).
The abbreviations are those defined by ISO 3166-1 (see for example https://www.iso.org/
iso-3166-country-codes.html or https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2) or the follow-
ing special codes: -- N/A (e.g. private and experimental reserved addresses); a1 anonymous
proxy; a2 satellite provider; o1 other

dcc,19

as scc for the destination IP

src-map-name

label contained in the prefix map file associated with map-name. If the prefix map is for IP
addresses, the label is that associated with the source IP address. If the prefix map is for pro-
tocol/port pairs, the label is that associated with the protocol and source port. See also the
description of the --pmap-file switch below and the pmapfilter(3) manual page.

dst-map-name

as src-map-name for the destination IP address or the protocol and destination port.

sval

as src-map-name when no map-name is associated with the prefix map file

dval

as dst-map-name when no map-name is associated with the prefix map file

Finally, the list of built-in fields may be augmented by the run-time loading of PySiLK code or plug-ins
written in C (also called shared object files or dynamic libraries), as described by the --python-file
and --plugin switches.

144 SiLK-3.23.1

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

The SiLK Reference Guide rwcut(1)

--all-fields

Instruct rwcut to print all known fields. This switch may not be combined with the --fields switch.
This switch suppresses error messages from the plug-ins.

--plugin=PLUGIN

Augment the list of fields by using run-time loading of the plug-in (shared object) whose path is
PLUGIN. The switch may be repeated to load multiple plug-ins. The creation of plug-ins is described
in the silk-plugin(3) manual page. When PLUGIN does not contain a slash (/), rwcut will attempt
to find a file named PLUGIN in the directories listed in the FILES section. If rwcut finds the file, it
uses that path. If PLUGIN contains a slash or if rwcut does not find the file, rwcut relies on your
operating system’s dlopen(3) call to find the file. When the SILK PLUGIN DEBUG environment
variable is non-empty, rwcut prints status messages to the standard error as it attempts to find and
open each of its plug-ins.

--start-rec-num=START NUM

Begin printing with the START NUM ’th record by skipping the first START NUM -1 records. The
default is 1; that is, to start printing at the first record; START NUM must be a positive integer.
If START NUM is greater than the number of input records, rwcut only outputs the title. This
switch may not be combined with the --tail-recs switch. When using multiple input files, records
are treated as a single stream for the purposes of the --start-rec-num, --end-rec-num, --tail-recs,
and --num-recs switches. This switch does not affect the records written to the stream specified by
--copy-input.

--end-rec-num=END NUM

Stop printing after the END NUM ’th record. When END NUM is 0, the default, printing stops once
all input records have been printed; that is, END NUM is effectively infinity. If this value is non-zero,
it must not be less than START NUM. This switch may not be combined with the --tail-recs switch.
When using multiple input files, records are treated as a single stream for the purposes of the --start-
rec-num, --end-rec-num, --tail-recs, and --num-recs switches. This switch does not affect the
records written to the stream specified by --copy-input.

--tail-recs=TAIL START NUM

Begin printing once rwcut is TAIL START NUM records from end of the input stream, where
TAIL START NUM is a positive integer. rwcut will print the remaining records in the input stream
unless --num-recs is also specified and is less than TAIL START NUM. The --tail-recs switch is
similar to the --start-rec-num switch except it counts from the end of the input stream. This switch
may not be combined with the --start-rec-num and --end-rec-num switches. When using multiple
input files, records are treated as a single stream for the purposes of the --start-rec-num, --end-rec-
num, --tail-recs, and --num-recs switches. This switch does not affect the records written to the
stream specified by --copy-input.

--num-recs=REC COUNT

Print no more than REC COUNT records. Specifying a REC COUNT of 0 will print all records,
which is the default. This switch is ignored under the following conditions: When both --start-rec-
num and --end-rec-num are specified; when only --end-rec-num is given and END NUM is less
than REC COUNT ; when --tail-recs is specified and TAIL START NUM is less than REC COUNT.
When using multiple input files, records are treated as a single stream for the purposes of the --start-
rec-num, --end-rec-num, --tail-recs, and --num-recs switches. This switch does not affect the
records written to the stream specified by --copy-input.

--dry-run

Causes rwcut to print the column headers and exit. Useful for testing.

SiLK-3.23.1 145

rwcut(1) The SiLK Reference Guide

--icmp-type-and-code

Unlike TCP or UDP, ICMP messages do not use ports, but instead have types and codes. Specifying
this switch will cause rwcut to print, for ICMP records, the message’s type and code in the sPort and
dPort columns, respectively. Use of this switch has been discouraged since SiLK 0.9.10. As for SiLK
3.8.1, this switch is deprecated and it will be removed in SiLK 4.0; use the iType and iCode fields
instead.

--timestamp-format=FORMAT

Specify the format, timezone, and/or precision (representation of fractional seconds) to use when print-
ing timestamps and the duration. When this switch is not specified, the SILK TIMESTAMP FORMAT
environment variable is checked for a format, timezone, and precision. If it is empty or contains invalid
values, timestamps are printed in the default format with microseconds, and the timezone is UTC un-
less SiLK was compiled with local timezone support. FORMAT is a comma-separated list of a format,
a timezone, and/or a precision in any order. The format is one of:

default

Print the timestamps as YYYY /MM /DDThh:mm:ss.sss.

iso

Print the timestamps as YYYY -MM -DD hh:mm:ss.sss.

m/d/y

Print the timestamps as MM /DD/YYYY hh:mm:ss.sss.

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

The --timestamp-format switch may change the representation of fractional seconds, or precision, of
the timestamp and duration fields from their default of microseconds. Note: When using a precision
less than that used by SiLK internally, the printed start time and duration may not equal the printed
end time. The available precisions are:

no-frac

Truncate the fractional seconds value on the timestamps and on the duration field. Previously
this was called no-msec. Since SiLK 3.23.0.

milli

Print the fractional seconds to 3 decimal places. Since SiLK 3.23.0.

micro

Print the fractional seconds to 6 decimal places. Since SiLK 3.23.0.

nano

Print the fractional seconds to 9 decimal places. Since SiLK 3.23.0.

no-msec

Truncate the fractional seconds value on the timestamps and on the duration field. This is an
alias for no-frac and is deprecated as of SiLK 3.23.0.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

146 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

--epoch-time

Print timestamps as epoch time (number of seconds since midnight GMT on 1970-01-01). This switch
is equivalent to --timestamp-format=epoch, it is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

--ip-format=FORMAT

Specify how IP addresses are printed, where FORMAT is a comma-separated list of the arguments
described below. When this switch is not specified, the SILK IP FORMAT environment variable is
checked for a value and that format is used if it is valid. The default FORMAT is canonical according
to whether the individual flow record is marked as IPv4 or IPv6. Since SiLK 3.7.0.

canonical

Print IP addresses in the canonical format. For an IPv4 record, use dot-separated decimal
(192.0.2.1). For an IPv6 record, use either colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively.

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

Change IPv4 addresses to IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock)
prior to formatting. Since SiLK 3.17.0.

unmap-v6

Change any IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock) to IPv4 addresses
prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

SiLK-3.23.1 147

rwcut(1) The SiLK Reference Guide

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release.

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in their canonical form. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release.

--integer-sensors

Print the integer ID of the sensor rather than its name.

--integer-tcp-flags

Print the TCP flag fields (flags, initialFlags, sessionFlags) as an integer value. Typically, the characters
F,S,R,P,A,U,E,C are used to represent the TCP flags.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwcut’s textual output to a different location.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwcut exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is either sent to the pager or written to the standard output.

148 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains. Only records
marked as IPv4 will be printed.

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flow records.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Print only flow records that are marked as IPv6 and ignore IPv4 flow records in the input.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwcut searches for the site configuration file in the locations specified in the FILES section.

--legacy-timestamps

--legacy-timestamps=NUM

When NUM is not specified or is 1, this switch is equivalent to --timestamp-format=m/d/y,no-
msec. Otherwise, the switch has no effect. This switch is deprecated as of SiLK 3.0.0, and it will be
removed in the SiLK 4.0 release.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwcut opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit. Specifying switches that add new fields or additional switches
before --help will allow the output to include descriptions of those fields or switches.

--help-fields

Print the description and alias(es) of each field and exit. Specifying switches that add new fields before
--help-fields will allow the output to include descriptions of those fields.

SiLK-3.23.1 149

rwcut(1) The SiLK Reference Guide

--version

Print the version number and information about how SiLK was configured, then exit the application.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the prefix map file located at PATH and create fields named src-map-name and dst-map-name
where map-name is either the MAPNAME part of the argument or the map-name specified when the
file was created (see rwpmapbuild(1)). If no map-name is available, rwcut names the fields sval

and dval. Specify PATH as - or stdin to read from the standard input. The switch may be repeated
to load multiple prefix map files, but each prefix map must use a unique map-name. The --pmap-file
switch(es) must precede the --fields switch. See also pmapfilter(3).

--pmap-column-width=NUM

When printing a label associated with a prefix map, this switch gives the maximum number of char-
acters to use when displaying the textual value of the field.

--python-file=PATH

When the SiLK Python plug-in is used, rwcut reads the Python code from the file PATH to define
additional fields for possible output. This file should call register field() for each field it wishes to
define. For details and examples, see the silkpython(3) and pysilk(3) manual pages.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The standard output from rwcut resembles the following (with the text wrapped for readability):

sIP| dIP|sPort|dPort|pro|\

10.30.30.31| 10.70.70.71| 80|36761| 6|\

packets| bytes| flags|\

7| 3227|FS PA |\

sTime| duration| eTime|senso|

2003/01/01T00:00:14.625| 3.959|2003/01/01T00:00:18.584|EDGE1|

The first line of the output is the title line which shows the names of the selected fields; the --no-titles switch
will disable the printing of the title line. The second line and onward will contain the printed representation
of the records, with one line per record.

A common use of rwcut is to read the output of rwfilter(1). For example, to see representative TCP
traffic:

$ rwfilter --start-date=2002/01/19:00 --end-date=2002/01/19:01 \

--proto=6 --pass=stdout \

| rwcut

150 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

To see only selected fields, use the --fields switch. For example, to print only the protocol for each record
in the input file data.rw, use:

$ rwcut --fields=proto data.rw

The silkpython(3) manual page provides examples that use PySiLK to create and print arbitrary fields for
rwcut.

The order of the FIELDS is significant, and fields can be repeated. For example, here is a case where in
addition to the default fields of 1-12, you also to prefix each row with an integer form of the destination
IP and the start time to make processing by another tool (e.g., a spreadsheet) easier. However, within the
default fields of 1-12, you want to see dotted-decimal IP addresses. (The num2dot(1) tool converts the
numeric fields in column positions three and four to dotted quad IPs.)

$ rwfilter ... --pass=stdout \

| rwcut --fields=2,9,1-12 --ip-format=decimal --timestamp-format=epoch \

| num2dot --ip-field=3,4

Both of the following commands print the title line and the first record in the input stream:

$ rwcut --num-recs=1 data.rw

$ rwcut --end-rec-num=1 data.rw

The following prints all records except the first (plus the title):

$ rwcut --start-rec-num=2 data.rw

These three commands print only the second record:

$ rwcut --no-title --start-rec-num=2 --num-recs=1 data.rw

$ rwcut --no-title --start-rec-num=2 --end-rec-num=2 data.rw

$ rwcut --no-title --end-rec-num=2 --num-recs=1 data.rw

This command prints the title line and the final record in the input stream:

$ rwcut --tail-recs=1 data.rw

This command prints the next to last record in the input stream:

$ rwcut --no-title --tail-recs=2 --num-recs=1 data.rw

Using the sIP and dIP fields can be confusing when the file you are examining contains both incoming and
outgoing flow records. To make the output more clear, consider using the int-ext-fields(3) plug-in. The
plug-in defines four additional fields representing the external IP address, the external port, the internal IP
address, and the internal port. The plug-in requires the user to specify which class/type pairs are incoming
and which are outgoing. See its manual page for additional information.

SiLK -3.23.1 151

rwcut(1) The SiLK Reference Guide

$ rwcut --fields=sip,sport,dip,dport,proto,type \

--num-rec=8 data.rw

sIP|sPort| dIP|dPort|pro| type|

192.168.111.201|29617| 172.24.2.123| 53| 17| out|

172.24.2.123| 53|192.168.111.201|29617| 17| in|

192.168.111.201|29618| 10.252.217.50| 22| 6| out|

10.252.217.50| 22|192.168.111.201|29618| 6| in|

192.168.204.193| 68| 172.30.2.67| 67| 17| out|

172.30.2.67| 67|192.168.204.193| 68| 17| in|

10.239.85.193|29897|192.168.228.153| 25| 6| in|

192.168.228.153| 25| 10.239.85.193|29897| 6| out|

$ export INCOMING_FLOWTYPES=all/in,all/inweb

$ export OUTGOING_FLOWTYPES=all/out,all/outweb

$ rwcut --plugin=int-ext-fields.so \

--fields=int-ip,int-port,ext-ip,ext-port,proto,type \

--num-rec=8 data.rw

int-ip|int-p| ext-ip|ext-p|pro| type|

192.168.111.201|29617| 172.24.2.123| 53| 17| out|

192.168.111.201|29617| 172.24.2.123| 53| 17| in|

192.168.111.201|29618| 10.252.217.50| 22| 6| out|

192.168.111.201|29618| 10.252.217.50| 22| 6| in|

192.168.204.193| 68| 172.30.2.67| 67| 17| out|

192.168.204.193| 68| 172.30.2.67| 67| 17| in|

192.168.228.153| 25| 10.239.85.193|29897| 6| in|

192.168.228.153| 25| 10.239.85.193|29897| 6| out|

ENVIRONMENT

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwcut automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwcut does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwcut automatically invokes this program to display its output
a screen at a time.

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file is specified,
rwcut must load the Python files that comprise the PySiLK package, such as silk/ init .py. If this

152 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

silk/ directory is located outside Python’s normal search path (for example, in the SiLK installation
tree), it may be necessary to set or modify the PYTHONPATH environment variable to include the
parent directory of silk/ so that Python can find the PySiLK module.

SILK PYTHON TRACEBACK

When set, Python plug-ins will output traceback information on Python errors to the standard error.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwcut uses
when computing the scc and dcc fields. The value may be a complete path or a file relative to the
SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file that rwcut uses
when computing the sType and dType fields. The value may be a complete path or a file relative to
the SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwcut may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwcut may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone in
which rwcut displays timestamps. (If both of those are false, the TZ environment variable is ignored.)
If the TZ environment variable is not set, the machine’s default timezone is used. Setting TZ to
the empty string or 0 causes timestamps to be displayed in UTC. For system information on the TZ
variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwcut --version.)

SILK PLUGIN DEBUG

When set to 1, rwcut prints status messages to the standard error as it attempts to find and open
each of its plug-ins. In addition, when an attempt to register a field fails, rwcut prints a message
specifying the additional function(s) that must be defined to register the field in rwcut. Be aware that
the output can be rather verbose.

SiLK-3.23.1 153

rwcut(1) The SiLK Reference Guide

FILES

$SILK ADDRESS TYPES

$SILK PATH/share/silk/address types.pmap

$SILK PATH/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file required by the sType and dType fields.

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

$SILK COUNTRY CODES

$SILK PATH/share/silk/country codes.pmap

$SILK PATH/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the scc and dcc fields.

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

/usr/local/lib/

Directories that rwcut checks when attempting to load a plug-in.

154 SiLK-3.23.1

The SiLK Reference Guide rwcut(1)

NOTES

Fields sTime+msec, eTime+msec, dur+msec, and their aliases (22, 23, 24) were removed in SiLK 3.23.0.
Use fields sTime, eTime, and duration instead.

If you are interested in only a few fields, use the --fields option to reduce the volume of data to be produced.
For example, if you are checking to see which internal host got hit with the slammer worm (signature: UDP,
destPort 1434, pkt size 404), then the following rwfilter, rwcut combination will be much faster than simply
using default values:

$ rwfilter --proto-17 --dport=1434 --bytes-per-packet=404-404 \

| rwcut --fields=dip,stime

SEE ALSO

rwfilter(1), num2dot(1), rwpmapbuild(1), addrtype(3), ccfilter(3), int-ext-fields(3), pmapfil-
ter(3), silk-plugin(3), silkpython(3), pysilk(3), sensor.conf(5), silk(7), yaf(1), dlopen(3), tzset(3),
environ(7)

SiLK-3.23.1 155

rwdedupe(1) The SiLK Reference Guide

rwdedupe

Eliminate duplicate SiLK Flow records

SYNOPSIS

rwdedupe [--ignore-fields=FIELDS] [--packets-delta=NUM]

[--bytes-delta=NUM] [--stime-delta=FLOAT]

[--duration-delta=FLOAT]

[--temp-directory=DIR_PATH] [--buffer-size=SIZE]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD] [--print-filenames]

[--output-path=PATH] [--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwdedupe --help

rwdedupe --help-fields

rwdedupe --version

DESCRIPTION

rwdedupe reads SiLK Flow records from one or more input sources. Records that appear in the input
file(s) multiple times will only appear in the output stream once; that is, duplicate records are not written
to the output. The SiLK Flows are written to the file specified by the --output-path switch or to the
standard output when the --output-path switch is not provided and the standard output is not connected
to a terminal.

Note: As part of its processing, rwdedupe re-orders the records before writing them.

rwdedupe reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it
is read. When the --xargs switch is provided, rwdedupe reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

By default, rwdedupe will consider one record to be a duplicate of another when all the fields in the records
match exactly. From another point on view, any difference in two records results in both records appearing
in the output. Note that all means every field that exists on a SiLK Flow record. The complete list of fields
is specified in the description of --ignore-fields in the OPTIONS section below.

To have rwdedupe ignore fields in the comparison, specify those fields in the --ignore-fields switch. When
--ignore-fields=FIELDS is specified, a record is considered a duplicate of another if all fields except those
in FIELDS match exactly. rwdedupe will treat FIELDS as being identical across all records. Put another
way, if the only difference between two records is in the FIELDS fields, only one of those records will be
written to the output.

The --packets-delta, --bytes-delta, --stime-delta and --duration-delta switches allow for ”fuzziness”
in the input. For example, if --stime-delta=NUM is specified and the only difference between two records

156 SiLK-3.23.1

The SiLK Reference Guide rwdedupe(1)

is in the sTime fields, and the fields are within NUM milliseconds of each other, only one record will be
written to the output.

As of SiLK 3.23, the --stime-delta and --duration-delta switches accept a floating point number to allow
for sub-millisecond differences to reflect the nanosecond resolution in added in that release. The argument
is still specified in term of milliseconds: use --stime-delta=5000 for 5 seconds, --stime-delta=5 for 5
milliseconds, and --stime-delta=0.005 for 5 microseconds.

During its processing, rwdedupe will try to allocate a large (near 2GB) in-memory array to hold the records.
(You may use the --buffer-size switch to change this maximum buffer size.) If more records are read than
will fit into memory, the in-core records are temporarily stored on disk as described by the --temp-directory
switch. When all records have been read, the on-disk files are merged to produce the output.

By default, the temporary files are stored in the /tmp directory. Because of the sizes of the temporary
files, it is strongly recommended that /tmp not be used as the temporary directory, and rwdedupe will
print a warning when /tmp is used. To modify the temporary directory used by rwdedupe, provide the
--temp-directory switch, set the SILK TMPDIR environment variable, or set the TMPDIR environment
variable.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--ignore-fields=FIELDS

Ignore the fields listed in FIELDS when determining if two flow records are identical; that is, treat
FIELDS as being identical across all flows. By default, all fields are treated as significant.

FIELDS is a comma separated list of field-names, field-integers, and ranges of field-integers; a range
is specified by separating the start and end of the range with a hyphen (-). Field-names are case-
insensitive. Example:

--ignore-fields=stime,12-15

The list of supported fields are:

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

dPort,4

destination port for TCP and UDP, or equivalent

protocol,5

IP protocol

packets,pkts,6

packet count

SiLK-3.23.1 157

rwdedupe(1) The SiLK Reference Guide

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sTime,9

starting time of flow (microseconds resolution)

duration,10

duration of flow (microseconds resolution)

sensor,12

name or ID of sensor at the collection point

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

nhIP,15

router next hop IP

class,20,type,21

class and type of sensor at the collection point (represented internally by a single value)

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags over all packets except the first in the flow

attributes,28

flow attributes set by flow generator

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf(1), will inspect the contents of the packets that make up a flow and use traffic
signatures to label the content of the flow. SiLK calls this label the application; yaf refers to it as
the appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

--packets-delta=NUM

Treat the packets field on two records as being the same if the values differ by NUM packets or less.
If not specified, the default is 0.

--bytes-delta=NUM

Treat the bytes field on two records as being the same if the values differ by NUM bytes or less. If not
specified, the default is 0.

--stime-delta=FLOAT

Treat the start-time field on two records as being the same if the values differ by FLOAT milliseconds
or less. As of SiLK 3.23, the argument may be floating point number to support sub-millisecond
differences. If not specified, the default is 0.

158 SiLK-3.23.1

The SiLK Reference Guide rwdedupe(1)

--duration-delta=FLOAT

Treat the duration field on two records as being the same if the values differ by FLOAT milliseconds
or less. As of SiLK 3.23, the argument may be floating point number to support sub-millisecond
differences. If not specified, the default is 0.

--temp-directory=DIR PATH

Specify the name of the directory in which to store data files temporarily when more records have
been read that will fit into RAM. This switch overrides the directory specified in the SILK TMPDIR
environment variable, which overrides the directory specified in the TMPDIR variable, which overrides
the default, /tmp.

--buffer-size=SIZE

Set the maximum size of the buffer to use for holding the records, in bytes. A larger buffer means
fewer temporary files need to be created, reducing the I/O wait times. The default maximum for this
buffer is near 2GB. The SIZE may be given as an ordinary integer, or as a real number followed by
a suffix K, M or G, which represents the numerical value multiplied by 1,024 (kilo), 1,048,576 (mega),
and 1,073,741,824 (giga), respectively. For example, 1.5K represents 1,536 bytes, or one and one-half
kilobytes. (This value does not represent the absolute maximum amount of RAM that rwdedupe
will allocate, since additional buffers will be allocated for reading the input and writing the output.)

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwdedupe exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwdedupe to exit with an error.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

SiLK-3.23.1 159

rwdedupe(1) The SiLK Reference Guide

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--print-filenames

Print to the standard error the names of input files as they are opened.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwdedupe searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwdedupe opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--help-fields

Print the description and alias(es) of each field and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

LIMITATIONS

When the temporary files and the final output are stored on the same file volume, rwdedupe will require
approximately twice as much free disk space as the size of input data.

When the temporary files and the final output are on different volumes, rwdedupe will require between 1
and 1.5 times as much free space on the temporary volume as the size of the input data.

160 SiLK -3.23.1

The SiLK Reference Guide rwdedupe(1)

EXAMPLE

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

Suppose you have made several rwfilter(1) runs to find interesting traffic:

$ rwfilter --start-date=2008/02/04 ... --pass=data1.rw

$ rwfilter --start-date=2008/02/04 ... --pass=data2.rw

$ rwfilter --start-date=2008/02/04 ... --pass=data3.rw

$ rwfilter --start-date=2008/02/04 ... --pass=data4.rw

You now want to merge that traffic into a single output file, but you want to ensure that any records
appearing in multiple output files are only counted once. You can use rwdedupe to merge the output files
to a single file, data.rw :

$ rwdedupe data1.rw data2.rw data3.rw data4.rw --output=data.rw

ENVIRONMENT

SILK TMPDIR

When set and --temp-directory is not specified, rwdedupe writes the temporary files it creates to
this directory. SILK TMPDIR overrides the value of TMPDIR.

TMPDIR

When set and SILK TMPDIR is not set, rwdedupe writes the temporary files it creates to this
directory.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwdedupe may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwdedupe may use this environment variable. See the FILES section for details.

SILK TEMPFILE DEBUG

When set to 1, rwdedupe prints debugging messages to the standard error as it creates, re-opens,
and removes temporary files.

SiLK-3.23.1 161

rwdedupe(1) The SiLK Reference Guide

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK TMPDIR}/

${TMPDIR}/

/tmp/

Directory in which to create temporary files.

SEE ALSO

rwfilter(1), rwfileinfo(1), sensor.conf(5), silk(7), yaf(1), zlib(3)

162 SiLK-3.23.1

The SiLK Reference Guide rwfglob(1)

rwfglob

Print files that rwfilter’s File Selection switches will access

SYNOPSIS

rwfglob { [--class=CLASS] [--type={all | TYPE[,TYPE ...]}]

| [--flowtypes=CLASS/TYPE[,CLASS/TYPE ...]] }

[--sensors=SENSOR[,SENSOR ...]]

[--start-date=YYYY/MM/DD[:HH] [--end-date=YYYY/MM/DD[:HH]]]

[--data-rootdir=ROOT_DIRECTORY] [--site-config-file=FILENAME]

[--print-missing-files] [--no-block-check] [--no-file-names]

[--no-summary]

rwfglob [--data-rootdir=ROOT_DIRECTORY]

[--site-config-file=FILENAME] --help

rwfglob --version

DESCRIPTION

rwfglob accepts the same File Selection Switches of rwfilter(1) and prints, to the standard output, the
pathnames of the files that rwfilter would process, one file name per line. At the end, a summary is printed
to the standard output of the number of files that rwfglob found. To suppress the printing of the file names
and/or the summary, specify the --no-file-names and/or --no-summary switches, respectively.

By default, rwfglob only prints the names of files that exist. When the --print-missing-files switch is
provided, rwfglob prints, to the standard error, the names of files that it did not find, one file name per line,
preceded by the text ’Missing ’. To redirect the output of --print-missing-files to the standard output,
use the following in a Bourne-compatible shell:

$ rwfglob --print-missing-files ... 2>&1

Read Selection Argument Values from a File

As of SiLK 3.20, the Selection Switches --class, --type, --flowtypes, and --sensors accept a value in the
form ”@PATH ”, where @ is the ”at” character (ASCII 0x40) and PATH names a file or a path to a file. For
example, the following reads the name of types from the file t.txt and uses the sensors S3, S7, and the names
and/or IDs read from /tmp/sensor.txt :

rwfglob --type=@t.txt --sensors=S3,@/tmp/sensor.txt,S7

Multiple @PATH values are allowed within a single argument. If the name of the file is -, the names are
read from the standard input.

The file must be a text file. Blank lines are ignored as are comments, which begin with the # character and
continue to the end of the line. Whitespace at the beginning and end of a line is ignored as is whitespace
that surrounds commas; all other whitespace within a line is significant.

A file may contain a value on each line and/or multiple values on a line separated by commas and optional
whitespace. For example:

SiLK -3.23.1 163

rwfglob(1) The SiLK Reference Guide

Sensor 4

S4

The first sensors

S0, S1,S2

S3 # Sensor 3

An attempt to use an @PATH directive in a file is an error.

When rwfglob is parsing the name of a file, it converts the sequences @, and @@ to , and @, respectively.
For example, --class=@cl@@ss.txt@,v reads the class from the file cl@ss.txt,v. It is an error if any other
character follows an embedded @ (--flowtypes=@f@il contains @i) or if a single @ occurs at the end of the
name (--sensor=@errat@).

Offline Storage Support

For each file it finds, rwfglob will check the size of the file and the number of blocks allocated to the file.
If the block count is zero but the file size is non-zero, rwfglob treats the file as existing but as residing on
tape. The names of these files are printed to the standard output, but each name is preceded by the text
’ \t*** ON TAPE ***’ where ’\t’ represents a tab character. The summary line will include the number of
files that rwfglob believes are on tape. To suppress this check and to remove the count from the summary
line, use the --no-block-check switch.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Selection Switches

This set of switches are the same as those used by rwfilter to select the files to process. At least one of
these switches must be provided.

--class={CLASS | @PATH}
The --class switch is used to specify a group of files to print. Only a single class may be selected with
the --class switch; for multiple classes, use the --flowtypes switch. The argument may be ”@PATH ”
which causes rwfglob to open the file PATH and read the class name from it; see Read Selection
Argument Values from a File for details. Classes are defined in the silk.conf(5) site configuration file.
If neither the --class nor --flowtypes option is given, the default-class as specified in silk.conf is used.
To see the available classes and the default class, either examine the output from rwfglob --help or
invoke rwsiteinfo(1) with the switch --fields=class,default-class.

--type={all | TYPE [,TYPE,@PATH ...]}
The --type predicate further specifies data within the selected CLASS by listing the TYPE s of traffic
to process. The switch takes either the keyword all to select all types for CLASS or a comma-separated
list of type names and ”@PATH ” directives, where @PATH tells rwfglob to read type names from the
file PATH ; see Read Selection Argument Values from a File for details. Types are defined in silk.conf,
they typically refer to the direction of the flow, and they may vary by class. When neither the --type
nor --flowtypes switch is given, a list of default types is used: The default-type list is determined by

164 SiLK-3.23.1

The SiLK Reference Guide rwfglob(1)

the value of CLASS, and the default types often include only incoming traffic. To see the available
types and the default types for each class, examine the --help output of rwfglob or run rwsiteinfo
with --fields=class,type,default-type.

--flowtypes=CLASS/TYPE [,CLASS/TYPE,@PATH ...]

The --flowtypes predicate provides an alternate way to specify class/type pairs. The --flowtypes
switch allows a single rwfglob invocation to print filenames from multiple classes. The keyword all

may be used for the CLASS and/or TYPE to select all classes and/or types. As of SiLK 3.20.0, the
arguments may also include ”@PATH ” which causes rwfglob to open the file PATH and read the
class/type pairs from it; see Read Selection Argument Values from a File.

--sensors=SENSOR[,SENSOR,SENSOR-GROUP,@PATH ...]

The --sensors switch is used to select data from specific sensors. The parameter is a comma separated
list of sensor names, sensor IDs (integers), ranges of sensor IDs, sensor group names, and/or ”@PATH ”
directives. As described in Read Selection Argument Values from a File, @PATH tells rwfglob to read
the names of the sensors from the file PATH. Sensors and sensor groups are defined in the silk.conf(5)
site configuration file, and the rwsiteinfo(1) command can be used to print a mapping of sensor
names to IDs and classes (--fields=sensor,id-sensor,class:list). When the --sensors switch is not
specified, the default is to use all sensors which are valid for the specified class(es). Support for using
sensor group names was added in SiLK 3.21.0.

--start-date=YYYY/MM/DD[:HH]

--end-date=YYYY/MM/DD[:HH]

The date predicates indicate which days and hours to consider when creating the list of files. The
dates may be expressed as seconds since the UNIX epoch or in YYYY/MM/DD[:HH] format, where the
hour is optional. A T may be used in place of the : to separate the day and hour. Whether the
YYYY/MM/DD[:HH] strings represent times in UTC or the local timezone depend on how SiLK was
compiled. To determine how your version of SiLK was compiled, see the Timezone support setting in
the output from rwfglob --version.

When times are expressed in YYYY/MM/DD[:HH] format:

• When both --start-date and --end-date are specified to hour precision, all hours within that
time range are processed.

• When --start-date is specified to day precision, the hour specified in --end-date (if any) is
ignored, and files for all dates between midnight on start-date and 23:59 on end-date are
processed.

• When --start-date is specified to hour precision and --end-date is specified to day precision,
the hour of the start-date is used as the hour for the end-date.

• When --end-date is not specified and --start-date is specified to day precision, files for that
complete day are processed.

• When --end-date is not specified and --start-date is specified to hour precision, files for that
single hour are processed.

When at least one time is expressed as seconds since the UNIX epoch:

• When --end-date is specified in epoch seconds, the given --start-date and --end-date are
considered to be in hour precision.

• When --start-date is specified in epoch seconds and --end-date is specified in YYYY/MM/DD[:HH]

format, the start-date is considered to be in day precision if it divisible by 86400, and hour precision
otherwise.

SiLK-3.23.1 165

rwfglob(1) The SiLK Reference Guide

• When --start-date is specified in epoch seconds and --end-date is not given, the start-date is
considered to be in hour-precision.

When neither --start-date nor --end-date is given, rwfglob prints all files for the current day.

It is an error to specify --end-date without specifying --start-date.

--data-rootdir=ROOT DIRECTORY

Tell rwfglob to use ROOT DIRECTORY as the root of the data repository, which overrides the
location given in the SILK DATA ROOTDIR environment variable, which in turn overrides the location
that was compiled into rwfglob (/data).

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwfglob searches for the site configuration file in the locations specified in the FILES section.

--print-missing-files

This option prints to the standard error the names of the files that rwfglob expected to find but did
not. The file names are preceded by the text ’Missing ’; each file name appears on a separate line. This
switch is useful for debugging, but the list of files it produces can be misleading. For example, suppose
there is a decommissioned sensor that still appears in the silk.conf file; rwfglob considers these data
files as missing even though their absence is expected. Use the output from this switch judiciously.

Application Switches

--no-block-check

This option instructs rwfglob not to check whether the file exists on tape by checking whether the
number of blocks allocated to the file is zero. By default, rwfglob precedes a file name that has a
block count of 0 with the text ’ \t*** ON TAPE ***’.

--no-file-names

This option instructs rwfglob not to print the names of the files that it successfully finds. By default,
rwfglob prints the names of the files it finds and a summary line showing the number of files it found.
When both this switch and --print-missing-files are specified, rwfglob prints only the names of
missing files (and the summary).

--no-summary

This option instructs rwfglob not to print the summary line (that is, the line that shows the number
of files found). By default, rwfglob prints the names of the files it finds and a summary line showing
the number of files it found.

--help

Print the available options and exit. The available classes and types will be included in output; you
may specify a different root directory or site configuration file before --help to see the classes and
types available for that site.

--version

Print the version number and information about how SiLK was configured, then exit the application.

166 SiLK-3.23.1

The SiLK Reference Guide rwfglob(1)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

Looking at a day on a single sensor:

$ rwfglob --start=2003/10/11 --sensor=2

/data/in/2003/10/11/in-GAMMA_20031011.23

/data/in/2003/10/11/in-GAMMA_20031011.22

/data/in/2003/10/11/in-GAMMA_20031011.21

/data/in/2003/10/11/in-GAMMA_20031011.20

/data/in/2003/10/11/in-GAMMA_20031011.19

/data/in/2003/10/11/in-GAMMA_20031011.18

/data/in/2003/10/11/in-GAMMA_20031011.17

/data/in/2003/10/11/in-GAMMA_20031011.16

/data/in/2003/10/11/in-GAMMA_20031011.15

/data/in/2003/10/11/in-GAMMA_20031011.14

/data/in/2003/10/11/in-GAMMA_20031011.13

/data/in/2003/10/11/in-GAMMA_20031011.12

/data/in/2003/10/11/in-GAMMA_20031011.11

/data/in/2003/10/11/in-GAMMA_20031011.10

/data/in/2003/10/11/in-GAMMA_20031011.09

/data/in/2003/10/11/in-GAMMA_20031011.08

/data/in/2003/10/11/in-GAMMA_20031011.07

/data/in/2003/10/11/in-GAMMA_20031011.06

/data/in/2003/10/11/in-GAMMA_20031011.05

/data/in/2003/10/11/in-GAMMA_20031011.04

/data/in/2003/10/11/in-GAMMA_20031011.03

/data/in/2003/10/11/in-GAMMA_20031011.02

/data/in/2003/10/11/in-GAMMA_20031011.01

/data/in/2003/10/11/in-GAMMA_20031011.00

globbed 24 files; 0 on tape

If you only want the summary, specify --no-file-names

$ rwfglob --start-date=2003/10/11 --sensor=2 --no-file-names

globbed 24 files; 0 on tape

ENVIRONMENT

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. This value overrides the
compiled-in value, and rwfglob uses it unless the --data-rootdir switch is specified. In addition,
rwfglob may use this value when searching for the SiLK site configuration file. See the FILES section
for details.

SiLK-3.23.1 167

rwfglob(1) The SiLK Reference Guide

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwfglob may use this environment variable. See the FILES section for details.

TZ

When a SiLK installation is built to use the local timezone (to determine if this is the case, check the
Timezone support value in the output from rwfglob --version), the value of the TZ environment
variable determines the timezone in which rwfglob parses timestamps. (The date on the filenames that
rwfglob returns are always in UTC.) If the TZ environment variable is not set, the default timezone
is used. Setting TZ to 0 or the empty string causes timestamps to be parsed as UTC. The value of
the TZ environment variable is ignored when the SiLK installation uses utc. For system information
on the TZ variable, see tzset(3) or environ(7).

FILES

${SILK CONFIG FILE}

ROOT DIRECTORY/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided, where ROOT DIRECTORY/ is the directory rwfglob is using as the root of
the data repository.

${SILK DATA ROOTDIR}/

/data/

Locations for the root directory of the data repository when the --data-rootdir switch is not specified.

SEE ALSO

rwfilter(1), rwsiteinfo(1), silk.conf(5), silk(7), tzset(3), environ(7)

NOTES

The ability to use @PATH in --class, --type, --flowtypes, and --sensors was added in SiLK 3.20.0.

As of SiLK 3.20.0, --types is an alias for --type.

The --sensors switch also accepts the names of groups defined in the silk.conf(5) file as of SiLK 3.21.0.

The output of --print-missing-files goes to the standard error, while all other output goes to the standard
output. To redirect the output of --print-missing-files to the standard output, use the following in a
Bourne-compatible shell:

$ rwfglob --print-missing-files ... 2>&1

168 SiLK-3.23.1

The SiLK Reference Guide rwfglob(1)

The --print-missing-files option needs to be smarter about what files are really missing.

The block count check is of unknown portability across different tape-farm systems.

SiLK-3.23.1 169

rwfileinfo(1) The SiLK Reference Guide

rwfileinfo

Print information about a SiLK file

SYNOPSIS

rwfileinfo [--fields=FIELDS] [--summary] [--no-titles]

[--site-config-file=FILENAME]

{--xargs | --xargs=FILENAME | FILE [FILE...]}

rwfileinfo --help

rwfileinfo --help-fields

rwfileinfo --version

DESCRIPTION

rwfileinfo prints information about a binary SiLK file that can be determined by reading the file’s header
and by moving quickly over the data blocks in the file.

rwfileinfo requires one or more filename arguments to be given on the command line or the use of the
--xargs switch. When the --xargs switch is provided, rwfileinfo reads the names of the files to process
from the named text file or from the standard input if no file name argument is provided to the switch. The
input to --xargs must contain one file name per line. rwfileinfo does not read a SiLK file’s content from
the standard input by default, but it does when either - or stdin is given as a filename argument.

When the --summary switch is given, rwfileinfo first prints the information for each individual file and
then prints the number of files processed, the sum of the individual file sizes, and the sum of the individual
record counts.

Field Descriptions

By default, rwfileinfo prints the following information for each file argument. Use the --fields switch to
modify which pieces of information are printed.

(rwfileinfo prints each field in the order in which support for that field was added to SiLK. The field
descriptions are presented here in a more logical order.)

file-size

The size of the file on disk as reported by the operating system. rwfileinfo prints 0 for the file-size
when reading from the standard input.

version

Every binary file written by SiLK has a version number field. Since SiLK 1.0.0, the version number
field has been used to indicate the general structure (or layout) of the file. The file structure adopted
in SiLK 1.0.0 uses a version number of 16 and has a header section and a data section. The header
section begins with 16 bytes that specify well-defined values, and those bytes are followed by one or
more variably-sized header entries. The specifics of the data section depend on the content of the file.

170 SiLK-3.23.1

The SiLK Reference Guide rwfileinfo(1)

header-length

The header-length field shows the number of octets required by header (i.e., the initial 16 bytes and
the header entries). Since everything after the header is data, the header-length is the starting offset
of the data section. The smallest header length is 24 bytes, but typically the header is padded to be an
integer multiple of the record-length. The header-length that rwfileinfo prints for a file is determined
dynamically by reading the file’s header.

silk-version

When a SiLK tool creates a binary file, the tool writes the current SiLK release number (such as 3.9.0)
into the file’s header as a way to help diagnose issues should a bug with a particular release of SiLK
be discovered in the future.

byte-order

Every SiLK file has a byte-order or endian field. SiLK uses the machine’s native representation of
integers when writing data, and this field shows what representation the file contains. BigEndian is
network byte order and littleEndian is used by Intel chips. The rwswapbytes(1) tool changes a
file’s integer representation, and some tools have a --byte-order switch that allows the user to specify
the integer representation of output files. The header-section of a file is always written in network byte
order.

compression

SiLK tools may use the zlib library (http://zlib.net/), the LZO library (http://www.oberhumer.com/
opensource/lzo/), or the snappy library (http://google.github.io/snappy/) to compress the data section
of a file. The compression field specifies which library (if any) was used to compress the data section.
If a file is compressed with a library that was not included in an installation of SiLK, SiLK is unable
to read the data section of the file. Many SiLK tools accept the --compression-method switch to
choose a particular compression method. (The compression field does not indicate whether the entire
file has been compressed with an external compression utility such as gzip(1).)

format

Every binary file written by SiLK has two fields in the header that specify exactly what the file contains:
the format and the record-version. In general, the format indicates the content type of the file and the
record-version indicates the evolution of that content.

The contents of a file whose format is FT IPSET, FT RWBAG, or FT PREFIXMAP is fairly obvious (an IPset,
a Bag, a prefix map).

There are many different file formats for writing SiLK Flow records, but the SiLK analysis tools largely
use a single Flow file format. That format is FT RWIPV6ROUTING if SiLK has been compiled with IPv6
support, or FT RWGENERIC otherwise. A file that uses the FT RWGENERIC format is only capable of
holding IPv4 addresses.

The other SiLK Flow file formats are created by rwflowpack(8) as it writes flow records to the
repository. These formats often omit fields and use reduced bit-sizes for fields to reduce the space
required for an individual flow record.

The record-version field indicates changes within the general type specified by the format field. For
example, SiLK incremented the record-version of the formats that hold flow records when the resolution
of record timestamps changed from seconds to milliseconds and again from milliseconds to nanoseconds.

record-version

Together with the format fields specifies the contents of the file. See the discussion of format for
details.

SiLK-3.23.1 171

http://zlib.net/
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://google.github.io/snappy/

rwfileinfo(1) The SiLK Reference Guide

record-length

Files created by SiLK 1.0.0 and later have a record length field. This field contains the length of an
individual record, and this value is dependent on the format and record-version fields described above.
Some files (such as those containing IPsets or prefix maps) do not write individual records to the
output, and the record length is 1 for these files.

count-records

The count-records field is generated dynamically by determining the length the data section would
require if it were completely uncompressed and dividing it by the record-length. When the record-
length is 1 (such as for IPset files), the count-records field does not provide much information beyond
the length of the uncompressed data. For an uncompressed file, adding header-length to the product
of count-records and record-length is equal to the file-size.

The fields given above are either present in the well-defined header or are computed by reading the file.

The following fields are generated by reading the header entries and determining if one or more header entries
of the specified type are present. The field is not printed in the output when the header entry is not present
in the file.

command-lines

Many of the SiLK tools write a header entry to the output file that contains the command line
invocation used to create that file, and some of the SiLK tools also copy the command line history
from their input files to the output file. (The --invocation-strip switch on the tools can be used to
prevent copying and recording of the invocation.) The command lines are stored in individual header
entries and this field displays those entries with the most recent invocation at the end of the list.

The command line history is has a couple of issues:

• When multiple input files are used to create a single output, the entries are stored as a list, and
this makes it is difficult to know which set of command line entries are associated with which
input file.

• When a SiLK tool creates multiple output files (e.g., when using both --pass and --fail to rwfil-
ter(1)), the tool writes the same command line entry to each output file. Some context in addition
to the command line history may be needed to know which branch of that tool a particular file
represents.

annotations

Most of SiLK tools that create binary output files provide the --note-add and --note-file-add switches
which allow an arbitrary annotation to be added to the header of a file. Some tools also copy the
annotations from the source files to the destination files. The annotations are stored in individual
header entries and this field displays those entries.

ipset

The IPset writing tools (rwset(1), rwsetbuild(1), rwsettool(1), rwaggbagtool(1), and rwbag-
tool(1)) support the following output formats for IPset data structures:

2

May hold only IPv4 addresses and does not have an ipset header entry.

3

May hold IPv4 or IPv6 addresses and is readable by SiLK 3.0 and later. It contains a header
entry that describes the IPset data structure, and the entry specifies the number of nodes, the
number of branches from each node, the number of leaves, the size of the nodes and leaves, and
which node is the root of the tree.

172 SiLK-3.23.1

The SiLK Reference Guide rwfileinfo(1)

4

May hold IPv4 or IPv6 addresses and is readable by SiLK 3.7 and later. The file’s header entry
specifies whether the file contains IPv4 addresses or IPv6 addresses.

5

May hold only IPv6 addresses and is readable by SiLK 3.14 and later. The header entry specifies
that the file contains IPv6 data.

bag

Since SiLK 3.0.0, the tools that write binary Bag files (rwbag(1), rwbagbuild(1), and rwbag-
tool(1)) have written a header entry that specifies the type and size of the key and of the counter in
the file.

aggregate-bag

The tools rwaggbag(1), rwaggbagbuild(1), and rwaggbagtool(1) write a header entry that con-
tains the field types that comprise the key and the counter.

prefix-map

When using rwpmapbuild(1) to create a prefix map file, a string that specifies a mapname may be
provided. rwpmapbuild writes the mapname to a header entry in the prefix map file. The mapname
is used to generate command line switches or field names when the --pmap-file switch is specified to
several of the SiLK tools (see pmapfilter(3) for details). When displaying the mapname, rwfileinfo
prefixes it with the string v1: which denotes a version number for the prefix-map header entry. (The
version number is printed for completeness.)

packed-file-info

When rwflowpack(8) creates a SiLK Flow file for the repository, all the records in the file have the
same starting hour, the same sensor, and the same flowtype (class/type pair). rwflowpack writes a
header entry to the file that contains these values, and this field displays those values. (To print the
names for the sensor and flowtype, the silk.conf(5) file must be accessible.)

probe-name

When flowcap(8) creates a SiLK flow file, it adds a header entry specifying the name of the probe
from which the data was collected.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--fields=FIELDS

Specify what information to print for each file argument on the command line. FIELDS is a comma
separated list of field-names, field-integers, and ranges of field-integers; a range is specified by separating
the start and end of the range with a hyphen (-). Field-names are case-insensitive and may be shortened
to a unique prefix. When the --fields option is not given, all fields are printed if the file contains the
necessary information. The fields are always printed in the order they appear here regardless of the
order they are specified in FIELDS.

The possible field values are given next with a brief description of each. For a full description of each
field, see Field Descriptions above.

SiLK-3.23.1 173

rwfileinfo(1) The SiLK Reference Guide

format,1

The contents of the file as a name and the corresponding hexadecimal ID.

version,2

An integer describing the layout or structure of the file.

byte-order,3

Either BigEndian or littleEndian to indicate the representation used to store integers in the
file (network or non-network byte order).

compression,4

The compression library (if any) used to compress the data-section of the file, specified as a name
and its decimal ID.

header-length,5

The octet length of the file’s header; alternatively the offset where data begins.

record-length,6

The octet length of a single record or the value 1 if the file’s content is not record-based.

count-records,7

The number of records in the file, computed by dividing the uncompressed data length by the
record-length.

file-size,8

The size of the file on disk as reported by the operating system.

command-lines,9

The command line invocation used to generate this file.

record-version,10

The version of the records contained in the file.

silk-version,11

The release of SiLK that wrote this file.

packed-file-info,12

For a repository Flow file generated by rwflowpack(8), this prints the timestamp of the starting
hour, the flowtype, and the sensor of each flow record in the file.

probe,13

For a Flow file generated by flowcap(8), the name of the probe where the flow records where
initially collected.

annotations,14

The notes (annotations) that users have added to the file’s header.

prefix-map,15

For a prefix map file, the mapname that was set when the file was created by rwpmapbuild(1).

ipset,16

For an IPset file whose record-version is 3, a description of the tree data structure. For an IPset
file whose record-version is 4, the type of IP addresses (IPv4 or IPv6).

bag,17

For a bag file, the type and size of the key and of the counter.

aggregate-bag,18

For an aggregate bag file, the field types that comprise the key and the counter.

174 SiLK-3.23.1

The SiLK Reference Guide rwfileinfo(1)

--summary

After the data for each individual file is printed, print a summary that shows the number of files
processed, the sum of the individual file sizes, and the total number of records contained in those files.

--no-titles

Suppress printing of the file name and field names. The output contains only the values, where each
value is printed left-justified on a single line.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwfileinfo searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwfileinfo opens each named file in turn
and prints its information as if the filenames had been listed on the command line. Since SiLK 3.15.0.

--help

Print the available options and exit.

--help-fields

Print a description of each field, its alias, and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLE

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

Get information about the file tcp-data.rw :

$ rwfileinfo tcp-data.rw

tcp-data.rw:

format(id) FT_RWGENERIC(0x16)

version 16

byte-order littleEndian

compression(id) none(0)

header-length 208

record-length 52

record-version 5

silk-version 1.0.1

count-records 7

file-size 572

command-lines

1 rwfilter --proto=6 --pass=tcp-data.rw ...

annotations

1 This is some interesting TCP data

SiLK -3.23.1 175

rwfileinfo(1) The SiLK Reference Guide

Return a single value which is the number of records in the file tcp-data.rw :

$ rwfileinfo --no-titles --field=count-records tcp-data.rw

7

ENVIRONMENT

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwfileinfo may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwfileinfo may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfilter(1), rwaggbag(1), rwaggbagbuild(1), rwaggbagtool(1), rwbag(1), rwbagbuild(1), rwbag-
tool(1), rwpmapbuild(1), rwset(1), rwsetbuild(1), rwsettool(1) rwswapbytes(1), silk.conf(5),
pmapfilter(3), flowcap(8), rwflowpack(8), silk(7), gzip(1)

176 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

rwfilter

Choose which SiLK Flow records to process

SYNOPSIS

rwfilter INPUT_ARGS OUTPUT_ARGS PARTITIONING_ARGS [MISC_ARGS]

Selection switches, input switches, or input files are required:

rwfilter ...

{{ [--class=CLASS] [--type={all | TYPE[,TYPE ...]}]

| [--flowtypes=CLASS/TYPE[,CLASS/TYPE ...]] }

[--sensors=SENSOR[,SENSOR ...]]

[--start-date=YYYY/MM/DD[:HH] [--end-date=YYYY/MM/DD[:HH]]]

[--data-rootdir=ROOT_DIRECTORY] [--print-missing-files] }

| [--input-pipe=INPUT_PATH]

| [--xargs] | [--xargs=INPUT_PATH]

| [INPUT_PATH [INPUT_PATH...]]

One or more output switches are required:

rwfilter ...

[--all-destination=ALL_PATH [--all-destination=ALL_PATH ...]]

[--fail-destination=FAIL_PATH [--fail-destination=FAIL_PATH ...]]

[--pass-destination=PASS_PATH [--pass-destination=PASS_PATH ...]]

[{ --print-statistics[=STATS_PATH]

| --print-volume-statistics[=STATS_PATH] }]

One or more partitioning switches are often used:

rwfilter ...

[--ack-flag=SCALAR] [--active-time=TIME_WINDOW]

[{--any-address=IP_WILDCARD | --not-any-address=IP_WILDCARD}]

[--any-cc=COUNTRY_CODE_LIST]

[{--any-cidr=IP_OR_CIDR_LIST | --not-any-cidr=IP_OR_CIDR_LIST}]

[--any-index=INTEGER_LIST]

[{--anyset=IP_SET_FILENAME | --not-anyset=IP_SET_FILENAME}]

[--aport=INTEGER_LIST] [--application=INTEGER_LIST]

[--attributes=ATTRIBUTES_LIST]

[--bytes=INTEGER_RANGE] [--bytes-per-packet=DECIMAL_RANGE]

[--cwr-flag=SCALAR]

[{--daddress=IP_WILDCARD | --not-daddress=IP_WILDCARD}]

[--dcc=COUNTRY_CODE_LIST]

[{--dcidr=IP_OR_CIDR_LIST | --not-dcidr=IP_OR_CIDR_LIST}]

[{--dipset=IP_SET_FILENAME | --not-dipset=IP_SET_FILENAME}]

[--dport=INTEGER_LIST] [--dtype=SCALAR]

[--duration=DECIMAL_RANGE] [--ece-flag=SCALAR]

[--etime=TIME_WINDOW] [--fin-flag=SCALAR]

SiLK -3.23.1 177

rwfilter(1) The SiLK Reference Guide

[--flags-all=HIGH_MASK_FLAGS_LIST]

[--flags-initial=HIGH_MASK_FLAGS_LIST]

[--flags-session=HIGH_MASK_FLAGS_LIST]

[--icmp-code=INTEGER_LIST] [--icmp-type=INTEGER_LIST]

[--input-index=INTEGER_LIST] [--ip-version=INTEGER_LIST]

[--ipa-src-expr=IPA_EXPR] [--ipa-dst-expr=IPA_EXPR]

[--ipa-any-expr=IPA_EXPR]

[{--next-hop-id=IP_WILDCARD | --not-next-hop-id=IP_WILDCARD}]

[{--nhcidr=IP_OR_CIDR_LIST | --not-nhcidr=IP_OR_CIDR_LIST}]

[{--nhipset=IP_SET_FILENAME | --not-nhipset=IP_SET_FILENAME}]

[--output-index=INTEGER_LIST] [--packets=INTEGER_RANGE]

[--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]

{ [--pmap-src-MAPNAME=LABELS] [--pmap-dst-MAPNAME=LABELS]

[--pmap-any-MAPNAME=LABELS] }]

[--protocol=INTEGER_LIST] [--psh-flag=SCALAR]

[--python-expr=PYTHON_EXPR]

[--python-file=FILENAME [--python-file=FILENAME ...]]

[--rst-flag=SCALAR]

[{--saddress=IP_WILDCARD | --not-saddress=IP_WILDCARD}]

[--scc=COUNTRY_CODE_LIST]

[{--scidr=IP_OR_CIDR_LIST | --not-scidr=IP_OR_CIDR_LIST}]

[{--sipset=IP_SET_FILENAME | --not-sipset=IP_SET_FILENAME}]

[--sport=INTEGER_LIST] [--stime=TIME_WINDOW] [--stype=SCALAR]

[--syn-flag=SCALAR] [--tcp-flags=TCP_FLAGS]

[--tuple-file=TUPLE_FILENAME { [--tuple-fields=FIELDS]

[--tuple-direction=DIRECTION]

[--tuple-delimiter=CHAR] }]

[--urg-flag=SCALAR]

Miscellaneous switches:

rwfilter ...

[--compression-method=COMP_METHOD] [--dry-run]

[--max-fail-records=N] [--max-pass-records=N]

[--note-add=TEXT] [--note-file-add=FILE]

[--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--print-filenames] [--site-config-file=FILENAME]

[--threads=N]

Help switches:

rwfilter [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH]

[--data-rootdir=ROOT_DIRECTORY] [--site-config-file=FILENAME]

--help

rwfilter --version

178 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

DESCRIPTION

rwfilter serves two purposes: (1) It acts as an interface to the data store to select which SiLK Flow records
to process, and (2) it partitions those records into one or more pass and/or fail streams. Most invocations
of rwfilter will both select and partition records but both actions are not required.

The Selection Switches let one choose flow records from the SiLK data store by specifying where the flow was
collected (its sensor), the date of collection, and/or the flow’s direction. The act of selecting records from
the data store is sometimes called a ”data pull”. If the --all-destination switch is given, all these selected
records are written to the named stream (a file or the standard output), and partitioning is optional.

The Partitioning Switches describe various types of traffic behavior (e.g., TCP traffic, or all traffic going
to port 80). When a flow record matches all of the behaviors, it is written to the streams specified by the
--pass-destination switches. If a record fails to match any of these behavior predicates, it is written to the
streams specified by --fail-destination.

The all, pass, and fail output streams from rwfilter are always binary SiLK Flow records. The output
must be either written to a file or piped into another tool in the SiLK Suite, and rwfilter complains if it
determines you are attempting to send the stream to a terminal. To view the records, pipe the records into
rwcut(1).

In addition to the partitioning switches built in to rwfilter, additional partitioning predicates can be created
as C or PySiLK plug-ins, and these can be loaded into rwfilter using the --plugin and/or --python-file
switches as described below.

Instead of using the selection switches to choose flow records from the data store, rwfilter can apply the
partitioning switches to existing files of SiLK flow records---such as files generated by a previous invocation
of rwfilter. To run rwfilter in this mode, you may

• specify, on the command line, the files and/or named pipes from which rwfilter should read SiLK
Flow records. Specifying stdin or - or the command line causes rwfilter to read flow records from
the standard input.

• use the --input-pipe switch to specify a named pipe, or specify stdin or - as the argument to this
switch to have rwfilter read flow records from the standard input.

• use the --xargs switch to specify a file that contains the names of the input files to process. When
--xargs is used without an argument, rwfilter attempts to read the names of the file from the standard
input. The name of each input file must appear on a single line.

When rwfilter is reading flow records from input files, some of the selection switches act as partitioning
switches. The remaining selection switches may not be specified when using the alternate forms of input,
and it is an error to specify multiple types of input.

Unlike many other tools in the SiLK tool suite, rwfilter requires that you specify one or more Output
Switches that tell rwfilter what types of output to produce.

Finally, there are Miscellaneous Switches that control other aspects of rwfilter.

Read Selection Argument Values from a File

As of SiLK 3.20, the Selection Switches --class, --type, --flowtypes, and --sensors accept a value in the
form ”@PATH ”, where @ is the ”at” character (ASCII 0x40) and PATH names a file or a path to a file. For
example, the following reads the name of types from the file t.txt and uses the sensors S3, S7, and the names
and/or IDs read from /tmp/sensor.txt :

SiLK -3.23.1 179

rwfilter(1) The SiLK Reference Guide

rwfilter --type=@t.txt --sensors=S3,@/tmp/sensor.txt,S7 ...

Multiple @PATH values are allowed within a single argument. If the name of the file is -, the names are
read from the standard input.

The file must be a text file. Blank lines are ignored as are comments, which begin with the # character and
continue to the end of the line. Whitespace at the beginning and end of a line is ignored as is whitespace
that surrounds commas; all other whitespace within a line is significant.

A file may contain a value on each line and/or multiple values on a line separated by commas and optional
whitespace. For example:

Sensor 4

S4

The first sensors

S0, S1,S2

S3 # Sensor 3

An attempt to use an @PATH directive in a file is an error.

When rwfilter is parsing the name of a file, it converts the sequences @, and @@ to , and @, respectively.
For example, --class=@cl@@ss.txt@,v reads the class from the file cl@ss.txt,v. It is an error if any other
character follows an embedded @ (--flowtypes=@f@il contains @i) or if a single @ occurs at the end of the
name (--sensor=@errat@).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Selection Switches

To read files from the data store, use the following options to specify which files to process. When rwfilter
gets its input from files listed on the command line or from the --xargs or --input-pipe switches, the first
four switches (--class, --type, --flowtypes, and --sensors) act as partitioning switches, and specifying any
other selection switch produces an error.

--class={CLASS | @PATH}
The --class switch is used to specify a group of data files to process. Only a single class may be
selected with the --class switch; for multiple classes, use the --flowtypes switch. The argument may
be ”@PATH ” which causes rwfilter to open the file PATH and read the class name from it; see
Read Selection Argument Values from a File for details. Classes are defined in the silk.conf(5) site
configuration file. If neither the --class nor --flowtypes option is given, the default-class as specified
in silk.conf is used. To see the available classes and the default class, either examine the output from
rwfilter --help or invoke rwsiteinfo(1) with the switch --fields=class,default-class.

--type={all | TYPE [,TYPE,@PATH ...]}
The --type predicate further specifies data within the selected CLASS by listing the TYPE s of traffic
to process. The switch takes either the keyword all to select all types for CLASS or a comma-
separated list of types names and ”@PATH ” directives, where @PATH tells rwfilter to read type

180 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

names from the file PATH ; see Read Selection Argument Values from a File for details. Types are
defined in silk.conf, they typically refer to the direction of the flow, and they may vary by class. When
neither the --type nor --flowtypes switch is given, a list of default types is used: The default-type
list is determined by the value of CLASS, and the default types often include only incoming traffic. To
see the available types and the default types for each class, examine the --help output of rwfilter or
run rwsiteinfo with --fields=class,type,default-type.

--flowtypes=CLASS/TYPE [,CLASS/TYPE,@PATH ...]

The --flowtypes predicate provides an alternate way to specify class/type pairs. The --flowtypes
switch allows a single rwfilter invocation to process data from multiple classes. The keyword all

may be used for the CLASS and/or TYPE to select all classes and/or types. As of SiLK 3.20.0, the
arguments may also include ”@PATH ” which causes rwfilter to open the file PATH and read the
class/type pairs from it; see Read Selection Argument Values from a File.

--sensors=SENSOR[,SENSOR,SENSOR-GROUP,@PATH ...]

The --sensors switch is used to select data from specific sensors. The parameter is a comma separated
list of sensor names, sensor IDs (integers), ranges of sensor IDs, sensor group names, and/or ”@PATH ”
directives. As described in Read Selection Argument Values from a File, @PATH tells rwfilter to read
the names of the sensors from the file PATH. Sensors and sensor groups are defined in the silk.conf(5)
site configuration file, and the rwsiteinfo(1) command can be used to print a mapping of sensor
names to IDs and classes (--fields=sensor,id-sensor,class:list)). When the --sensors switch is not
specified, the default is to use all sensors which are valid for the specified class(es).

--start-date=YYYY/MM/DD[:HH]

--end-date=YYYY/MM/DD[:HH]

The date predicates indicate which days and hours to consider when creating the list of files. The
dates may be expressed as seconds since the UNIX epoch or in YYYY/MM/DD[:HH] format, where the
hour is optional. A T may be used in place of the : to separate the day and hour. Whether the
YYYY/MM/DD[:HH] strings represent times in UTC or the local timezone depend on how SiLK was
compiled. To determine how your version of SiLK was compiled, see the Timezone support setting in
the output from rwfilter --version.

When times are expressed in YYYY/MM/DD[:HH] format:

• When both --start-date and --end-date are specified to hour precision, all hours within that
time range are processed.

• When --start-date is specified to day precision, the hour specified in --end-date (if any) is
ignored, and files for all dates between midnight on start-date and 23:59 on end-date are
processed.

• When --start-date is specified to hour precision and --end-date is specified to day precision,
the hour of the start-date is used as the hour for the end-date.

• When --end-date is not specified and --start-date is specified to day precision, files for that
complete day are processed.

• When --end-date is not specified and --start-date is specified to hour precision, files for that
single hour are processed.

When at least one time is expressed as seconds since the UNIX epoch:

• When --end-date is specified in epoch seconds, the given --start-date and --end-date are
considered to be in hour precision.

SiLK-3.23.1 181

rwfilter(1) The SiLK Reference Guide

• When --start-date is specified in epoch seconds and --end-date is specified in YYYY/MM/DD[:HH]

format, the start-date is considered to be in day precision if it divisible by 86400, and hour precision
otherwise.

• When --start-date is specified in epoch seconds and --end-date is not given, the start-date is
considered to be in hour-precision.

When neither --start-date nor --end-date is given, rwfilter processes all files for the current day.

It is an error to specify --end-date without specifying --start-date.

It is an error to specify --start-date when rwfilter believes there is some other input specified (see
Non-Selection Input Switches).

--data-rootdir=ROOT DIRECTORY

Tell rwfilter to use ROOT DIRECTORY as the root of the data repository, which overrides the
location given in the SILK DATA ROOTDIR environment variable, which in turn overrides the location
that was compiled into rwfilter (/data). It is an error to specify this switch when files are specified
on the command line or Non-Selection Input Switches are given.

--print-missing-files

This option prints to the standard error the names of the files that rwfilter’s file selection switches
expected to find but did not. The file names are preceded by the text ’Missing ’; each file name appears
on a separate line. This switch is useful for debugging, but the list of files it produces can be misleading.
For example, suppose there is a decommissioned sensor that still appears in the silk.conf file; rwfilter
considers these data files as missing even though their absence is expected. Use the output from this
switch judiciously. It is an error to specify this switch when files are specified on the command line or
Non-Selection Input Switches are given.

Non-Selection Input Switches

Instead of using the Selection Switches to read flow records from files in the data store, you can tell rwfilter
to process files named on the command line or use one (and only one) of the following switches. To have
rwfilter read flow records from the standard input, specify stdin or - as the name of an input file or use
the (deprecated) --input-pipe switch.

--xargs

--xargs=INPUT PATH

Read the names of the input files from INPUT PATH or from the standard input if INPUT PATH is
not provided. The input is expected to have one filename per line. rwfilter opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

--input-pipe=INPUT PATH

Specify a source for SiLK Flow records, where INPUT PATH is a named pipe or the string stdin or -
to represent the standard input. You do not need to use this switch, you can simply specify the named
pipe or the strings stdin or - on the command line. NOTE: This switch is deprecated, and it will be
removed in the SiLK 4.0 release.

Output Switches

At least one of the following output switches must be provided:

182 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

--all-destination=ALL PATH

Write every SiLK Flow record to ALL PATH, where ALL PATH refers to a file, a named pipe, the
string stderr to refer to the standard error, or the strings stdout or - to refer to the standard output.
This switch may be repeated to write all input records to multiple locations. It is not necessary to
specify Partitioning Switches when --all-destination is given and --fail-destination and --pass-
destination are not.

--fail-destination=FAIL PATH

Write SiLK Flow records that have failed ANY of the partitioning predicates to FAIL PATH, where
FAIL PATH refers to a non-existent file, a named pipe, the string stderr to refer to the standard
error, or the strings stdout or - to refer to the standard output. This switch may be repeated to write
records that fail any predicate to multiple locations. When using --fail-destination, partitioning
switches are required.

--pass-destination=PASS PATH

Write SiLK Flow records that have passed ALL of the partitioning predicates to PASS PATH, where
PASS PATH refers to a non-existent file, a named pipe, the string stderr to refer to the standard
error, or the strings stdout or - to refer to the standard output. This switch may be repeated to write
records that pass every predicate to multiple locations. When using --pass-destination, partitioning
switches are required.

--print-statistics

--print-statistics=STATS PATH

Print a one line summary specifying the number of files processed, the total number of records read,
the number of records that passed all partitioning predicates, and the number of records that failed.
If STATS PATH is provided, the summary is printed there; otherwise it is printed to the standard
error. This switch cannot be mixed with --print-volume-statistics. When running rwfilter with
multiple threads and --max-pass-records or --max-fail-records is specified, the statistics may not
match the number of records written by rwfilter. When using this switch, either partitioning switches
or --all-destination is required.

--print-volume-statistics

--print-volume-statistics=STATS PATH

Print a four line summary of rwfilter’s processing. For each of all records, records that pass all the
partitioning predicates, and records that fail, print the number of flow records and the number of
packets and bytes represented by those flow records. The output also includes the number of files
processed. If STATS PATH is provided, the summary is printed there; otherwise it is printed to the
standard error. This switch cannot be mixed with --print-statistics. When running rwfilter with
multiple threads and --max-pass-records or --max-fail-records is specified, the statistics may not
match the number of records written by rwfilter. When using this switch, either partitioning switches
or --all-destination is required.

Partitioning Switches

rwfilter supports the following partitioning switches, at least one of which must be specified (unless the
only Output Switch is --all-destination). The switches are AND’ed together; i.e., to pass the filter,
the record must pass the test implied by each switch. Any record that does not pass is written to the
fail-destination(s), if specified.

SiLK-3.23.1 183

rwfilter(1) The SiLK Reference Guide

Each partitioning switch defines a test. These tests can be grouped into several broad categories; within
each category, the tests are applied in the order in which the switches appear on the command line. The
categories of the partitioning tests are:

• tests for IP addresses (including the IPset checks), ports, protocol, times, TCP flags, byte and packet
counts, IP version, application, country codes

• tests based on the --tuple-file switch

• tests that use the address type or prefix map mapping files

• tests that use the IP-Association plug-in

• tests based on the --python-expr and --python-file switches

• tests defined in C-plugins and loaded via --plugin

Partitioning Switches for IP Addresses

There are three families of switches that partition based on an IP address. Each family can partition by
the source IP, the destination IP, the next hop IP, or either source or destination IP. Each family includes a
--not-* variant to reverse the sense of the test.

The --*cidr-family takes as its argument an IP OR CIDR LIST, which is a one or more of the following
separated by commas: an IPv4 address (10.1.2.3), an IPv6 address (2001:db8::10.1.2.3), an unsigned
32-bit integer representing an IPv4 address (167838211), or any of those with a CIDR block designation
(192.168.0.0/16, 2001:db8::/32, 167772160/8).

The --*set-family requires that you store the IPs in a binary IPset file and pass the name of the file to
the switch. IPset files are created from SiLK Flow records with rwset(1), or from textual input with
rwsetbuild(1).

The --*address-family (which includes --next-hop-id) takes as its argument a single IP address, a single
CIDR block, or a single SiLK IP Wildcard. A SiLK IP Wildcard may represent multiple, disjointed IPv4
or IPv6 addresses. An IP Wildcard contains an IP in its canonical form, except each part of the IP (where
part is an octet for IPv4 or a hexadectet for IPv6) may be a single value, a range, a comma separated list
of values and ranges, or the letter x to signify any value for that part of the IP (that is, 0-255 for IPv4).
You may not specify a CIDR suffix when using the IP Wildcard notation. The following IP WILDCARDs
all represent the same value:

::ffff:0:0/112

::ffff:0:x

::ffff:0:aaab-ffff,aaaa,0-aaa9

::ffff:0.0.0.0/112

::ffff:0.0.128-254,0-126,255,127.x

The next hop address often has a value of 0.0.0.0 since the default configuration of SiLK does not store the
next hop address in the data repository.

With one restriction, any combination of IP partitioning switches is allowed in a single rwfilter invocation:
A positive and negative version of the same switch (e.g., --sipset and --not-sipset) is not allowed. (--sipset
and --not-scidr may be used together, as can --sipset and --not-dipset.)

The address-partitioning switches are:

184 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

--scidr=IP OR CIDR LIST

Pass the record if its source IP address matches a value in IP OR CIDR LIST, a comma separated list
of IPs and/or CIDR blocks. See also --saddress and --sipset.

--dcidr=IP OR CIDR LIST

Pass the record if its destination IP address matches a value in IP OR CIDR LIST. See also --daddress
and --dipset.

--any-cidr=IP OR CIDR LIST

Pass the record if either its source or its destination IP address matches a value in IP OR CIDR LIST.
This switch does not consider the next hop IP address. See also --any-address and --anyset.

--nhcidr=IP OR CIDR LIST

Pass the record if its next hop IP address matches a value in IP OR CIDR LIST. See also --next-
hop-id and --nhipset.

--not-scidr=IP OR CIDR LIST

Pass the record if its source IP address does not match a value in IP OR CIDR LIST, a comma
separated list of IPs and/or CIDR blocks. See also --not-saddress and --not-sipset.

--not-dcidr=IP OR CIDR LIST

Pass the record if its destination IP address does not match a value in IP OR CIDR LIST. See also
--not-daddress and --not-dipset.

--not-any-cidr=IP OR CIDR LIST

Pass the record if neither its source nor its destination IP address matches a value in
IP OR CIDR LIST. See also --not-any-address and --not-anyset.

--not-nhcidr=IP OR CIDR LIST

Pass the record if its next hop IP address does not match a value in IP OR CIDR LIST. See also
--not-next-hop-id and --not-nhipset.

--saddress=IP WILDCARD

Pass the record if its source IP address is matched by the SiLK IP Wildcard IP WILDCARD. To
match on multiple IPs, use --scidr or create an IPset and use --sipset.

--daddress=IP WILDCARD

Pass the record if its destination IP address is matched by IP WILDCARD, a SiLK IP Wildcard. See
also --dcidr and --dipset.

--any-address=IP WILDCARD

Pass the record if either its source or its destination IP address is matched by IP WILDCARD, a
SiLK IP Wildcard. This switch does not consider the next hop IP address. See also --any-cidr and
--anyset.

--next-hop-id=IP WILDCARD

Pass the record if its next hop IP address is matched by this IP WILDCARD, a SiLK IP Wildcard.
To match on multiple IPs, use --nhcidr or create an IPset and use --nhipset.

--not-saddress=IP WILDCARD

Pass the record if its source IP address is not matched by this IP WILDCARD, a SiLK IP Wildcard.
See also --not-scidr and --not-sipset.

SiLK-3.23.1 185

rwfilter(1) The SiLK Reference Guide

--not-daddress=IP WILDCARD

Pass the record if its destination IP address is not matched by this IP WILDCARD. See also --not-
dcidr and --not-dipset.

--not-any-address=IP WILDCARD

Pass the record if neither its source nor its destination IP address is matched by this IP WILDCARD.
Does not consider the next hop address. See also --not-any-cidr and --not-anyset.

--not-next-hop-id=IP WILDCARD

Pass the record if its next hop IP address is not matched by this IP WILDCARD. See also --not-
nhcidr and --not-nhipset.

--sipset=IP SET FILENAME

Pass the record if its source IP address is in the list of IPs contained in the binary set file
IP SET FILENAME. See also --scidr.

--dipset=IP SET FILENAME

As --sipset for the destination IP address. See also --dcidr.

--anyset=IP SET FILENAME

Pass the record if either its source IP address or its destination IP address is in the list of IPs contained
in the binary set file IP SET FILENAME. Does not consider the next hop IP. See also --any-cidr.

--nhipset=IP SET FILENAME

As --sipset for the next-hop IP address. See also --nhcidr.

--not-sipset=IP SET FILENAME

Pass the record if its source IP address is not in the list of IPs contained in the binary set file
IP SET FILENAME. See also --not-scidr.

--not-dipset=IP SET FILENAME

As --not-sipset for the destination IP address. See also --not-dcidr.

--not-anyset=IP SET FILENAME

Pass the record if neither its source IP address nor its destination IP address is in the list of IPs
contained in the binary set file IP SET FILENAME. Does not consider the next hop IP. See also
--not-any-cidr.

--not-nhipset=IP SET FILENAME

As --not-sipset for the next hop IP address. See also --not-nhcidr.

Partitioning Switches for Remainder of Five-Tuple

The following switches partition based on the protocol and source or destination port. The parameter to
each of these switches is an INTEGER LIST, which is a comma-separated list of individual non-negative
integer values and ranges of those values. For example, 1,2,3,5-10,99-103. A range may be specified
without an upper limit, such as 1-, in which case the upper limit is set to the maximum value.

--sport=INTEGER LIST

Pass the record if its source port is in this INTEGER LIST, possible values are 0-65535.

186 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

--dport=INTEGER LIST

Pass the record if its destination port is in this INTEGER LIST, possible values are 0-65535

--aport=INTEGER LIST

Pass the record if its source port and/or its destination port is in this INTEGER LIST, possible values
are 0-65535. For example, use --aport=25 to see all SMTP conversions regardless or where they
originated.

--protocol=INTEGER LIST

Pass the record if its IP Suite Protocol is in this INTEGER LIST, possible values are 0-255.

--icmp-type=INTEGER LIST

Pass the record if its ICMP (or ICMPv6) type is in this INTEGER LIST ; possible values 0-255. This
switch also verifies that the flow’s protocol is 1 (or 58 if the flow is IPv6). It is an error to specify a
--protocol that does not include 1 and/or 58.

--icmp-code=INTEGER LIST

Pass the record if its ICMP (or ICMPv6) code is in this INTEGER LIST ; possible values 0-255. This
switch also verifies that the flow’s protocol is 1 (or 58 if the flow is IPv6). It is an error to specify a
--protocol that does not include 1 and/or 58.

Partitioning Switches for Time

These switches partition based on whether the time stamps on the flow record occur within
the specified time window. The form of the argument is range of two dates, start-
window and end-window, each in the form YYYY/MM/DD[:HH[:MM[:SS[.ssssss]]]], for example
2003/01/31:23:45:00.000-2003/01/31:23:59:59.999 represents the last fifteen minutes of Jan 31, 2003.
(A T may be used in place of : to separate the day and hour.) The start-window and end-window must be
set to at least day precision. For the start-window, unspecified hour, minute, second, and nanosecond values
are set to 0; for the end-window, those values are set to 23, 59, 59, and 999999999 respectively. Thus
2003/01/31:23-2003/01/31:23 becomes 2003/01/31:23:00:00.000-2003/01/31:23:59:59.999999999.
If an end-window is not given, it is set to the start-window, giving a window of a single nanosecond. The date
strings are considered to be in the timezone specified when SiLK was compiled, which you can determine
from the output of rwfilter --version. You may also specify the times as seconds since the UNIX epoch;
when the end-time is in epoch seconds, an unspecified nanoseconds value is set to 999999999 and otherwise
the value is unchanged.

--active-time=TIME WINDOW

Pass the record if the record was active at ANY time during this TIME WINDOW. If a single time is
specified, pass the record if it was active at that instant.

--stime=TIME WINDOW

Pass the record if its starting time is in this TIME WINDOW.

--etime=TIME WINDOW

As --stime for the ending time.

--duration=DECIMAL RANGE

Pass the record if its duration--that is, the record’s end time minus its start time, as measured in
seconds--is in this DECIMAL RANGE. Use floating point numbers to specify fractional second values.
The range should be specified as MIN -MAX ; for example, 5.0-10.031. If a single value is given, the
duration must match that value exactly. The upper limit may be omitted; for example, a range of
1.5- passes records whose duration is at least 1.5 seconds.

SiLK-3.23.1 187

rwfilter(1) The SiLK Reference Guide

Partitioning Switches for Volume

The following switches partition based on the volume of the flow; that is, the number of bytes or packets.
For additional volume-related switches, load the flowrate plug-in as described in the flowrate(3) manual
page.

These switches accept a range of non-negative integers or decimal values. If the upper limit is omitted, the
volume must be at least that size. If the argument is a single value, the volume must match that value
exactly.

--bytes=INTEGER RANGE

Pass the record if its byte count is in this INTEGER RANGE.

--packets=INTEGER RANGE

Pass the record if its packet count is in this INTEGER RANGE.

--bytes-per-packet=DECIMAL RANGE

Pass the record if its average bytes per packet count (bytes/packet) is in this DECIMAL RANGE.

Partitioning Switches for TCP Flags

When a flow generator creates a flow record from TCP packets, it creates a field that is the bit-wise OR of
the TCP flags from all packets that comprise that flow record. Some flow generators, such as yaf(1), can
export two TCP flag fields: one contains the flags on the first packet in the flow, and the second contains
the bit-wise OR of the remaining packets.

To partition records based on their TCP flags values, there is a recommended set of switches and legacy-
supported switches. The switches accept the following letters to represent the named TCP flag: F=FIN;
S=SYN; R=RST; P=PSH; A=ACK; U=URG; E=ECE; C=CWR. As of SiLK 3.20.0, the symbol - is accepted
and represents all TCP flags (FSRPAUEC).

The recommended set of switches take a comma separated list of pairs of TCP flags, where the pair is
separated by a slash (/). The value to the left of the slash is the HIGH SET and it must be a subset of
the value to the right of the slash, which is the MASK SET. For a record to pass the filter, the flags in the
HIGH SET must be on and the remaining flags in MASK SET must be off. Flags not in MASK SET may
have any value. If a list of pairs is given, the record passes if any pair in the list matches. For example,
--flags-all=S/S,A/A passes flows that have either the SYN or the ACK flag set, --flags-all=S/SA passes
flow records where SYN is high and ACK is low, and --flags-all=/F passes flows where FIN is off. This
list of flag pairs is called a HIGH MASK FLAGS LIST.

The recommended switches for TCP flag partitioning are:

--flags-all=HIGH MASK FLAGS LIST

Pass the record if any of the HIGH SET/MASK SET pairs is true when looking at the bit-wise OR
of the TCP flags across all packets in the flow.

--flags-initial=HIGH MASK FLAGS LIST

As --flags-all, except this switch considers only the initial packet in the flow, for flow generators that
can generate that field.

--flags-session=HIGH MASK FLAGS LIST

As --flags-all, except this switch considers the bit-wise OR of the TCP flags across the second through
the final packet in the flow; that is, ignoring the flags on the first packet.

188 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

The TCP-flag partitioning switches supported for legacy reasons are:

--tcp-flags=TCP FLAGS

Pass the record if, for any one of its packets, any of the specified TCP FLAGS was set (high), where
TCP FLAGS contains the letters F,S,R,P,A,U,E,C. For example, --tcp-flags=ASF passes records where
ACK is set, or SYN is set, or FIN is set (this is equivalent to --flags-all=A/A,S/S,F/F).

--ack-flag={0|1}
Pass the record when either the argument is 1 and the ACK flag is set (high) or the argument is 0 and
the ACK flag is unset (low).

--cwr-flag={0|1}
Pass the record when either the argument is 1 and the CWR flag is set (high) or the argument is 0
and the CWR flag is unset (low).

--ece-flag={0|1}
Pass the record when either the argument is 1 and the ECE flag is set (high) or the argument is 0 and
the ECE flag is unset (low).

--fin-flag={0|1}
Pass the record when either the argument is 1 and the FIN flag is set (high) or the argument is 0 and
the FIN flag is unset (low).

--psh-flag={0|1}
Pass the record when either the argument is 1 and the PSH flag is set (high) or the argument is 0 and
the PSH flag is unset (low).

--rst-flag={0|1}
Pass the record when either the argument is 1 and the RST flag is set (high) or the argument is 0 and
the RST flag is unset (low).

--syn-flag={0|1}
Pass the record when either the argument is 1 and the SYN flag is set (high) or the argument is 0 and
the SYN flag is unset (low).

--urg-flag={0|1}
Pass the record when either the argument is 1 and the URG flag is set (high) or the argument is 0 and
the URG flag is unset (low).

Partitioning Switches for Other Flow Characteristics

Other than the --ip-version switch, the fields queried by the following switches may always be zero. The
default configuration of SiLK does not store the fields that contain the SNMP values. The other fields are not
present in NetFlow v5, and require use of properly-configured enhanced collection software, such as yaf(1),
http://tools.netsa.cert.org/yaf/.

--ip-version={4|6|4,6}
Passes the record if its IP Version is in the specified list. This switch determines how IPv4 and IPv6
flow records are handled when SiLK has been compiled with IPv6 support. When the argument to
this switch is 4, rwfilter writes records marked as IPv6 to the fail-destination, regardless of the IP
addresses it contains. When the argument to this switch is 6, rwfilter writes records marked as IPv4

SiLK-3.23.1 189

http://tools.netsa.cert.org/yaf/

rwfilter(1) The SiLK Reference Guide

to the fail-destination. When SiLK has not been compiled with IPv6 support, the only legal value for
this switch is 4, and any IPv6 flows in the input ignored (that is, they are not written to either the
pass-destination nor the fail-destination).

--application=INTEGER LIST

Some flow generation software can inspect the contents of the packets that comprise a flow and use
traffic signatures to label the content of the flow. SiLK calls this label the application; yaf refers to
it as the appLabel (see the applabel(1) manual page in the yaf distribution). The application value
is the port number that is traditionally used for that type of traffic (see the /etc/services file on most
UNIX systems). For example, traffic that the flow generator recognizes as FTP has a value of 21, even
if that traffic is being routed through the standard HTTP/web port (80). The flow generator uses a
value for 0 if the application cannot be determined. The --application switch passes the flow if the
flow’s application value is in the specified INTEGER LIST, which is a comma separated list of integers
from 0 to 65535 inclusive and ranges of those integers. The list of valid appLabels is determined by
your site’s yaf installation.

--attributes=ATTRIBUTES LIST

The attributes field in SiLK Flow records describes characteristics about how the flow record was
generated or about the packets that comprise the flow record. The ATTRIBUTES LIST ar-
gument is similar to the HIGH MASK FLAGS LIST argument to the --flags-all switch. AT-
TRIBUTES LIST is a comma separated list of up to 8 HIGH ATTRIBUTES/MASK ATTRIBUTES
pairs, where HIGH ATTRIBUTES and MASK ATTRIBUTES are strings of the characters S,T,C,F,
and HIGH ATTRIBUTES is a subset of MASK ATTRIBUTES. As of SiLK 3.20.0, the symbol - is
accepted and represents all attributes (STCF). rwfilter passes the record if, for any pair of attributes
in the list, the attributes listed in HIGH ATTRIBUTES are set and the remaining attributes in
MASK ATTRIBUTES are not-set. The valid attributes are:

S

All the packets in this flow record are exactly the same size.

T

The flow generator prematurely created a record for a long-lived session due to the connection’s
lifetime reaching the active timeout of the flow generator. (Also, when yaf is run with the --silk
switch, it prematurely creates a flow and marks it with T if the byte count of the flow cannot be
stored in a 32-bit value.)

C

The flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout.

F

The flow generator saw additional packets in this flow following a packet with the FIN flag set
(excluding ACK packets).

For a long-lived connection spanning several flow records, the first flow record is marked with a T

indicating that it hit the active timeout. The second through next-to-last records are marked with CT

indicating that the flow is a continuation of a connection that timed out and that this flow also timed
out. The final flow is marked with a C, indicating that it was created as a continuation of an active
flow.

--input-index=INTEGER LIST

Pass the record if its in field is in this INTEGER LIST, which is a comma separated list of integers
from 0 to 65535, inclusive, and ranges of those integers. When present, the in field normally contains
the incoming SNMP interface, but it may contain the vlanId if the packing tools were configured to
capture it (see sensor.conf(5)).

190 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

--output-index=INTEGER LIST

Pass the record if its out field is in this INTEGER LIST. When present, the out field normally contains
the outgoing SNMP interface, but it may contain the postVlanId if the packing tools were configured
to capture it.

--any-index=INTEGER LIST

Pass the record if its in field or if its out field is in this INTEGER LIST.

Selection Switches Acting as Partitioning Switches

The following four switches are normally file selection switches that select which files rwfilter reads within
the data repository. However, when rwfilter gets input without querying the data repository (that is,
from files listed on the command line, from files specified by --xargs, or from the --input-pipe), these
switches become partitioning switches and determine whether a record is written to the pass-destination or
fail-destination.

--class={CLASS | @PATH}
Pass the record if its class is CLASS or the class named in PATH and its type is listed in the --type
switch, or its type is in the default type list for CLASS when --type is not specified. Examine the
output of rwfilter --help to see the list of available classes, available types, and their default values,
or use rwsiteinfo --fields=class,type,mark-defaults.

--flowtypes=CLASS/TYPE [,CLASS/TYPE,@PATH ...]

Pass the record its if class/type value is one of those listed or read from the file PATH. The keyword
all may be used for the CLASS and/or TYPE to select all classes and/or types. This switch cannot be
used when either --class or --type is used. Use rwfilter --help or rwsiteinfo --fields=class,type
to see the list of available classes and types.

--sensors=SENSOR[,SENSOR,SENSOR-GROUP,@PATH ...]

Pass the record if its sensor is one of those listed. The parameter is a comma separated list of sensor
names, sensor IDs (integers), ranges of sensor IDs, sensor group names, and ”@PATH ” directives. Use
the rwsiteinfo(1) command to see the list of sensors. Support for sensor group names was added in
SiLK 3.21.0.

--type={all | TYPE [,TYPE,@PATH ...]}
Pass the record if its type is one of those listed or read from the file PATH and its class is specified
by --class, or its class is the default class when the --class switch is not specified. Use rwfilter
--help to see the list of available classes, available types, and their defaults, or use rwsiteinfo --
fields=class,type,mark-defaults.

Partitioning Switches that use Additional Mapping Files

Additional partitioning switches are available that allow one to partition flow records depending on a label,
where the label is computed from an IP address or port on the record and an additional mapping file.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the prefix map file located at PATH and create partitioning switches named --pmap-src-map-
name , --pmap-dst-map-name , and --pmap-any-map-name where map-name is either the MAP-
NAME part of the argument or the map-name specified when the file was created (see rwpmap-
build(1)). If no map-name is available, rwfilter creates switch names as described below (--pmap-
saddress, --pmap-sport-proto, etc). Specify PATH as - or stdin to read from the standard input.

SiLK-3.23.1 191

rwfilter(1) The SiLK Reference Guide

The switch may be repeated to load multiple prefix map files; each file must have a unique map-name.
The --pmap-file switch(es) must precede all other --pmap-* switches. For more information, see
pmapfilter(3).

--pmap-src-map-name=LABELS

If the prefix map associated withmap-name is an IP prefix map, this matches records with a source IPv4
address that maps to a label contained in the list of labels in LABELS. If the prefix map associated
with map-name is a proto-port prefix map, this matches records with a protocol and source port
combination that maps to a label contained in the list of labels in LABELS.

--pmap-dst-map-name=LABELS

Similar to --pmap-src-map-name , but uses the destination IP or the protocol and destination port.

--pmap-any-map-name=LABELS

If the prefix map associated with map-name is an IP prefix map, this matches records with a source
IP address or a destination IP address that maps to a label contained in the list of labels in LABELS.
If the prefix map associated with map-name is a port/protocol prefix map, this matches records with
a protocol and source port or destination port combination that maps to a label contained in the list
of labels in LABELS.

--pmap-saddress=LABELS

--pmap-daddress=LABELS

--pmap-any-address=LABELS

These are deprecated switches created by pmapfilter that correspond to --pmap-src-map-name ,
--pmap-dst-map-name , and --pmap-any-map-name , respectively. These switches are available
when an IP prefix map is used that is not associated with a map-name.

--pmap-sport-proto=LABELS

--pmap-dport-proto=LABELS

--pmap-any-port-proto=LABELS

These are deprecated switches created by pmapfilter that correspond to --pmap-src-map-name ,
--pmap-dst-map-name , and --pmap-any-map-name , respectively. These switches are available
when a proto-port prefix map is used that is not associated with a map-name.

--scc=COUNTRY CODE LIST

--dcc=COUNTRY CODE LIST

--any-cc=COUNTRY CODE LIST

Pass the record if one its IP addresses maps to a country code that is specified in COUN-
TRY CODE LIST. For --scc, the source IP must match. For --dcc, the destination IP must match.
For --any-cc, either the source or the destination must match. COUNTRY CODE LIST is a comma
separated list of lowercase two-letter country codes---defined by ISO 3166-1 (see for example https:
//www.iso.org/iso-3166-country-codes.html or https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2)---
as well as the following special codes:

--

N/A (e.g. private and experimental reserved addresses)

a1

anonymous proxy

192 SiLK-3.23.1

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

The SiLK Reference Guide rwfilter(1)

a2

satellite provider

o1

other

For example: cx,uk,kr,jp,--. To use this switch, the country code mapping file must be available
in the default location, or in the location specified by the SILK COUNTRY CODES environment
variable. See ccfilter(3) for details.

--stype={0|1|2|3}

--dtype={0|1|2|3}
Pass a flow record depending on whether the IP address is internal, external, or non-routable. These
switches use the mapping file specified by the SILK ADDRESS TYPES environment variable, or the
address types.pmap mapping file, as described in addrtype(3). When the parameter is 0, pass the
record if its source (--stype) IP address or destination (--dtype) IP address is non-routable. When 1,
pass if internal. When 2, pass if external (i.e., routable but not internal). When 3, pass if not internal
(non-routable or external).

Partitioning Switches across Multiple Fields

The --tuple-* family of switches allows the user to partition flow records based on multiple values of the
five-tuple.

--tuple-file=TUPLE FILENAME

This switch provides support for partitioning by arbitrary subsets of the basic five-tuple:

{source-ip,destination-ip,source-port,destination-ip-port,protocol}

A SiLK Flow record passes the test when the record’s fields match one of the tuples; if the SiLK record
does not match any tuple, the record fails. The tuples are read from the text file TUPLE FILENAME
which must contain lines of delimited fields. The default delimiter is |, but may be specified with the
--tuple-delimiter switch. Each field contains one member of the tuple; the fields may appear in any
order. The fields may represent any subset of the five-tuple, but each line in the file must define the
same subset. A field that is present but has no value generates an error. If you want the field to match
any value, it is best that you not include that field in your input.

In addition to the tuple-lines, TUPLE FILENAME may contain blank lines and comments (which
begin with # and continue to the end of the line). The first line of TUPLE FILENAME may contain
a title labeling the fields in the file. This title line is ignored when the --tuple-fields switch is given.

The IP fields may contain an IPv4 address, an integer, or a IP in CIDR block notation. Comma-
separated lists (80,443) and ranges (0-1023,8080) are supported for the ports and protocol fields.
NOTE: Currently the code is not clever in its support for CIDR notation and ranges in that each
occurrence is fully expanded. When this occurs, the memory required to hold the search tree quickly
grows.

--tuple-fields=FIELDS

FIELDS contains the list of fields (columns) to parse from the TUPLE FILENAME in the order in
which they appear in the file. When this switch is not provided, rwfilter treats the first line in
TUPLE FILENAME as a title line and attempts to determine the fields (a la rwtuc(1)); rwfilter
exits if it cannot determine the fields.

FIELDS is a comma separated list of field-names, field-integers, and ranges of field-integers; a range
is specified by separating the start and end of the range with a hyphen (-). Names can be abbreviated
to their shortest unique prefix. The field names and their descriptions are:

SiLK-3.23.1 193

rwfilter(1) The SiLK Reference Guide

sIP,sip,1

source IP address

dIP,dip,2

destination IP address

sPort,sport,3

source port

dPort,dport,4

destination port

protocol,5

IP protocol

--tuple-direction=DIRECTION

Allows you to change the comparison between the tuple and the SiLK Flow record. This switch allows
one to look for traffic in the reverse direction (or both directions) without having to write all of the
rules twice. The available directions are:

forward

The tuple’s fields are compared against the corresponding fields on the flow; that is, sIP is com-
pared with sIP, dIP with dIP, sPort with sPort, dPort with dPort, and protocol with protocol.
This is the default.

reverse

The tuple’s fields are compared against the opposite fields on the flow; that is, sIP is compared
with dIP, dIP with sIP, sPort with dPort, dPort with sPort, and protocol with protocol.

both

Both of the above comparisons are performed.

--tuple-delimiter=CHAR

Specifies the character separating the input fields. When the switch is not provided, the default of | is
used.

Partitioning Switches that use the PySiLK Plug-in

The SiLK Python plug-in provides support for filtering by expressions or complex functions written in the
Python programming language. See the silkpython(3) and pysilk(3) manual pages for information and
examples for how to use Python to manipulate SiLK data structures. When multiple Partitioning Switches
are given, the Python plug-in is the next-to-last to be invoked. Only the code specified by the --plugin
switch is called after the Python code.

--python-file=FILENAME

Pass the record if the result of the processing the flow with the function named rwfilter() in
FILENAME is true. The function should take a single silk.RWRec object as an argument. See
silkpython(3) for details.

--python-expr=PYTHON EXPRESSION

Pass the record if the result of the processing the flow with the specified PYTHON EXPRESSION is
true. The expression is evaluated as if it appeared in the following context:

from silk import *

def rwfilter(rec):

return (PYTHON_EXPRESSION)

194 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

Partitioning Switches that use the IP-Association Plug-In

The IPA plug-in, ipafilter.so, provides switches that can partition flows using data in an IP Association
database. For this plug-in to be available, SiLK must be compiled with IPA support and IPA must be
configured. See ipafilter(3) and http://tools.netsa.cert.org/ipa/ for additional information.

--ipa-src-expr=IPA EXPR

Use IPA EXPR to partition flows based on the source IP of the flow matching the IPA EXPR expres-
sion.

--ipa-dst-expr=IPA EXPR

Use IPA EXPR to partition flows based on the destination IP of the flow matching the IPA EXPR
expression.

--ipa-any-expr=IPA EXPR

Use IPA EXPR to partition flows based on either the source or destination IP of the flow matching
the IPA EXPR expression.

Miscellaneous Switches

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--dry-run

Perform a sanity check on the input arguments to check that the arguments are acceptable. In addition,
prints to the standard output the names of the files that would be accessed (and the names of missing

SiLK-3.23.1 195

http://tools.netsa.cert.org/ipa/

rwfilter(1) The SiLK Reference Guide

files if --print-missing is specified). rwfglob(1) can also be used to generate the lists of files that
rwfilter would access.

--help

Print the available options and exit. Options that add fields (for example, options that load plug-ins,
prefix maps, or PySiLK extensions) can be specified before the --help switch so that the new options
appear in the output. The available classes and types are included in output; you may specify a
different root directory or site configuration file before --help to see the classes and types available for
that site.

--max-fail-records=N

Write N records to each --fail-destination. rwfilter stops reading input once it has written these N
records unless --pass-destination or --all-destination switch(es) are also specified.

--max-pass-records=N

Write N records to each --pass-destination. rwfilter stops reading input once it has written these
N records unless --fail-destination or --all-destination switch(es) are also specified.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--plugin=PLUGIN

Augment the partitioning switches by using run-time loading of the plug-in (shared object) whose path
is PLUGIN. The switch may be repeated to load multiple plug-ins. The creation of plug-ins is described
in the silk-plugin(3) manual page. When multiple partitioning switches are given, the code specified
by the --plugin switch(es) is last to be invoked. When PLUGIN does not contain a slash (/), rwfilter
attempts to find a file named PLUGIN in the directories listed in the FILES section. If rwfilter finds
the file, it uses that path. If PLUGIN contains a slash or if rwfilter does not find the file, rwfilter
relies on your operating system’s dlopen(3) call to find the file. When the SILK PLUGIN DEBUG
environment variable is non-empty, rwfilter prints status messages to the standard error as it attempts
to find and open each of its plug-ins.

--print-filenames

Print the names of input files as they are read. This can be useful feedback for a long-running rwfilter
process.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwfilter searches for the site configuration file in the locations specified in the FILES section.

--threads=N

Invoke rwfilter with N threads reading the input files. When this switch is not provided, the value in
the SILK RWFILTER THREADS environment variable is used. If that variable is not set, rwfilter
runs with a single thread. Using multiple threads, performance of rwfilter is greatly improved for
queries that look at many files but return few records. Preliminary testing has found that performance
peaks around four threads per CPU, but performance varies depending on the type of query and the
number of records returned.

196 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The most basic filtering involves looking at specific traffic over a specific time. For example:

$ rwfilter --start-date=2003/02/19:00 --end-date=2003/02/19:23 \

--proto=6 --pass-destination=tcp-in.rw

creates a file, tcp-in.rw containing all incoming TCP traffic on February 19, 2003. The --start-date and
--end-date switches select which files to examine. The --proto switch partitions the flow records into a
pass stream (records whose protocol is 6---that is, TCP) and a fail stream (all other records). The --pass-
destination switch (often shortened to --pass) tells rwfilter to write the records that pass the --proto
test to the file tcp-in.rw.

The tcp-in.rw file contains SiLK Flow data in a binary format. To examine the contents, use the command
rwcut(1). This query only selects incoming traffic because the silk.conf(5) configuration file at most sites
tells rwfilter to look at incoming traffic unless an explicit --type switch is given.

The following query gets all TCP traffic (for the default class) for February 19, 2003.

$ rwfilter --type=all --start-date=2003/02/19 \

--proto=6 --pass-destination=alltcp.rw

Note the addition of --type=all. This query also relies on the default behavior of --start-date to consider
a full day’s worth of data when no hour is specified.

The above query gets all traffic for the default class. If your silk.conf file has a single class, that query
captures all of it. For silk.conf files that specify multiple classes, the following gets all TCP traffic for
February 19, 2003:

$ rwfilter --flowtypes=all/all --start-date=2003/02/19 \

--proto=6 --pass-destination=alltcp.rw

To get all non-TCP traffic, there are two approaches. rwfilter does not supply a way to choose a negated
set of protocols, but you can choose all protocols other than TCP:

$ rwfilter --start-date=2003/02/19:00 --end-date=2003/02/19:23 \

--proto=0-5,7-255 --pass-destination=non-tcp.rw

The other approach is to use the --fail-destination switch (often shortened to --fail) that contains the
records that failed one or more of the partitioning test(s):

$ rwfilter --start-date=2003/02/19:00 --end-date=2003/02/19:23 \

--proto=6 --fail-destination=non-tcp.rw

SiLK -3.23.1 197

rwfilter(1) The SiLK Reference Guide

To print information about the number of flow records that pass a filter, use --print-volume-statistics.
This can be combined with other output switches.

$ rwfilter --start-date=2003/02/19:00 --end-date=2003/02/19:23 \

--proto=6 --print-volume-stat --pass-destination=tcp-in.rw

| Recs| Packets| Bytes| Files|

Total| 515359| 2722887| 1343819719| 180|

Pass| 512071| 2706571| 1342851708| |

Fail| 3288| 16316| 968011| |

If you want to see the number of records in a file produced by rwfilter, or to remind yourself how a file was
created, use rwfileinfo(1):

$ rwfileinfo tcp-in.rw

tcp-in.rw:

format(id) FT_RWGENERIC(0x16)

version 16

byte-order littleEndian

compression(id) lzo1x(2)

header-length 208

record-length 52

record-version 5

silk-version 2.4.0

count-records 512071

file-size 8576160

command-lines

1 rwfilter --start-date=2003/02/19:00 --end-date=2003/02/19:23 \

--proto=6 --print-volume-stat --pass-destination=tcp-in.rw

Once a file is written, rwfilter can process the file again. Traffic on port 25 is most likely email (SMTP)
traffic. To split the email traffic from the other traffic, use:

$ rwfilter --aport=25 --pass=mail.rw --fail=not-mail.rw tcp-in.rw

This command puts traffic where the source or destination port was 25 into the file mail.rw, and all other
traffic into the file not-mail.rw. The --fail-destination is an effective way to reverse the sense of a test. For
example, to remove traffic on port 80 from the not-mail.rw file, run the command:

$ rwfilter --aport=80 --fail=not-mail-web.rw not-mail.rw

To verify that the not-mail-web.rw file does not contain any traffic on ports 25 or 80, you can use the
--print-statistics switch and see that 0 records pass:

$ rwfilter --aport=25,80 --print-stat not-mail-web.rw

Files 1. Read 54641. Pass 0. Fail 54641.

The file maintains a history of the commands that created it:

198 SiLK -3.23.1

The SiLK Reference Guide rwfilter(1)

$ rwfileinfo not-mail-web.rw

not-mail-web.rw:

format(id) FT_RWGENERIC(0x16)

version 16

byte-order littleEndian

compression(id) lzo1x(2)

header-length 364

record-length 52

record-version 5

silk-version 2.4.0

count-records 54641

file-size 762875

command-lines

1 rwfilter --start-date=2003/02/19:00 --end-date=2003/02/19:23 \

--proto=6 --print-volume-stat --pass-destination=tcp-in.rw

2 rwfilter --aport=25 --pass=mail.rw --fail=not-mail.rw \

tcp-in.rw

3 rwfilter --aport=80 --fail=not-mail-web.rw not-mail.rw

The following finds all outgoing traffic from February 19, 2003, going to an external email server. Traffic
going to a server contacts that server on its well-known port, and the flow record’s destination port should
hold that well-known port:

$ rwfilter --type=out --start-date=2003/02/19 --print-volume-stat \

--dport=25 --proto=6

To limit the result to completed connections, select flow records that contain at least three packets, use the
--packets switch with an open-ended range:

$ rwfilter --type=out --start-date=2003/02/19 --print-volume-stat \

--dport=25 --proto=6 --packets=3-

To limit the search to a particular internal CIDR block, 10.1.2.0/24, there are three different IP-partitioning
switches you can use. The final approach uses rwsetbuild(1) to create an IPset file from textual input.

$ rwfilter --type=out --start-date=2003/02/19 --print-volume-stat \

--dport=25 --proto=6 --packets=3- --scidr=10.1.2.0/24

$ rwfilter --type=out --start-date=2003/02/19 --print-volume-stat \

--dport=25 --proto=6 --packets=3- --saddress=10.1.2.x

$ echo "10.1.2.0/24" | rwsetbuild > my-set.set

$ rwfilter --type=out --start-date=2003/02/19 --print-volume-stat \

--dport=25 --proto=6 --packets=3- --sipset=my-set.set

rwfilter does not have to output its records to a file; instead, the output from rwfilter can be piped into
a another SiLK tool. You must still use the --pass-destination switch (or --fail-destination or --all-
destination switch), but by providing the argument of stdout or - to the switch you tell rwfilter to write
its output to the standard output.

For example, to get the IPs of the external email servers that the monitored network contacted, pipe the
rwfilter output into rwset(1), and tell rwset to store the destination addresses:

SiLK -3.23.1 199

rwfilter(1) The SiLK Reference Guide

$ rwfilter --type=out --start-date=2003/02/19 --dport=25 \

--proto=6 --packets=3- --scidr=10.1.2.0/24 --pass=stdout \

| rwset --dip-file=external-mail-servers.set

rwfilter can also pipe its output as input to another rwfilter command, which allows them to be chained
together. rwfilter does not read from the standard input by default; you must explicitly give stdin or - as
the stream to read:

$ rwfilter --type=out,outweb --start-date=2003/02/19 \

--scidr=10.1.2.0/24 --pass=stdout \

| rwfilter --proto=17 --pass=udp.rw --fail=stdout stdin \

| rwfilter --proto=6 --pass=stdout --fail=non-tcp-udp.rw stdin \

| rwfilter --aport=25 --pass=mail.rw --fail=stdout stdin \

| rwfilter --aport=80,443 --pass=web.rw \

--fail=tcp-non-web-mail.rw stdin

This chain of commands looks at outgoing traffic on February 19, 2003, originating from the internal net-block
10.1.2.0/24, creates the following files:

udp.rw

Outgoing UDP traffic

non-tcp-udp.rw

Outgoing traffic that is neither TCP nor UDP

mail.rw

Outgoing TCP traffic on port 25, most of which is probably email (SMTP). Since the query looks at
outgoing traffic and the --aport switch was used, this file represents email going from the internal
10.1.2.0/24 to external mail servers, and the responses from any internal mail servers that exist in the
10.1.2.0/24 net-block to external clients.

web.rw

Outgoing TCP traffic on ports 80 and 443, most of which is probably web traffic (HTTP,HTTPS). As
with the mail.rw file, this file represents queries to external web servers and responses from internal
web servers.

tcp-non-web-mail.rw

Outgoing TCP traffic other than that on ports 25, 80, and 443

Expert users can create even more complicated chains of rwfilter commands using named pipes.

ENVIRONMENT

SILK RWFILTER THREADS

The number of threads to use while reading input files or files selected from the data store.

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file or --python-
expr is specified, rwfilter must load the Python files that comprise the PySiLK module, such as
silk/ init .py. If this silk/ directory is located outside Python’s normal search path (for example,
in the SiLK installation tree), it may be necessary to set or modify the PYTHONPATH environment
variable to include the parent directory of silk/ so that Python can find the PySiLK module.

200 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

SILK PYTHON TRACEBACK

When set, Python plug-ins output traceback information on Python errors to the standard error.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that the --scc and
--dcc switches use. The value may be a complete path or a file relative to the SILK PATH. See the
FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file that the --stype
and --dtype switches use. The value may be a complete path or a file relative to the SILK PATH. See
the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. This value overrides the
compiled-in value, and rwfilter uses it unless the --data-rootdir switch is specified. In addition,
rwfilter may use this value when searching for the SiLK site configuration files. See the FILES section
for details.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwfilter may use this environment variable. See the FILES section for details.

TZ

When a SiLK installation is built to use the local timezone (to determine if this is the case, check the
Timezone support value in the output from rwfilter --version), the value of the TZ environment
variable determines the timezone in which rwfilter parses timestamps. If the TZ environment variable
is not set, the default timezone is used. Setting TZ to 0 or the empty string causes timestamps to be
parsed as UTC. The value of the TZ environment variable is ignored when the SiLK installation uses
utc. For system information on the TZ variable, see tzset(3) or environ(7).

SILK PLUGIN DEBUG

When set to 1, rwfilter prints status messages to the standard error as it attempts to find and open
each of its plug-ins.

SILK LOGSTATS

When set to a non-empty value, rwfilter treats the value as the path to an external program to
execute with information about this rwfilter invocation. If the value in SILK LOGSTATS does not
contain a slash or if it references a file that does not exist, is not a regular file, or is not executable,
the SILK LOGSTATS value is silently ignored. The arguments to the external program are:

SiLK-3.23.1 201

rwfilter(1) The SiLK Reference Guide

• The application name, i.e., rwfilter. Note that rwfilter is always used as this argument,
regardless of the name of the executable.

• The version number of this command line, currently v0001.

• The start time of this invocation, as seconds since the UNIX epoch.

• The end time of this invocation, as seconds since the UNIX epoch.

• The number of data files opened for reading.

• The number of records read.

• The number of records written.

• A variable number of arguments that are the complete command line used to invoke rwfilter,
including the name of the executable.

SILK LOGSTATS RWFILTER

If set, this environment variable overrides the value specified in SILK LOGSTATS.

SILK LOGSTATS DEBUG

If the environment variable is set to a non-empty value, rwfilter prints messages to the standard error
about the SILK LOGSTATS value being used and either the reason why the value cannot be used or
the arguments to the external program being executed.

FILES

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file required by the --stype and --dtype switches.

${SILK CONFIG FILE}

ROOT DIRECTORY/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided, where ROOT DIRECTORY/ is the directory rwfilter is using as the root of
the data repository.

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

202 SiLK-3.23.1

The SiLK Reference Guide rwfilter(1)

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the --scc and --dcc switches.

${SILK DATA ROOTDIR}/

/data/

Locations for the root directory of the data repository when the --data-rootdir switch is not specified.

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

/usr/local/lib/

Directories that rwfilter checks when attempting to load a plug-in.

NOTES

The ability to use @PATH in --class, --type, --flowtypes, and --sensors was added in SiLK 3.20.0.

As of SiLK 3.20.0, --types is an alias for --type.

The --sensors switch also accepts the names of groups defined in the silk.conf(5) file as of SiLK 3.21.0.

rwfilter is the most commonly used application in the suite. It provides access to the data files and performs
all the basic queries.

rwfilter supports a variety of I/O options - in addition to reading from the data store, rwfilter results can
be chained together with named pipes to output results to multiple files simultaneously. An introduction to
named pipes is outside the scope of this document, however.

Two often underused options are --dry-run and --print-statistics. --dry-run performs a sanity check
on the arguments and can be used, especially for complicated arguments, to check that the arguments
are acceptable. --print-statistics used without --pass-destination or --fail-destination simply prints
aggregate statistics to the standard error on a single line, and it can be used to do a quick pass through the
data to get aggregate counts before going in deeper into the phenomenon being investigated.

--print-filename can be used as a progress meter; during long jobs, it shows which file is currently being
read by rwfilter. --print-filename does not provide meaningful feedback with piped input.

Filters are applied in the order given on the command line. It is best to apply the biggest filters first.

The rwfilter command line is written into the header of the output file(s). You may use the rwfileinfo(1)
command to see this information.

SiLK-3.23.1 203

rwfilter(1) The SiLK Reference Guide

SEE ALSO

rwcut(1), rwfglob(1), rwfileinfo(1), rwset(1), rwtuc(1), rwsetbuild(1), rwsiteinfo(1), rw-
pmapbuild(1), addrtype(3), ccfilter(3), flowrate(3), ipafilter(3), pmapfilter(3), pysilk(3),
silkpython(3), silk-plugin(3), silk.conf(5), sensor.conf(5), silk(7), rwflowpack(8), yaf(1), appla-
bel(1), zlib(3), dlopen(3), tzset(3), environ(7), Analysts’ Handbook: Using SiLK for Network Traffic
Analysis

204 SiLK-3.23.1

The SiLK Reference Guide rwgeoip2ccmap(1)

rwgeoip2ccmap

Create a country code prefix map from a GeoIP Legacy file

SYNOPSIS

rwgeoip2ccmap [--input-path=PATH] [--output-path=PATH] [--dry-run]

[--mode={[auto] [ipv4|ipv6] [csv|binary] [geoip2|legacy]}]

[--fields=FIELDS] [--note-add=TEXT] [--note-file-add=FILENAME]

[--invocation-strip]

rwgeoip2ccmap --help

rwgeoip2ccmap --version

Legacy Synopsis

rwgeoip2ccmap {--csv-input | --v6-csv-input | --encoded-input}

[--input-file=PATH] [--output-file=PATH] [--dry-run]

[--note-add=TEXT] [--note-file-add=FILENAME]

[--invocation-strip]

DESCRIPTION

Prefix maps provide a way to map field values to string labels based on a user-defined map file. The
country code prefix map, typically named country codes.pmap, is a special prefix map that maps an IP
address to a two-letter country code as defined by ISO 3166 part 1. For additional information, see https:
//www.iso.org/iso-3166-country-codes.html and https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2.

rwgeoip2ccmap creates the country code prefix map by reading one of the country code database files
distributed by MaxMind(R) http://www.maxmind.com/. rwgeoip2ccmap supports these formats:

• GeoIP2 or GeoLite2 Country comma-separated value (CSV) files. Set --input-path to the name of the
directory containing the files GeoIP2-Country-Blocks-IPv4.csv, GeoIP2-Country-Blocks-IPv6.csv, and
GeoIP2-Country-Locations-en.csv (or the GeoLite2-*.csv versions of those files). Since SiLK 3.17.0.

• GeoIP2 or GeoLite2 Country binary file. Set --input-path to the GeoIP2-Country.mmdb of GeoLite2-
Country.mmdb file. Note: This requires that SiLK was compiled with support for the libmaxminddb
library. Since SiLK 3.17.0.

• GeoIP or GeoLite Legacy Country Code binary file, either IPv4 or IPv6. Set --input-path to
GeoIP.dat or GeoIPv6.dat. You may also pipe or redirect the file into rwgeoip2ccmap’s standard
input.

• GeoIP or GeoLite Legacy Country Code comma-separated value (CSV) file, either IPv4 or IPv6. Set
--input-path to GeoIPCountryWhois.csv or GeoIPv6.csv. You may also pipe or redirect the file into
rwgeoip2ccmap’s standard input.

The GeoIP2 and GeoLite2 files provide up to three GeoName codes for each network block, where the
GeoName may represent a country (and its continent) or only a continent.

SiLK-3.23.1 205

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://www.maxmind.com/

rwgeoip2ccmap(1) The SiLK Reference Guide

location

The country where the network is located.

registered

The country in which the ISP has registered the network.

represented

The country that is represented by users of the network (consider an overseas military base).

As of SiLK 3.17.2, the --fields switch allows you to select the order in which these values are checked.

See the EXAMPLES section below for the details on how to convert these files to a SiLK country-code prefix
map file.

The country code prefix map file is used to map IP addresses to country codes in various SiLK tools as
documented in the ccfilter(3) man page. As a brief overview, you may

• partition by an IP address’s country code in rwfilter(1)

• display an IP address’s country code in rwcut(1)

• sort by an IP address’s country code in rwsort(1)

• bin by an IP address’s country code in rwstats(1), rwuniq(1), and rwgroup(1).

Use rwpmapcat(1) with the --country-codes switch to print the contents of a country code prefix map.

The rwpmaplookup(1) command can use the country code mapping file to display the country code for
textual IP addresses.

To create a general prefix map file from textual input, use rwpmapbuild(1).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--mode==MODE OPTIONS

Specify the type of the input and whether rwgeoip2ccmap creates a prefix map containing IPv4
or IPv6 addresses. MODE OPTIONS is a comma-separated list of the following values. When not
specified, MODE OPTIONS defaults to auto. Since SiLK 3.12.0; changed in SiLK 3.17.0.

auto

Determine the type of the input based on the argument to --input-path, and determine the type
of prefix map to create based on the IP addresses that appear on the first line of input for a CSV
file or by the depth of the tree for a binary input file. This is the default mode.

ipv6

Create an IPv6 prefix map. When reading CSV input, the IPv4 addresses are mapped into the
::ffff:0:0/96 netblock. This value may not be combined with ipv4.

206 SiLK-3.23.1

The SiLK Reference Guide rwgeoip2ccmap(1)

ipv4

Create an IPv4 prefix map. When reading CSV input, the IPv6 addresses in the ::ffff:0:0/96
netblock are mapped to IPv4 addresses and all other IPv6 addresses are ignored. When reading
GeoIP2 binary data, the IPv6 addresses in the ::0:0/96 netblock are mapped to IPv4. This value
may not be combined with ipv6.

csv

Read textual input containing IP addresses in a comma separated value format. and create an
IPv4 prefix map. Any IPv6 addresses in the ::ffff:0:0/96 netblock are mapped to an IPv4 address
and all other IPv6 addresses are ignored. This value may not be combined with binary. Since
SiLK 3.17.0.

binary

Read a MaxMind binary country code database file in the GeoIP Legacy, GeoIP2, or GeoLite2 for-
mats. Support for the GeoIP2 formats requires that SiLK was built with libmaxminddb support.
This value may not be combined with csv.

geoip2

Expect the input to be the GeoIP2 or GeoLite2 country code formats (CSV or binary).
GeoIP2/GeoLite2 data may not be read from the standard input. The value may not be combined
with legacy. Since SiLK 3.17.0.

legacy

Expect the input to be the GeoIP Legacy country code format (CSV or binary). This mode is
enabled if the input is being read from the standard input. This value may not be combined with
geoip2. Since SiLK 3.17.0.

--input-path=PATH

Read the comma-separated value (CSV) or binary forms of the GeoIP2, GeoLite2, GeoIP Legacy, or
GeoLite Legacy country code database from PATH. For GeoIP2 data, the --input-path switch is
required, and it must either be the location of the GeoLite2-Country.mmdb file for binary data or
the directory containing the GeoLite2-Country-Blocks-IPv4.csv file for CSV data. rwgeoip2ccmap
supports reading GeoIP Legacy data (either binary or CSV) from the standard input. You may use
stdin or - to represent the standard input; when this switch is not provided, the input is read from
the standard input unless the standard input is a terminal. rwgeoip2ccmap reads read textual input
from the terminal if the standard input is explicitly specified as the input. (Added in SiLK 3.17.0 as
a replacement for --input-file.)

--output-path=PATH

Write the binary country code prefix map to PATH. You may use stdout or - to represent the standard
output. When this switch is not provided, the prefix map is written to the standard output unless the
standard output is connected to a terminal. (Added in SiLK 3.17.0 as a replacement for --output-file.)

--dry-run

Check the syntax of the input file and do not write the output file. Since SiLK 3.12.0.

--fields=FIELDS

Select which of the GeoName fields are used when processing a GeoIP2 or GeoLite2 file, given that
these files provide up to three GeoName values for each IP block, some GeoName values map to a
continent but not a specific country, and some blocks are flagged as being by an anonymizing proxy
or a satellite provider. (For details on the content of the files, see https://dev.maxmind.com/geoip/
geoip2/geoip2-city-country-csv-databases/.)

FIELDS is a comma-separated list of one or more of the following values. rwgeoip2ccmap checks
each value and stops when it finds one that is non-empty. If all are empty, no mapping is added for

SiLK-3.23.1 207

https://dev.maxmind.com/geoip/geoip2/geoip2-city-country-csv-databases/
https://dev.maxmind.com/geoip/geoip2/geoip2-city-country-csv-databases/

rwgeoip2ccmap(1) The SiLK Reference Guide

the IP block. When the switch not given, the default is ”location, registered, represented, continent,
flags”. Since SiLK 3.17.2.

The supported field values and their mapping to the fields in the GeoIP2 files are:

location

The country where the IP address block is located. (geoname id)

registered

The country in which the ISP has registered the IP address block. (registered country geoname id)

represented

The country that is represented by users of the IP address block (consider an overseas military
base). (represented country geoname id)

flags

Whether the IP is marked as being used by an anonymizing proxy or a satellite provider.
(is anonymous proxy, is satellite provider)

continent

For binary GeoIP2 files, the continent code. For CSV GeoIP2 files, if this appears before location,
registered, and represented, rwgeoip2ccmap uses the first of those fields that is non-empty
and maps to either a country or a continent. If this appears after those fields, rwgeoip2ccmap
uses the first non-empty field that maps to a country and only when none map to a country does
rwgeoip2ccmap check those fields for a continent code.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool. Since SiLK
3.12.0.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation. Since SiLK 3.12.0.

--invocation-strip

Do not record the command used to create the prefix map in the output. When this switch is not given,
the invocation is written to the file’s header, and the invocation may be viewed with rwfileinfo(1).
Since SiLK 3.12.0.

--help

Print the available options and exit.

--version

Print the version number and exit the application.

Deprecated Options

The following switches are deprecated.

--csv-input

Assume the input is the CSV GeoIP Legacy country code data for IPv4. Use --
mode=ipv4,csv,legacy as the replacement. Deprecated as of SiLK 3.12.0.

208 SiLK-3.23.1

The SiLK Reference Guide rwgeoip2ccmap(1)

--v6-csv-input

Assume the input is the CSV GeoIP Legacy country code data for IPv6. Use --
mode=ipv6,csv,legacy as the replacement. Deprecated as of SiLK 3.12.0.

--encoded-input

Assume the input is the specially-encoded binary form of the GeoIP Legacy country code data for
either IPv4 or IPv6. Use --mode=binary,legacy as the replacement. Deprecated as of SiLK 3.12.0.

--input-file=PATH

Read the input from PATH. An alias for --input-path. Added in SiLK 3.12.0; deprecated as of SiLK
3.17.0.

--output-file=PATH

Write the binary country code prefix map to PATH. An alias for --output-path. Added in SiLK
3.12.0; deprecated as of SiLK 3.17.0.

EXAMPLES

The following examples show how to create the country code prefix map file, country codes.pmap, from
various forms of input. Once you have created the country codes.pmap file, you should copy it to
/usr/local/share/silk/country codes.pmap so that the ccfilter(3) plug-in can find it. Alternatively, you
can set the SILK COUNTRY CODES environment variable to the location of the country codes.pmap file.

In these examples, the dollar sign ($) represents the shell prompt. Some input lines are split over multiple
lines in order to improve readability, and a backslash (\) is used to indicate such lines.

MaxMind GeoIP2 or GeoLite2 Comma Separated Values Files

Download the CSV version of the MaxMind GeoIP2 or GeoLite2 country database file, e.g., GeoLite2-
Country-CSV 20180327.zip. This archive is created with the zip(1) utility and contains a directory of
multiple files. Expand the archive with unzip(1):

$ unzip GeoLite2-Country-CSV_20180327.zip

Archive: GeoLite2-Country-CSV_20180327.zip

inflating: GeoLite2-Country-CSV_20180327/GeoLite2-Country-...

...

rwgeoip2ccmap uses three of those files:

GeoLite2-Country-Blocks-IPv4.csv

A mapping from IPv4 netblocks to a geoname ids.

GeoLite2-Country-Blocks-IPv6.csv

A mapping from IPv6 netblocks to a geoname ids.

GeoLite2-Country-Locations-en.csv

A mapping from geoname ids to continent and country.

Run rwgeoip2ccmap and set --input-path to the name of the directory.

$ rwgeoip2ccmap --input-path=GeoLite2-Country-CSV_20180327 \

--output-path=country_codes.pmap

SiLK-3.23.1 209

rwgeoip2ccmap(1) The SiLK Reference Guide

MaxMind GeoIP2 or GeoLite2 Binary File

Support for reading GeoIP2 binary files requires that rwgeoip2ccmap was compiled with support for the
libmaxminddb library.

Download the binary version of the MaxMind GeoIP2 or GeoLite2 country database file, e.g., GeoLite2-
Country 20180327.tar.gz. The file is a compressed (gzip(1)) tape archive (tar(1)). Most versions of the
tar program allow you to expand the archive using

$ tar zxf GeoLite2-Country_20180327.tar.gz

Older versions of tar may require you to invoke gzip yourself

$ gzip -d -c GeoLite2-Country_20180327.tar.gz \

| tar cf -

The result is a directory named GeoLite2-Country 20180327 or similar.

Run rwgeoip2ccmap and set --input-path to the name of theGeoLite2-Country.mmdb file in the directory.

$ rwgeoip2ccmap \

--input-path=GeoLite2-Country_20180327/GeoLite2-Country.mmdb \

--output-path=country_codes.pmap

MaxMind Legacy IPv4 Comma Separated Values File

Download the CSV version of the MaxMind GeoIP Legacy Country database for IPv4, GeoIPCoun-
tryCSV.zip. Running unzip -l on the zip file should show a single file, GeoIPCountryWhois.csv.) To
expand this file, use the unzip(1) utility.

$ unzip GeoIPCountryCSV.zip

Archive: GeoIPCountryCSV.zip

inflating: GeoIPCountryWhois.csv

Create the country codes.pmap file by running

$ rwgeoip2ccmap --input-path=GeoIPCountryWhois.csv \

--output-path=country_codes.pmap

You may avoid creating the GeoIPCountryWhois.csv file by using the -p option of unzip to pass the output
of unzip directly to rwgeoip2ccmap:

$ unzip -p GeoIPCountryCSV.zip \

| rwgeoip2ccmap --mode=ipv4 --output-path=country_codes.pmap

210 SiLK-3.23.1

The SiLK Reference Guide rwgeoip2ccmap(1)

MaxMind Legacy IPv6 Comma Separated Values File

If you download the IPv6 version of the MaxMind GeoIP Legacy Country database, use the following
command to create the country codes.pmap file:

$ gzip -d -c GeoIPv6.csv.gz \

| rwgeoip2ccmap --mode=ipv6 > country_codes.pmap

Since the GeoIPv6.csv.gz file only contains IPv6 addresses, the resulting country codes.pmap file will display
the unknown value (--) for any IPv4 address. See the next example for a solution.

MaxMind Legacy IPv6 and IPv4 Comma Separated Values Files

To create a country codes.pmap mapping file that supports both IPv4 and IPv6 addresses, download both
of the Legacy CSV files (GeoIPv6.csv.gz and GeoIPCountryCSV.zip) from MaxMind.

You need to uncompress both files and feed the result as a single stream to the standard input of rw-
geoip2ccmap. This can be done in a few commands:

$ gzip -d GeoIPv6.csv.gz

$ unzip GeoIPCountryCSV.zip

$ cat GeoIPv6.csv GeoIPCountryWhois.csv \

| rwgeoip2ccmap --mode=ipv6 > country_codes.pmap

Alternatively, if your shell supports it, you may be able to use a subshell to avoid having to store the
uncompressed data:

$ (gzip -d -c GeoIPv6.csv.gz ; unzip -p GeoIPCountryCSV.zip) \

| rwgeoip2ccmap --mode=ipv6 > country_codes.pmap

Printing the Contents of the Country Code Prefix Map

To print the contents of a file that rwgeoip2ccmap creates, use the rwpmapcat(1) command, and specify
the --country-codes switch:

$ rwpmapcat --country-codes=country_codes.pmap | head -5

ipBlock|value|

0.0.0.0/7| --|

2.0.0.0/14| --|

2.4.0.0/15| --|

2.6.0.0/17| --|

To reduce the number of lines in the output by combining CIDR blocks into IP ranges, use the --no-cidr-
blocks switch:

$ rwpmapcat --country-codes=country_codes.pmap --no-cidr-blocks \

| head -5

startIP| endIP|value|

0.0.0.0| 2.6.190.55| --|

SiLK-3.23.1 211

rwgeoip2ccmap(1) The SiLK Reference Guide

2.6.190.56| 2.6.190.63| gb|

2.6.190.64| 2.255.255.255| --|

3.0.0.0| 4.17.135.31| us|

To skip IP blocks that are unassigned and have the label --, use the --ignore-label switch:

$ rwpmapcat --country-codes=country_codes.pmap --ignore-label=-- \

| head -5

ipBlock|value|

2.6.190.56/29| gb|

3.0.0.0/8| us|

4.0.0.0/12| us|

4.16.0.0/16| us|

To print the contents of the default country code prefix map, specify --country-codes without an argument:

$ export SILK_COUNTRY_CODES=country_codes.pmap

$ rwpmapcat --country-codes --ignore-label=-- | head -5

ipBlock|value|

2.6.190.56/29| gb|

3.0.0.0/8| us|

4.0.0.0/12| us|

4.16.0.0/16| us|

If you print the output of rwgeoip2ccmap without using the --country-codes switch, the numerical values
are not decoded to characters and the output resembles the following:

$ rwpmapcat --no-cidr-blocks country_codes.pmap | head -5

startIP| endIP| value|

0.0.0.0| 2.6.190.55| 11565|

2.6.190.56| 2.6.190.63| 26466|

2.6.190.64| 2.255.255.255| 11565|

3.0.0.0| 4.17.135.31| 30067|

Getting the Country Code for a Specific IP Address

Use rwpmaplookup(1) to get the country code for specific IP address(es). Use the --no-files switch when
specific the IP addresses on the command line; otherwise rwpmaplookup treats its arguments as text files
containing IP addresses. The --country-code switch is required for the prefix map’s data to be interpreted
correctly. Give an argument to the switch for a specific file, or no argument to use the default country code
prefix map.

$ rwpmaplookup --country-codes=country_codes.pmap --no-files \

3.4.5.6 4.5.6.7

key|value|

3.4.5.6| us|

4.5.6.7| us|

212 SiLK -3.23.1

The SiLK Reference Guide rwgeoip2ccmap(1)

$ export SILK_COUNTRY_CODES=country_codes.pmap

$ cat ips.txt

3.4.5.6

4.5.6.7

$ rwpmaplookup --country-codes ips.txt

key|value|

3.4.5.6| us|

4.5.6.7| us|

Converting a Country Code Prefix Map to a Normal Map

The SiLK tools support using only a single country code mapping file. There may be occasions where you
want to use multiple country code mapping files; for example, to see changes in an IP block’s country over
time, or to build separate files for each of GeoIP2 fields (location, registered, represented). One way to do
this is loop through the files setting the SILK COUNTRY CODES environment variable to each filename
and running the SiLK commands. An alternative approach is to convert the country code mapping files to
ordinary prefix map files and leverage the SiLK tools’ support for using multiple prefix map files in a single
command.

To convert a country-code prefix map to an ordinary prefix map, use rwpmapcat(1) to print the contents of
the country code prefix map file as text, and then use rwpmapbuild(1) to convert the text to an ordinary
prefix map.

First, create a text file where you define a name for this prefix map, specify the mode (as either ipv4 or
ipv6), and specify the default value to be --:

$ cat /tmp/mymap.txt

map-name cc-old

mode ipv4

default --

$

Append the output of rwpmapcat to this file, using the space character as the delimiter.

$ rwpmapcat --no-title --delimited=’ ’ --ignore-label=-- \

--country-codes=country_codes.pmap \

>> /tmp/mymap.txt

$ head -5 /tmp/mymap.txt

map-name cc-old

mode ipv4

default --

2.6.190.56/29 gb

3.0.0.0/8 us

Use rwpmapbuild to create the prefix map and save it as cc-old.pmap:

$ rwpmapbuild --input-path=/tmp/mymap.txt --output-path=cc-old.pmap

Use rwfileinfo(1) to check the map-name for the prefix map file.

SiLK-3.23.1 213

rwgeoip2ccmap(1) The SiLK Reference Guide

$ rwfileinfo --fields=prefix-map cc-old.pmap

cc-old.pmap:

prefix-map v1: cc-old

Use rwpmapcat to view its contents:

$ rwpmapcat --ignore-label=-- --no-cidr-blocks cc-old.pmap | head -5

startIP| endIP|label|

2.6.190.56| 2.6.190.63| gb|

3.0.0.0| 4.17.135.31| us|

4.17.135.32| 4.17.135.63| ca|

4.17.135.64| 4.17.142.255| us|

You can use the --pmap-file switch of various SiLK tools to load and use the cc-old.pmap prefix map file
(see pmapfilter(3) for usage).

For example, suppose you have the file data.rw of SiLK Flow data:

$ rwcut --fields=sip,dip --ipv6-policy=ignore data.rw

sIP| dIP|

3.4.5.6| 4.5.6.7|

4.5.6.7| 3.4.5.6|

To map the source IP addresses in the file data.rw using the prefix map file (the src-cc-old field) and a
country code file (the scc field) with rwcut(1):

$ export SILK_COUNTRY_CODES=country_codes.pmap

$ rwcut --pmap-file cc-old.pmap --ipv6-policy=ignore \

--fields=sip,src-cc-old,scc data.rw

sIP|src-cc-old|scc|

3.4.5.6| us| us|

4.5.6.7| us| us|

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SEE ALSO

ccfilter(3), rwpmaplookup(1), rwfilter(1), rwcut(1), rwsort(1), rwstats(1), rwuniq(1), rw-
group(1), rwpmapbuild(1), rwfileinfo(1), pmapfilter(3), silk(7), gzip(1), zip(1), unzip(1), https://
dev.maxmind.com/geoip/geoip2/geolite2/, https://dev.maxmind.com/geoip/legacy/geolite/, https://www.
iso.org/iso-3166-country-codes.html, https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2

214 SiLK-3.23.1

https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/legacy/geolite/
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

The SiLK Reference Guide rwgeoip2ccmap(1)

NOTES

Support for GeoIP2 and GeoLite2 input files were added in SiLK 3.17.0.

Support for the binary form of the GeoIP Legacy format was removed in SiLK 3.12.0 and restored in SiLK
3.12.2.

MaxMind, GeoIP, and related trademarks are the trademarks of MaxMind, Inc.

SiLK-3.23.1 215

rwgroup(1) The SiLK Reference Guide

rwgroup

Tag similar SiLK records with a common next hop IP value

SYNOPSIS

rwgroup

{--id-fields=KEY | --delta-field=FIELD --delta-value=DELTA}

[--objective] [--summarize] [--rec-threshold=THRESHOLD]

[--group-offset=IP]

[--note-add=TEXT] [--note-file-add=FILE] [--output-path=PATH]

[--copy-input=PATH] [--compression-method=COMP_METHOD]

[--site-config-file=FILENAME]

[--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--python-file=PATH [--python-file=PATH ...]]

[--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[FILE]

rwgroup [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help

rwgroup [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help-fields

rwgroup --version

DESCRIPTION

rwgroup reads sorted SiLK Flow records (c.f. rwsort(1)) from the standard input or from a single file
name listed on the command line, marks records that form a group with an identifier in the Next Hop IP
field, and prints the binary SiLK Flow records to the standard output. In some ways rwgroup is similar to
rwuniq(1), but rwgroup writes SiLK flow records instead of textual output.

Two SiLK records are defined as being in the same group when the fields specified in the --id-fields switch
match exactly and when the field listed in the --delta-field matches within the value given by the --delta-
value switch. Either --id-fields or --delta-fields is required; both may be specified. A --delta-value must
be given when --delta-fields is present.

The first group of records gets the identifier 0, and rwgroup writes that value into each record’s Next Hop
IP field. The ID for each subsequent group is incremented by 1. The --group-offset switch may be used to
set the identifier of the initial group.

The --rec-threshold switch may be used to only write groups that contain a certain number of records.
The --summarize switch attempts to merge records in the same group to a single output record.

rwgroup requires that the records are sorted on the fields listed in the --id-fields and --delta-fields
switches. For example, a call using

rwgroup --id-field=2 --delta-field=9 --delta-value=3

should read the output of

216 SiLK -3.23.1

The SiLK Reference Guide rwgroup(1)

rwsort --field=2,9

otherwise the results are unpredictable.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

At least one value for --id-field or --delta-field must be provided; rwgroup terminates with an error if no
fields are specified.

--id-fields=KEY

KEY contains the list of flow attributes (a.k.a. fields or columns) that must match exactly for flows
to be considered part of the same group. Each field may be specified once only. KEY is a comma
separated list of field-names, field-integers, and ranges of field-integers; a range is specified by separating
the start and end of the range with a hyphen (-). Field-names are case insensitive. Example:

--id-fields=stime,10,1-5

There is no default value for the --id-fields switch.

The complete list of built-in fields that the SiLK tool suite supports follows, though note that not all
fields are present in all SiLK file formats; when a field is not present, its value is 0.

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

dPort,4

destination port for TCP and UDP, or equivalent

protocol,5

IP protocol

packets,pkts,6

packet count

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sTime,9

starting time of flow (seconds resolution)

duration,10

duration of flow (seconds resolution)

SiLK-3.23.1 217

rwgroup(1) The SiLK Reference Guide

eTime,11

end time of flow (seconds resolution)

sensor,12

name or ID of sensor at the collection point

class,20

class of sensor at the collection point

type,21

type of sensor at the collection point

iType

the ICMP type value for ICMP or ICMPv6 flows and zero for non-ICMP flows. Internally, SiLK
stores the ICMP type and code in the dPort field, so there is no need have both dPort and iType

or iCode in the sort key. This field was introduced in SiLK 3.8.1.

iCode

the ICMP code value for ICMP or ICMPv6 flows and zero for non-ICMP flows. See note at iType.

icmpTypeCode,25

equivalent to iType,iCode in --id-fields. This field may not be mixed with iType or iCode, and
this field is deprecated as of SiLK 3.8.1. As of SiLK 3.8.1, icmpTypeCode may no longer be used
as the argument to --delta-field; the dPort field will provide an equivalent result as long as the
input is limited to ICMP flow records.

Many SiLK file formats do not store the following fields and their values will always be 0; they are
listed here for completeness:

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

SiLK can store flows generated by enhanced collection software that provides more information than
NetFlow v5. These flows may support some or all of these additional fields; for flows without this
additional information, the field’s value is always 0.

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags over all packets except the first in the flow

attributes,28

flow attributes set by the flow generator:

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

T

flow generator prematurely created a record for a long-running connection due to a timeout.
(When the flow generator yaf(1) is run with the --silk switch, it will prematurely create a
flow and mark it with T if the byte count of the flow cannot be stored in a 32-bit value.)

218 SiLK-3.23.1

The SiLK Reference Guide rwgroup(1)

C

flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout (or a byte threshold in the case of yaf).

Consider a long-running ssh session that exceeds the flow generator’s active timeout. (This is the
active timeout since the flow generator creates a flow for a connection that still has activity). The
flow generator will create multiple flow records for this ssh session, each spanning some portion of
the total session. The first flow record will be marked with a T indicating that it hit the timeout.
The second through next-to-last records will be marked with TC indicating that this flow both
timed out and is a continuation of a flow that timed out. The final flow will be marked with a C,
indicating that it was created as a continuation of an active flow.

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf, will inspect the contents of the packets that make up a flow and use traffic signatures
to label the content of the flow. SiLK calls this label the application; yaf refers to it as the
appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

The following fields provide a way to label the IPs or ports on a record. These fields require external
files to provide the mapping from the IP or port to the label:

sType,16

categorize the source IP address as non-routable, internal, or external and group based on the
category. Uses the mapping file specified by the SILK ADDRESS TYPES environment variable,
or the address types.pmap mapping file, as described in addrtype(3).

dType,17

as sType for the destination IP address

scc,18

the country code of the source IP address. Uses the mapping file specified by the
SILK COUNTRY CODES environment variable, or the country codes.pmap mapping file, as de-
scribed in ccfilter(3).

dcc,19

as scc for the destination IP

src-map-name

label contained in the prefix map file associated with map-name. If the prefix map is for IP
addresses, the label is that associated with the source IP address. If the prefix map is for pro-
tocol/port pairs, the label is that associated with the protocol and source port. See also the
description of the --pmap-file switch below and the pmapfilter(3) manual page.

dst-map-name

as src-map-name for the destination IP address or the protocol and destination port.

sval

as src-map-name when no map-name is associated with the prefix map file

dval

as dst-map-name when no map-name is associated with the prefix map file

Finally, the list of built-in fields may be augmented by the run-time loading of PySiLK code or plug-ins
written in C (also called shared object files or dynamic libraries), as described by the --python-file
and --plugin switches.

SiLK-3.23.1 219

rwgroup(1) The SiLK Reference Guide

--delta-field=FIELD

Specify a single field that can differ by a specified delta-value among the SiLK records that make up
a group. The FIELD identifiers include most of those specified for --id-fields. The exceptions are
that plug-in fields are not supported, nor are fields that do not have numeric values (e.g., class, type,
flags). The most common value for this switch is stime, which allows records that are identical in
the id-fields but temporally far apart to be in different groups. The switch takes a single argument;
multiple delta fields cannot be specified. When this switch is specified, the --delta-value switch is
required.

--delta-value=DELTA VALUE

Specify the acceptable difference between the values of the --delta-field. The --delta-value switch
is required when the --delta-field switch is provided. For fields other than those holding IPs, when
two consecutive records have values less than or equal to DELTA VALUE, the records are considered
members of the same group. When the delta-field refers to an IP field, DELTA VALUE is the number
of least significant bits of the IPs to remove before comparing them. For example, when --delta-
field=sIP --delta-value=8 is specified, two records are the same group if their source IPv4 addresses
belong to the same /24 or if their source IPv6 addresses belong to the same /120. The --objective
switch affects the meaning of this switch.

--objective

Change the behavior of the --delta-value switch so that a record is considered part of a group if the
value of its --delta-field is within the DELTA VALUE of the first record in the group. (When this
switch is not specified, consecutive records are compared.)

--summarize

Cause rwgroup to print (typically) a single record for each group. By default, all records in each
group having at least --rec-threshold members is printed. When --summarize is active, the record
that is written for the group is the first record in the group with the following modifications:

• The packets and bytes values are the sum of the packets and bytes values, respectively, for all
records in the group.

• The start-time value is the earliest start time for the records in the group.

• The end-time value is the latest end time for the records in the group.

• The flags and session-flags values are the bitwise-OR of all flags and session-flags values, respec-
tively, for the records in the group.

Note that multiple records for a group may be printed if the bytes, packets, or elapsed time values are
too large to be stored in a SiLK flow record.

--plugin=PLUGIN

Augment the list of fields by using run-time loading of the plug-in (shared object) whose path is
PLUGIN. The switch may be repeated to load multiple plug-ins. The creation of plug-ins is described
in the silk-plugin(3) manual page. When PLUGIN does not contain a slash (/), rwgroup will
attempt to find a file named PLUGIN in the directories listed in the FILES section. If rwgroup finds
the file, it uses that path. If PLUGIN contains a slash or if rwgroup does not find the file, rwgroup
relies on your operating system’s dlopen(3) call to find the file. When the SILK PLUGIN DEBUG
environment variable is non-empty, rwgroup prints status messages to the standard error as it attempts
to find and open each of its plug-ins.

--rec-threshold=THRESHOLD

Specify the minimum number of SiLK records a group must contain before the records in the group
are written to the output stream. The default is 1; i.e., write all records. The maximum threshold is
65535.

220 SiLK-3.23.1

The SiLK Reference Guide rwgroup(1)

--group-offset=IP

Specify the value to write into the Next Hop IP for the records that comprise the first group. The
value IP may be an integer, or an IPv4 or IPv6 address in the canonical presentation form. If not
specified, counting begins at 0. The value for each subsequent group is incremented by 1.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwgroup’s output to a different location.

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwgroup exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwgroup to exit with an error.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

SiLK-3.23.1 221

rwgroup(1) The SiLK Reference Guide

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwgroup searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit. Specifying switches that add new fields or additional switches
before --help will allow the output to include descriptions of those fields or switches.

--help-fields

Print the description and alias(es) of each field and exit. Specifying switches that add new fields before
--help-fields will allow the output to include descriptions of those fields.

--version

Print the version number and information about how SiLK was configured, then exit the application.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the prefix map file located at PATH and create fields named src-map-name and dst-map-name
where map-name is either the MAPNAME part of the argument or the map-name specified when the
file was created (see rwpmapbuild(1)). If no map-name is available, rwgroup names the fields sval
and dval. Specify PATH as - or stdin to read from the standard input. The switch may be repeated
to load multiple prefix map files, but each prefix map must use a unique map-name. The --pmap-file
switch(es) must precede the --fields switch. See also pmapfilter(3).

--python-file=PATH

When the SiLK Python plug-in is used, rwgroup reads the Python code from the file PATH to define
additional fields that can be used as part of the group key. This file should call register field() for
each field it wishes to define. For details and examples, see the silkpython(3) and pysilk(3) manual
pages.

LIMITATIONS

rwgroup requires sorted data. The application works by comparing records in the order that the records
are received (similar to the UNIX uniq(1) command), odd orders will produce odd groupings.

EXAMPLES

In the following example, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

As a rule of thumb, the --id-fields and --delta-field parameters should match rwsort(1)’s call, with --
delta-field being the last parameter. A call to group all web traffic by queries from the same addresses
(field=2) within 10 seconds (field=9) of the first query from that address will be:

222 SiLK -3.23.1

The SiLK Reference Guide rwgroup(1)

$ rwfilter --proto=6 --dport=80 --pass=stdout \

| rwsort --field=2,9 \

| rwgroup --id-field=2 --delta-field=9 --delta-value=10 \

--objective

ENVIRONMENT

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file is specified,
rwgroup must load the Python files that comprise the PySiLK package, such as silk/ init .py. If
this silk/ directory is located outside Python’s normal search path (for example, in the SiLK installation
tree), it may be necessary to set or modify the PYTHONPATH environment variable to include the
parent directory of silk/ so that Python can find the PySiLK module.

SILK PYTHON TRACEBACK

When set, Python plug-ins will output traceback information on Python errors to the standard error.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwgroup uses
when computing the scc and dcc fields. The value may be a complete path or a file relative to the
SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file that rwgroup uses
when computing the sType and dType fields. The value may be a complete path or a file relative to
the SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwgroup may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwgroup may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, rwgroup prints status messages to the standard error as it attempts to find and open
each of its plug-ins. In addition, when an attempt to register a field fails, rwgroup prints a message
specifying the additional function(s) that must be defined to register the field in rwgroup. Be aware
that the output can be rather verbose.

SiLK-3.23.1 223

rwgroup(1) The SiLK Reference Guide

FILES

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file required by the sType and dType fields.

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the scc and dcc fields.

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

/usr/local/lib/

Directories that rwgroup checks when attempting to load a plug-in.

SEE ALSO

rwfilter(1), rwfileinfo(1), rwsort(1), rwuniq(1), rwpmapbuild(1), addrtype(3), ccfilter(3),
pmapfilter(3), pysilk(3), silkpython(3), silk-plugin(3), sensor.conf(5), uniq(1), silk(7), yaf(1),
dlopen(3), zlib(3)

224 SiLK-3.23.1

The SiLK Reference Guide rwidsquery(1)

rwidsquery

Invoke rwfilter to find flows matching Snort signatures

SYNOPSIS

rwidsquery --intype=INPUT_TYPE

[--output-file=OUTPUT_FILE]

[--start-date=YYYY/MM/DD[:HH] [--end-date=YYYY/MM/DD[:HH]]]

[--year=YEAR] [--tolerance=SECONDS]

[--config-file=CONFIG_FILE]

[--mask=PREDICATE_LIST]

[--verbose] [--dry-run]

[INPUT_FILE | -]

[-- EXTRA_RWFILTER_ARGS...]

rwidsquery --help

rwidsquery --version

DESCRIPTION

rwidsquery facilitates selection of SiLK flow records that correspond to Snort IDS alerts and signatures.
rwidsquery takes as input either a snort(8) alert log or rule file, analyzes the alert or rule contents, and
invokes rwfilter(1) with the appropriate arguments to retrieve flow records that match attributes of the
input file. rwidsquery will process the Snort rules or alerts from a single file named on the command
line; if no file name is given, rwidsquery will attempt to read the Snort rules or alerts from the standard
input, unless the standard input is connected to a terminal. An input file name of - or stdin will force
rwidsquery to read from the standard input, even when the standard input is a terminal.

OPTIONS

In addition to the options listed below, you can pass extra options through to rwfilter(1) on the rwidsquery
command line. The syntax for doing so is to place a double-hyphen (--) sequence after all valid rwidsquery
options, and before all of the options you wish to pass through to rwfilter.

--intype=INPUT TYPE

Specify the type of input contained in the input file. This switch is required. Two alert formats and
one rule format are currently supported. Valid values for this option are:

fast

Input is a Snort ”fast” log file entry. Alerts are written in this format when Snort is configured
with the snort fast output module enabled. snort fast alerts resemble the following:

Jan 1 01:23:45 hostname snort[1976]: [1:1416:11] ...

full

Input is a Snort ”full” log file entry. Alerts are written in this format when Snort is configured
with the snort full output module enabled. snort full alerts look like the following example:

SiLK-3.23.1 225

rwidsquery(1) The SiLK Reference Guide

[**] [116:151:1] (snort decoder) Bad Traffic ...

rule

Input is a Snort rule (signature). For example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any ...

--output-file=OUTPUT FILE

Specify the output file that flows will be written to. If not specified, the default is to write to stdout.
The argument to this option becomes the argument to rwfilter’s --pass-destination switch.

--start-date=YYYY/MM/DD[:HH]

--end-date=YYYY/MM/DD[:HH]

Used in conjunction with rule file input only. The date predicates indicate which time to start and end
the search. See the rwfilter(1) manual page for details of the date format.

--year=YEAR

Used in conjunction with alert file input only. Timestamps in Snort alert files do not contain year
information. By default, the current calendar year is used, but this option can be used to override this
default behavior.

--tolerance=SECONDS

Used in conjunction with alert file input only. This option is provided to compensate for timing
differences between the timestamps in Snort alerts and the start/end time of the corresponding flows.
The default --tolerance value is 3600 seconds, which means that flow records +/- one hour from the
alert timestamp will be searched.

--config-file=CONFIG FILE

Used in conjunction with rule file input only. Snort requires a configuration file which, among other
things, contains variables that can be used in Snort rule definitions. This option allows you to specify
the location of this configuration file so that IP addresses, port numbers, and other information from
the snort configuration file can be used to find matching flows.

--mask=PREDICATE LIST

Exclude the rwfilter predicates named in PREDICATE LIST from the selection criteria. This option
is provided to widen the scope of queries by making them more general than the Snort rule or alert
provided. For instance, --mask=dport will return flows with any destination port, not just those which
match the input Snort alert or rule.

--verbose

Print the resulting rwfilter(1) command to the standard error prior to executing it.

--dry-run

Print the resulting rwfilter(1) command to the standard error but do not execute it.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

226 SiLK-3.23.1

The SiLK Reference Guide rwidsquery(1)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To find SiLK flows matching a Snort alert in snort fast format:

$ rwidsquery --intype fast --year 2007 --tolerance 300 alert.fast.txt

For the following Snort alert:

Nov 15 00:00:58 hostname snort[5214]: [1:1416:11]

SNMP broadcast trap [Classification: Attempted Information Leak]

[Priority: 2]: {TCP}

192.168.0.1:4161 -> 127.0.0.1:139

The resulting rwfilter(1) command would look similar to:

$ rwfilter --start-date=2007/11/14:23 --end-date=2007/11/15:00 \

--stime=2007/11/14:23:55:58-2007/11/15:00:05:58 \

--saddress=192.168.0.1 --sport=4161 --daddress=127.0.0.1 \

--dport=139 --protocol=6 --pass=stdout

If you want to find flows matching the same criteria, except you want UDP flows instead of TCP flows, use
the following syntax:

$ rwidsquery --intype fast --year 2007 --tolerance 300 \

--mask protocol alert.fast.txt -- --protocol=17

which would yield the following rwfilter command line:

$ rwfilter --start-date=2007/11/14:23 --end-date=2007/11/15:00 \

--stime=2007/11/14:23:55:58-2007/11/15:00:05:58 \

--saddress=192.168.0.1 --sport=4161 --daddress=127.0.0.1 \

--dport=139 --protocol=17 --pass=stdout

To find SiLK flows matching a Snort rule:

$ rwidsquery --intype rule --start 2008/02/20:00 --end 2008/02/20:02 \

--config /opt/local/etc/snort/snort.conf --verbose rule.txt

For the following Snort rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any

(msg:"ICMP Parameter Problem Bad Length"; icode:2; itype:12;

classtype:misc-activity; sid:425; rev:6;)

The resulting rwfilter(1) command would look similar to:

SiLK -3.23.1 227

rwidsquery(1) The SiLK Reference Guide

$ rwfilter --start-date=2008/02/20:00 --end-date=2008/02/20:02 \

--stime=2008/02/20:00-2008/02/20:02 \

--sipset=/tmp/tmpeKIPn2.set --icmp-code=2 --icmp-type=12 \

--pass=stdout

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the location for the site configuration file, silk.conf. When this
environment variable is not set, rwfilter searches for the site configuration file in the locations specified
in the FILES section.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository for rwfilter. This value
overrides the compiled-in value. In addition, rwfilter may use this value when searching for the SiLK
site configuration files. See the FILES section for details.

SILK RWFILTER THREADS

The number of threads rwfilter uses when reading files from the data store.

SILK PATH

This environment variable gives the root of the install tree. When searching for the site configuration
file, rwfilter may use this environment variable. See the FILES section for details.

RWFILTER

Complete path to the rwfilter program. If not set, rwidsquery attempts to find rwfilter on your
PATH.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file---for report types that use rwfilter.

SEE ALSO

rwfilter(1), silk(7), snort(8)

228 SiLK-3.23.1

The SiLK Reference Guide rwip2cc(1)

rwip2cc

Maps IP addresses to country codes

SYNOPSIS

rwip2cc { --address=IP_ADDRESS | --input-file=FILE }

[--map-file=PMAP_FILE] [--print-ips={0,1}]

[{--integer-ips | --zero-pad-ips}] [--no-columns]

[--column-separator=CHAR] [--no-final-delimiter]

[{--delimited | --delimited=CHAR}]

[--output-path=PATH] [--pager=PAGER_PROG]

rwip2cc --help

rwip2cc --version

DESCRIPTION

As of SiLK 3.0, rwip2cc is deprecated, and it will be removed in the SiLK 4.0 release. Use rw-
pmaplookup(1) instead---the EXAMPLES section shows how to use rwpmaplookup to get output similar
to that produced by rwip2cc.

rwip2cc maps from (textual) IP address to two letter country code. Either the --address or --input-file
switch is required.

The --address switch looks up the country code of a single IP address and prints the country code to the
standard output.

The --input-file switch reads data from the specified file (use stdin or - to read from the standard input)
and prints, to the standard output, the country code for each IP it sees. Blank lines in the input are ignored;
comments, which begin at the # character and extend to the end of line, are also ignored. Each line that is
not a blank or a comment should contain an IP address or a CIDR block; rwip2cc will complain if the line
cannot be parsed. Note that for CIDR blocks, the CIDR block is exploded into its constituent IP addresses
and the country code for each IP address is printed.

The --print-ips switch controls whether the IP is printed with its country code. When --print-ips=1 is
specified, the output contains two columns: the IP and the country-code. When --print-ips=0 is specified,
only the country code is given. The default behavior is to print the IP whenever the --input-file switch is
provided, and not print the IP when --address is given.

You can tell rwip2cc to use a specific country code prefix map file by giving the location of that file to the --
map-file switch. The country code prefix map file is created with the rwgeoip2ccmap(1) command. When
--map-file is not specified, rwip2cc attempts to use the default country code mapping file, as specified in
the FILES section below.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

SiLK-3.23.1 229

rwip2cc(1) The SiLK Reference Guide

--address=IP ADDRESS

Print to the standard output the country code for the single IP ADDRESS.

--input-file=FILE

Print the IP and country code for each IP address in FILE ; use stdin to read from the standard input.

--map-file=PMAP FILE

Use the designated country code prefix mapping file instead of the default.

--print-ips={0|1}
Controls whether the IP is printed. When the value is 1, the output contains two columns: the IP
and the country-code. When the value is 0, only the country code is given. When this switch is
not specified, the default behavior is to print the IPs only when input comes from a file (i.e., when
--input-file is specified).

--integer-ips

Enable printing of IPs and print the IPs as integers. By default, IP addresses are printed in their
canonical form.

--zero-pad-ips

Enable printing of IPs and print the IP addresses in their canonical form, but add zeros to the IP address
so it fully fills the width of column. For IPv4, use three digits per octet, e.g, 127.000.000.001.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwip2cc exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
option is not given, the output is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When the --input-file switch is specified and output is to a terminal, invoke the program
PAGER PROG to view the output one screen full at a time. This switch overrides the SILK PAGER
environment variable, which in turn overrides the PAGER variable. If the --output-path switch is
given or if the value of the pager is determined to be the empty string, no paging is performed and all
output is written to the terminal.

230 SiLK-3.23.1

The SiLK Reference Guide rwip2cc(1)

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

The following examples demonstrate the use of rwip2cc. In addition, each example shows how to get similar
output using rwpmaplookup(1).

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Single address specified on the command line

Print the country code for a single address using the default country code map. By default, only the value
is printed when the address is specified on the command line.

$ rwip2cc --address=10.0.0.0

--

Use the --print-ips switch to print the address and the country.

$ rwip2cc --print-ip=1 --address=10.0.0.0

10.0.0.0|--|

rwpmaplookup expects the input to come from a file, so use the --no-files switch to tell rwpmaplookup
that the command line arguments are the addresses to print. By default, rwpmaplookup prints a title line,
and each row contains the key and the value.

$ rwpmaplookup --country-code --no-files 10.0.0.0

key|value|

10.0.0.0| --|

Use rwpmaplookup’s command line switches to exactly mimic the default output from rwip2cc:

$ rwpmaplookup --country-code --fields=value --delimited --no-title \

--no-files 10.0.0.0

--

Single address using a different country code file

Print the country code for a single address specified on the command line using an older version of the
country code mapping file.

SiLK -3.23.1 231

rwip2cc(1) The SiLK Reference Guide

$ rwip2cc --map-file=old-addresses.pmap --address=128.2.0.0

us

$ rwpmaplookup --country-code=old-address-map.pmap --no-files 128.2.0.0

key|value|

128.2.0.0| us|

Addresses read from the standard input

Using the default country code map, print the country code for multiple addresses read from the standard
input. When the --input-file switch is given, the default output includes the address.

$ echo ’10.0.0.0/31’ | rwip2cc --input-file=stdin

10.0.0.0|--|

10.0.0.1|--|

You can use the --print-ips switch to suppress the IPs.

$ echo ’10.0.0.0/31’ | rwip2cc --print-ips=0 --input-file=stdin

--

--

Unlike rwip2cc, rwpmaplookup does not accept CIDR blocks as input. Use the IPset tools rwsetbuild(1)
to parse the CIDR block list and rwsetcat(1) to print the list.

$ echo ’10.0.0.0/31’ | rwsetbuild | rwsetcat --cidr=0 \

| rwpmaplookup --country-code

key|value|

10.0.0.0| --|

10.0.0.1| --|

Addresses read from a file

Using an older version of the country code map, print the country code for multiple addresses read from a
file.

$ export SILK_COUNTRY_CODES=old-addresses.pmap

$ cat file.txt

128.2.1.1

128.2.2.2

$ rwip2cc --input-file=file.txt

128.2.1.1|us|

128.2.2.2|us|

$ rwpmaplookup --no-title --country-code file.txt

128.2.1.1| us|

128.2.2.2| us|

232 SiLK-3.23.1

The SiLK Reference Guide rwip2cc(1)

ENVIRONMENT

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwip2cc will
use. The value may be a complete path or a file relative to SILK PATH. If the variable is not specified,
the code looks for a file named country codes.pmap as specified in the FILES section below.

SILK PATH

This environment variable gives the root of the install tree. As part of its search for the Country Code
mapping file, rwip2cc checks the directories $SILK PATH/share/silk and $SILK PATH/share for a
file named country codes.pmap.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PAGER

When set to a non-empty string, rwip2cc automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwip2cc does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwip2cc automatically invokes this program to display its
output a screen at a time.

FILES

rwip2cc will look for the prefix map file that maps IPs to country codes in the following locations.
($SILK COUNTRY CODES is the value of the SILK COUNTRY CODES environment variable, if it is
set. $SILK PATH is value of the SILK PATH environment variable, if it is set. The use of /usr/local/
assumes the application is installed in the /usr/local/bin/ directory.)

$SILK_COUNTRY_CODES

$SILK_PATH/share/silk/country_codes.pmap

$SILK_PATH/share/country_codes.pmap

/usr/local/share/silk/country_codes.pmap

/usr/local/share/country_codes.pmap

SEE ALSO

rwpmaplookup(1), rwgeoip2ccmap(1), rwsetbuild(1), rwsetcat(1), silk(7)

SiLK-3.23.1 233

rwipaexport(1) The SiLK Reference Guide

rwipaexport

Export IPA datasets to SiLK binary data files

SYNOPSIS

rwipaexport --catalog=CATALOG [--time=TIME] [--prefix-map-name=NAME]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD] OUTPUT_FILE

rwipaexport --help

rwipaexport --version

DESCRIPTION

rwipaexport exports data from an IPA (IP Association, http://tools.netsa.cert.org/ipa/) data store to a
SiLK IPset, Bag, or prefix map file, depending on the type of the stored IPA catalog. For catalogs with time
information (e.g. time period at which the stored data is considered valid) data can be selected for a specific
time of interest.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--catalog=CATALOG NAME

Specifies the name of the IPA catalog to export from.

--time=TIME

This argument allows you to export a dataset that was active at TIME. The expected format of this
option is YYYY/MM/DD[:HH[:MM[:SS]]]. A dataset will only be returned if TIME falls between the
start and end time for the dataset. If this option is not specified, the current time will be used. See the
TIME RANGES section of ipaimport(1) for more information about how time ranges are used in
IPA.

--prefix-map-name=NAME

When creating a prefix map file, add NAME to the header of the file as the map-name. When this
switch is not specified, no map-name is written to the file. If the output is not a prefix map file, the
--prefix-map-file switch is ignored.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

234 SiLK-3.23.1

http://tools.netsa.cert.org/ipa/

The SiLK Reference Guide rwipaexport(1)

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To export the badhosts IPset from an IPA set catalog into the file badhosts.set where there is no time
information:

$ rwipaexport --catalog=badhosts badhosts.set

SiLK-3.23.1 235

rwipaexport(1) The SiLK Reference Guide

To export the flowcount Bag from an IPA bag catalog into the file flowcount-20070415.bag where there is
time information:

$ rwipaexport --catalog=flowcount --time=2007/04/15 \

flowcount-20070415.bag

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK PATH

This environment variable gives the root of the directory tree where the tools are installed. When
searching for the silk-ipa.conf configuration file, rwipaexport may use this environment variable. See
the FILES section for details.

FILES

$SILK PATH/share/silk/silk-ipa.conf

$SILK PATH/share/silk-ipa.conf

/usr/local/share/silk/silk-ipa.conf

/usr/local/share/silk-ipa.conf

Possible locations for the IPA configuration file. This file contains the URI for connecting to the IPA
database. If the configuration file does not exist, rwipaexport will exit with an error. The format of
this URI is driver ://user :pass-word@hostname/database. For example:

postgresql://ipauser:secret@database-server.domain.com/ipa

SEE ALSO

rwipaimport(1), rwfileinfo(1), ipafilter(3), silk(7), ipaimport(1), ipaexport(1), ipaquery(1),
zlib(3)

236 SiLK-3.23.1

The SiLK Reference Guide rwipaimport(1)

rwipaimport

Import SiLK IP collections into an IPA catalog

SYNOPSIS

rwipaimport --catalog=CATALOG [--description=DESCRIPTION]

[--start-time=START_TIME] [--end-time=END_TIME] INPUT_FILE

rwipaimport --help

rwipaimport --version

DESCRIPTION

rwipaimport reads a SiLK IPset, Bag, or Prefix Map file and imports its contents into an IPA (IP As-
sociation, http://tools.netsa.cert.org/ipa/) catalog. An IPA catalog is a collection of sets, bags, and prefix
maps which can have an optional time period associated with them defining when that particular collection
of data is considered valid.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--catalog=CATALOG NAME

Specifies the name of the IPA catalog to import into. If the catalog does not already exist in the IPA
data store, it will be created. This option is required.

--description=DESCRIPTION

An optional text description of the catalog’s contents. This description will be stored in the database
and will be visible when querying available catalogs with the ipaquery tool. The description will only
be added to new catalogs; if you import a dataset into an existing catalog, this option is ignored.

--start-time=START TIME

Specifies the beginning of the time range for which the imported data is valid. The expected format
of this option is either a timestamp in YYYY/MM/DD[:HH[:MM[:SS]]] format, or ... (three dots)
to indicate the time range is left-unbounded. For more information about this argument, refer to the
TIME RANGES section of ipaimport(1).

--end-time=END TIME

Specifies the end of the time range for which the imported data is valid. The expected format of
this option is either a timestamp in YYYY/MM/DD[:HH[:MM[:SS]]] format, or ... (three dots) to
indicate the time range is right-unbounded. For more information about this argument, refer to the
TIME RANGES section of ipaimport(1).

--help

Print the available options and exit.

SiLK-3.23.1 237

http://tools.netsa.cert.org/ipa/

rwipaimport(1) The SiLK Reference Guide

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To import the IPset file test-april.set into a new catalog with the name testset and a short description,
with data valid for only the month of April, 2007:

$ rwipaimport --catalog=testset --desc="Test set catalog" \

--start=2007/04/01 --end=2007/05/01 \

test-april.set

To import the Bag file test.bag into a new catalog named testbag with data valid for all dates and times
(the ... literally means the characters ...):

$ rwipaimport --catalog=testbag --start=... --end=... test.bag

ENVIRONMENT

SILK PATH

This environment variable gives the root of the directory tree where the tools are installed. When
searching for the silk-ipa.conf configuration file, rwipaimport may use this environment variable. See
the FILES section for details.

FILES

$SILK PATH/share/silk/silk-ipa.conf

$SILK PATH/share/silk-ipa.conf

/usr/local/share/silk/silk-ipa.conf

/usr/local/share/silk-ipa.conf

Possible locations for the IPA configuration file. This file contains the URI for connecting to the IPA
database. If the configuration file does not exist, rwipaimport will exit with an error. The format of
this URI is driver ://user :pass-word@hostname/database. For example:

postgresql://ipauser:secret@database-server.domain.com/ipa

SEE ALSO

rwipaexport(1), ipafilter(3), silk(7), ipaimport(1), ipaexport(1), ipaquery(1)

238 SiLK-3.23.1

The SiLK Reference Guide rwipfix2silk(1)

rwipfix2silk

Convert IPFIX records to SiLK Flow records

SYNOPSIS

rwipfix2silk [--silk-output=PATH] [--print-statistics]

[--interface-values={snmp | vlan}]

[--log-destination={stdout | stderr | none | PATH}]

[--log-flags=FLAGS] [--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD]

{[--xargs] | [--xargs=FILENAME] | [IPFIXFILE [IPFIXFILE...]]}

rwipfix2silk --help

rwipfix2silk --version

DESCRIPTION

rwipfix2silk reads IPFIX (Internet Protocol Flow Information eXport) records from files or from the stan-
dard input, converts the records to the SiLK Flow format, and writes the SiLK records to the path specified
by --silk-output or to the standard output when stdout is not the terminal and --silk-output is not
provided.

rwipfix2silk reads IPFIX records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. When the --xargs switch is provided, rwipfix2silk reads the
names of the files to process from the named text file or from the standard input if no file name argument
is provided to the switch. The input to --xargs must contain one file name per line.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--silk-output=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwipfix2silk exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwipfix2silk to exit with an error.

--print-statistics

Print, to the standard error, the number of records that were written to the SiLK output file. See also
--log-destination.

SiLK-3.23.1 239

rwipfix2silk(1) The SiLK Reference Guide

--interface-values={snmp | vlan}
Specify which IPFIX fields should be stored in the input and output fields of the generated SiLK
Flow records. If this switch is not specified, the default is snmp. The choices are:

snmp

Store the indexes of the network interface cards where the flows entered and left the router. That
is, store the ingressInterface in input and the egressInterface in output.

vlan

Store the VLAN identifiers for the source and destination networks. That is, store vlanId in
input and postVlanId in output. If only one VLAN ID is available, input is set to that value
and output is set to 0.

--log-destination={none | stdout | stderr | PATH}
Write more detailed information to the specified destination. The default destination is none which
suppresses messages. Use stdout or stderr to send messages to the standard output or standard
error, respectively. Any other value is treated as a file name in which to write the messages. When an
existing file is specified, rwipfix2silk appends any messages to the file. Information that is written
includes the following:

• For each input stream, the number of forward and reverse IPFIX records read and number of
records ignored.

• Messages about invalid records.

• When the SILK IPFIX PRINT TEMPLATES environment variable is set to 1, the IPFIX tem-
plates that were read.

• Additional messages enabled by the --log-flags switch.

--log-flags=FLAGS

Write additional messages regarding the IPFIX data to the --log-destination, where FLAGS is a
comma-separated list of names specifying the type messages to write. When this switch is not specified,
the default value for FLAGS is none. This switch takes the same values as the log-flags setting in the
sensor.conf(5) file. This manual page documents the values that are relevant for IPFIX data. Since
SiLK 3.10.2.

all

Log everything.

default

Enable the default set of log-flags used by sensor.conf : sampling. Despite the name, this is not
the default setting for this switch; none is.

none

Log nothing. It is an error to combine this log-flag name with any other. This is the default
setting for --log-flags.

record-timestamps

Log the timestamps that appear on each record. This produces a lot of output, and it is primarily
used for debugging.

sampling

Write messages constructed by parsing the IPFIX Options Templates that specify the sampling
algorithm (when samplingAlgorithm and samplingInterval IEs are present) or flow sampler mode
(when flowSamplerMode and flowSamplerRandomInterval IEs are present).

240 SiLK-3.23.1

The SiLK Reference Guide rwipfix2silk(1)

show-templates

Write messages to the log describing each IPFIX template that is read. The message contains
embedded new lines, with the template ID and domain on the first line, and each of the template’s
elements on the following lines. Each element is described by its name, its IE number with the
private enterprise number if any, and its length in the template. The format is that described in
Section 10.2 of RFC7013. Since SiLK 3.19.0.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwipfix2silk opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

SiLK-3.23.1 241

rwipfix2silk(1) The SiLK Reference Guide

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To convert a packet capture (pcap(3)) file, packets.pcap, such as that produced by tcpdump(1), to the
SiLK format, use the yaf(1) tool (see http://tools.netsa.cert.org/yaf/) to convert the capture data to IPFIX
and rwipfix2silk to convert the IPFIX data to the SiLK format, storing the records in silk.rw :

$ yaf --silk --in packets.pcap --out - \

| rwipfix2silk --silk-output=silk.rw

Note that you can produce the same result using the rwp2yaf2silk(1) wrapper script:

$ rwp2yaf2silk --in packets.pcap --out silk.rw

You can use rwsilk2ipfix(1) to convert the SiLK file back to an IPFIX format, storing the result in ipfix.dat :

$ rwsilk2ipfix --silk-output=silk.rw ipfix.dat

If you want to create flow records that contain a single packet (similar to the output of rwptoflow(1)),
specify --idle-timeout=0 on the yaf command line:

$ yaf --silk --in packets.pcap --out - --idle-timeout=0 \

| rwipfix2silk --silk-output=silk.rw

To have yaf decode VLAN identifiers for 802.1Q packets and to have rwipfix2silk store the VLAN IDs in
the input and output fields of the SiLK Flow records, use:

$ yaf --silk --in packets.pcap --out - \

| rwipfix2silk --silk-output=silk.rw --interface-values=vlan

Note: yaf releases prior to 1.3 would only export the VLAN identifiers when the --mac switch was provided
on the command line.

ENVIRONMENT

SILK IPFIX PRINT TEMPLATES

When set to 1, rwipfix2silk adds show-templates to the --log-flags switch. See the description of
that switch for additional information.

242 SiLK-3.23.1

http://tools.netsa.cert.org/yaf/

The SiLK Reference Guide rwipfix2silk(1)

SILK LIBFIXBUF SUPPRESS WARNINGS

When set to 1, rwipfix2silk disables all warning messages generated by libfixbuf. These warning
messages include out-of-sequence packets, data records not having a corresponding template, record
count discrepancies, and issues decoding list elements. Since SiLK 3.10.0.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SEE ALSO

rwsilk2ipfix(1), rwfileinfo(1), rwp2yaf2silk(1), rwptoflow(1), sensor.conf(5), silk(7), yaf(1), tcp-
dump(1), pcap(3), zlib(3)

SiLK-3.23.1 243

rwmatch(1) The SiLK Reference Guide

rwmatch

Match SiLK records from two streams into a common stream

SYNOPSIS

rwmatch --relate=FIELD_PAIR [--relate=FIELD_PAIR ...]

[--time-delta=DELTA] [--symmetric-delta]

[{ --absolute-delta | --relative-delta | --infinite-delta }]

[--unmatched={q|r|b}]

[--note-add=TEXT] [--note-file-add=FILE]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[--compression-method=COMP_METHOD]

[--site-config-file=FILENAME]

QUERY_FILE RESPONSE_FILE OUTPUT_FILE

rwmatch --help

rwmatch --help-relate

rwmatch --version

DESCRIPTION

rwmatch provides a facility for relating (or matching) SiLK Flow records contained in two sorted input
files, labeling those flow records, and writing the records to an output file.

The two input files are called QUERY FILE and RESPONSE FILE, respectively. The purpose of rwmatch
is to find a record in QUERY FILE that represents some network stimulus that caused a reply which
is represented by a record in RESPONSE FILE. When rwmatch discovers this relationship, it assigns a
numeric ID to the match, searches both input files for additional records that are part of the same event,
stores the numeric ID in each matching record’s next hop IP field, and writes all records that are part of
that event to OUTPUT FILE.

When the --symmetric-delta switch is specified, rwmatch also checks for a stimulus in RESPONSE FILE
that triggered a reply in QUERY FILE. This is useful when matching flows where either side may have
initiated the conversation.

The input files must be sorted as described in Sorting the input below. To use the standard input in place
of one of the input streams, specify stdin or - in its place.

The criteria for defining a match are given by one of more uses of the --relate switch and by the timestamps
on the flow records:

• Each use of --relate on the command line takes two comma-separated SiLK Flow record fields as its
argument. These two fields form a FIELD PAIR in the form QUERY FIELD,RESPONSE FIELD. For
a match to exist, the value of QUERY FIELD on a record read from QUERY FILE must be identical
to the value of RESPONSE FIELD on a record read from RESPONSE FILE, and that must be true
for all FIELD PAIRs.

244 SiLK-3.23.1

The SiLK Reference Guide rwmatch(1)

• By default, the start-time of the record from the RESPONSE FILE must begin within a time window
determined by the start- and end-times of the record read from the QUERY FILE. The end-time is
extended by specifying the DELTA number of seconds as the argument to the --time-delta switch.
Thus

query_rec.sTime <= response_rec.sTime <= query_rec.eTime + DELTA

When the --symmetric-delta switch is provided, records also match if the start-time of the query
record begins within the time window determined by the start- and end-times of the response record,
plus any value specified by --time-delta. That is:

response_rec.sTime <= query_rec.sTime <= response_rec.eTime + DELTA

The --time-delta switch allows for a delay in the response. Although responses usually occur within
a second of the query, delays of several seconds are not uncommon due to combinations of host and
network processing delays. The DELTA value can also compensate for timing errors between multiple
sensors.

Once rwmatch establishes a match between records in the two input files, it searches for additional records
from both input files to add to the match.

To do this, rwmatch denotes one of the records that comprise the initial match pair as a base record. When
possible, the base record is the record with the earlier start time. In the case of a tie, the base is determined
by ports for TCP and UDP with the base being that with the lower port if one is above 1024 and the other
below 1024. If that also fails, the base record is the record read from QUERY FILE. With millisecond time
resolution, ties should be rare.

To determine whether a match exists between the base record and a candidate record, rwmatch uses the
FIELD PAIRs specified by --relate. When the base record and the candidate record were read from the
same file, only one side of each FIELD PAIR is used.

In addition to the records having identical values for each field in FIELD PAIRs, the candidate record must
be within a time window determined by the --time-delta switch and the --absolute-delta, --relative-
delta, and --infinite-delta switches.

• When --infinite-delta is specified, there is no time window and only the values specified by the
FIELD PAIRs are checked.

• Specifying --absolute-delta requires each candidate record to start within the time window set by
the start- and end-times of the base record (plus any DELTA), similar to the rule used to establish the
match.

• If --relative-delta is specified, the end of the time window is initially set to DELTA seconds after
the end-time of the base record. As records from either input file are added to the match, the end of
the time window is set to DELTA seconds beyond the maximum end-time seen on any record in the
match.

• When none of the above are explicitly specified, rwmatch uses the rules of --absolute-delta.

Because long-lived sessions are often broken into multiple flows, rwmatch may discard records that are part
of a long-lived session. The --relative-delta switch may compensate for this if the gap between flows is
less that the time specified in the --time-delta switch. The --infinite-delta will compensate for arbitrarily
long gaps, but it may add records to a match that are not part of a true session. DNS flows that use port
53/udp as both a service and reply port are an example.

SiLK-3.23.1 245

rwmatch(1) The SiLK Reference Guide

When rwmatch establishes a match, it increments the match ID, with the first match having a match ID
of 1. To label the records that comprise the match, rwmatch uses a 32-bit number where the lower 24-bits
hold the match ID and the upper 8-bits is set to 0 or 255 to indicate whether the record was read from
QUERY FILE or RESPONSE FILE, respectively. rwmatch stores this 32-bit number in the next hop IP
field of the records. If the record is IPv6, rwmatch maps the number into the ::ffff:0:0/96 netblock before
modifying setting the next hop IP. Apart from the change to the next hop IP field, the query and response
records are not modified.

By default, only matched records are written to the OUTPUT FILE and any record that could not be
determined to be part of a match is discarded.

Specifying the --unmatched switch tells rwmatch to write unmatched query and/or response records to
OUTPUT FILE. The required parameter is one of q, r, or b to write the query records, the response records,
or both to OUTPUT FILE. Unmatched query records have their next hop IP set to 0.0.0.0, and unmatched
response records have their next hop IP set to 255.0.0.0.

Sorting the input

As rwmatch reads QUERY FILE and RESPONSE FILE, it expects the SiLK Flow records to appear in a
particular order that is best achieved by using rwsort(1). In particular:

• The records in QUERY FILE must appear in ascending order where the key is the first value in each
of the --relate FIELD PAIRs in the order in which the --relate switches appear and by the start time
of the flow.

• Likewise for the records in RESPONSE FILE, except the second value in each FIELD PAIRs is used.

When rwmatch processes the following command

$ rwmatch --relate=1,2 --relate=2,1 --relate=5,5 Q.rw R.rw out.rw

it assumes the file1.rw and file2.rw were created by

$ rwsort --fields=1,2,5,stime --output=Q.rw input1.rw

$ rwsort --fields=2,1,5,stime --output=R.rw input2.rw

If the files source ips.s.rw and dest ips.s.rw are created by the following commands:

$ rwsort --field=1,9 source_ips.rw > source_ips.s.rw

$ rwsort --field=2,9 dest_ips.rw > dest_ips.s.rw

The following call to rwmatch works correctly:

$ rwmatch --relate=1,2 source_ips.s.rw dest_ips.s.rw matched.rw

Note that the following command produces very few matches since source ips.s.rw was sorted on field 1 and
dest ips.s.rw was sorted on field 2.

$ rwmatch --relate=2,1 source_ips.s.rw dest_ips.s.rw stdout

246 SiLK -3.23.1

The SiLK Reference Guide rwmatch(1)

The recommended sort ordering for TCP and UDP is shown below. This correctly handles multiple flows
occurring during the same time interval which involve multiple ports:

$ rwsort --fields=1,4,2,3,5,stime incoming.rw > incoming-query.rw

$ rwsort --fields=2,3,1,4,5,stime outgoing.rw > outgoing-response.rw

The corresponding rwmatch command is:

$ rwmatch --relate=1,2 --relate=4,3 --relate=2,1 --relate=3,4 \

--relate=5,5 incoming-query.rw outgoing-response.rw matched.rw

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--relate=FIELD PAIR

Specify a pair of fields where the value of these fields in two records must be identical for the records
to be considered part of a match. The first field is for records from QUERY FILE and the second for
records from RESPONSE FILE. At least one FIELD PAIR must be provided; up to 128 FIELD PAIRs
may be provided. The FIELD PAIR must contain two field names or field IDs separated by a comma,
such as --relate=dip,sip or --relate=proto,proto.

Each FIELD PAIR is unidirectional; specifying --relate=sip,dip matches records where the query
record’s source IP matches the response record’s destination IP, but does not imply any relationship
between the response’s source IP and query’s destination IP. To match symmetric flow records between
hosts, specify:

--relate=sip,dip --relate=dip,sip

When using a port-based protocol (e.g., TCP or UDP), refine the match further by specifying the
ports:

--relate=2,1 --relate=1,2 --relate=3,4 --relate=4,3

Matching becomes more specific as more fields are added. Since rwmatch discards unmatched records,
a highly specific match (such as the last one specified above) generates more matches (resulting in higher
match IDs), but may result in fewer total flows due to certain records being unmatched.

The available fields are listed here. For a better description of some of these fields, see the rwcut(1)
manual page.

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

SiLK-3.23.1 247

rwmatch(1) The SiLK Reference Guide

dPort,4

destination port for TCP and UDP, or equivalent

protocol,5

IP protocol

packets,pkts,6

packet count

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sensor,12

name or ID of sensor at the collection point

class,20

class of sensor at the collection point

type,21

type of sensor at the collection point

iType

the ICMP type value for ICMP or ICMPv6 flows and empty for non-ICMP flows. This field was
introduced in SiLK 3.8.1.

iCode

the ICMP code value for ICMP or ICMPv6 flows and empty for non-ICMP flows. See note at
iType.

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags over all packets except the first in the flow

attributes,28

flow attributes set by the flow generator

application,29

guess as to the content of the flow

--time-delta=DELTA

Specify the number of seconds by which a response record may start after a query record has ended.
DELTA may contain fractional seconds to millisecond precision; for example, 0.500 represents a 500
millisecond delay. Responses match queries if

query.sTime <= response.sTime <= query.eTime + DELTA

When --time-delta is not specified, DELTA defaults to 0 and the response must begin before the
query ends.

248 SiLK -3.23.1

The SiLK Reference Guide rwmatch(1)

--symmetric-delta

Allow matching of flows where the RESPONSE FILE contains the initial flow. In this case, a query
record matches a response record when

response.sTime <= query.sTime <= response.eTime + DELTA

--absolute-delta

When adding additional records to an established match, only include candidate flows that start less
than DELTA seconds after the end of the initial flow. This is the default behavior. This switch is
incompatible with --relative-delta and --infinite-delta.

--relative-delta

When adding additional records to an established match, include candidate flows that start within
DELTA seconds of the greatest end time for all records in the current match. This switch is incompatible
with --absolute-delta and --infinite-delta.

--infinite-delta

When adding additional records to an established match, include candidate records based on the
FIELD PAIRS alone, ignoring time. This switch is incompatible with --absolute-delta and --
relative-delta.

--unmatched=q|r|b
Write unmatched query and/or response records to OUTPUT FILE. The parameter determines
whether the query records, the response records, or both are written to OUTPUT FILE. Unmatched
query records have their next hop IPv4 address set to 0.0.0.0, and unmatched response records have
their next hop IPv4 address set to 255.0.0.0. When the b value is used, OUTPUT FILE contains a
complete merge of QUERY FILE and RESPONSE FILE.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains.

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

SiLK-3.23.1 249

rwmatch(1) The SiLK Reference Guide

mix

Process the input as a mixture of IPv4 and IPv6 flow records. Should rwmatch need to compare
an IPv4 and IPv6 address, it maps the IPv4 address into the ::ffff:0:0/96 netblock.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Process only flow records that are marked as IPv6 and ignore IPv4 flow records in the input.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwmatch searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--help-relate

Print the description and aliases of each field that may be used as arguments to the --relate switch
and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

250 SiLK-3.23.1

The SiLK Reference Guide rwmatch(1)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Matching TCP Flows

rwmatch is a generalized matching tool; the most basic function provided by rwmatch is the ability to
match both sides of a TCP connection. Given incoming and outgoing web traffic in two files web in.rw and
web out.rw, the following sequence of commands will generate a file, web-sessions.rw consisting of matched
sessions for every complete web session in web in.rw and web out.rw :

$ rwsort --field=1,2,3,4,stime web_in.rw > web_in-s.rw

$ rwsort --field=2,1,4,3,stime web_out.rw > web_out-s.rw

$ rwmatch --relate=1,2 --relate=2,1 --relate=3,4 --relate=4,3 \

web_in-s.rw web_out-s.rw web-sessions.rw

Finding Responses to a Scan

Because rwmatch can match fields arbitrarily, you can also match records across different protocols. Suppose
there are two SiLK Flow files, indata.rw and outdata.rw, that contain the incoming and outgoing data,
respectively, for a particular time period.

To trace responses to a scan attempt, we start by identifying a specific horizontal scan. In this example, we
use an SMTP scan on TCP port 25. Assume that we have an IPset file, smtp-scanners.set, that contains
the external IP addresses that scanned us port port 25. (Perhaps this file was obtained by using rwscan(1)
and rwscanquery(1).)

First, use rwfilter(1) to find the flow records matching these scan attempts in the incoming data file. Sort
the output of rwfilter by source IP, source port, destination IP, destination port, and time, and store the
results in smtp-scans.rw :

$ rwfilter --proto=6 --sip-set=smtp-scanners.set --dport=25 \

--pass=- indata.rw \

| rwsort --field=sip,sport,dip,dport,stime > smtp-scans.rw

We can identify hosts that responded to the scan (we consider a accepting the TCP connection as a response)
by finding potential replies in the outgoing data file, sorting them, and storing the results in scan-response.rw.
For this command on the outgoing data, note that we must swap source and destination from the values
used for the incoming data:

$ rwfilter --proto=6 --dip-set=smtp-scanners.set --sport=25 \

--pass=- outdata.rw \

| rwsort --field=dip,dport,sip,sport,stime > scan-response.rw

We can now match the flow records to produce the file matched-scans.rw :

$ rwmatch --relate=1,2 --relate=3,4 --relate=2,1 --relate=4,3 \

smtp-scans.rw scan-response.rw matched-scans.rw

SiLK-3.23.1 251

rwmatch(1) The SiLK Reference Guide

The results file, matched-scans.rw, will contain all the exchanges between the scanning hosts and the re-
sponders on port 25. Examination of these flows may show evidence of buffer overflows, data exfiltration, or
similar attacks.

Next, we want to identify responses to the scan that were produced by our routers, such as ICMP destination
unreachable messages.

Use rwfilter to find the ICMP messages going to the scanning hosts, sort the flow records, and store the
results in icmp.rw :

$ rwfilter --proto=1 --icmp-type=3 --pass=stdout outdata.rw \

| rwsort --field=dip,stime > icmp.rw

Run rwmatch and match exclusively on the IP address.

$ rwmatch --relate=2,1 icmp.rw smtp-scans.rw result.rw

The resulting file, result.rw will consist of single packet flows (from smtp-scans.rw) with an ICMP response
(from icmp.rw).

Similar queries can be used to identify other multiple-protocol phenomena, such as the results of a tracer-
oute.

Displaying the Results

These examples assume matched.rw is an output file produced by rwmatch.

When using rwcut(1) to display the records in matched.rw, you may specify the next hop IP field (nhIP)
to see the match identifier:

$ rwcut --num-rec=8 --fields=sip,sport,dip,dport,type,nhip matched.rw

sIP|sPort| dIP|dPort| type| nhIP|

10.4.52.235|29631|192.168.233.171| 80| inweb| 0.0.0.1|

192.168.233.171| 80| 10.4.52.235|29631| outweb| 255.0.0.1|

10.9.77.117|29906| 192.168.184.65| 80| inweb| 0.0.0.2|

192.168.184.65| 80| 10.9.77.117|29906| outweb| 255.0.0.2|

10.14.110.214|29989| 192.168.249.96| 80| inweb| 0.0.0.3|

192.168.249.96| 80| 10.14.110.214|29989| outweb| 255.0.0.3|

10.18.66.79|29660| 192.168.254.69| 80| inweb| 0.0.0.4|

192.168.254.69| 80| 10.18.66.79|29660| outweb| 255.0.0.4|

The first record is a query from the external host 10.4.52.235 to the web server on the internal host
192.168.233.171, and the second record is the web server’s response. The third and fourth records rep-
resent another query/response pair.

The cutmatch(3) plug-in is an alternate way to display the match parameter that rwmatch writes into
the next hop IP field. The cutmatch plug-in defines a match field that displays the direction of the flow
(-> represents a query and <- a response) and the match ID. To use the plug-in, you must explicit load it
into rwcut by specifying the --plugin switch. You can then add match to the list of --fields to print:

$ rwcut --plugin=cutmatch.so --num-rec=8 \

--fields=sip,sport,match,dip,dport,type matched.rw

252 SiLK -3.23.1

The SiLK Reference Guide rwmatch(1)

sIP|sPort| <->Match#| dIP|dPort| type|

10.4.52.235|29631|-> 1|192.168.233.171| 80| inweb|

192.168.233.171| 80|<- 1| 10.4.52.235|29631| outweb|

10.9.77.117|29906|-> 2| 192.168.184.65| 80| inweb|

192.168.184.65| 80|<- 2| 10.9.77.117|29906| outweb|

10.14.110.214|29989|-> 3| 192.168.249.96| 80| inweb|

192.168.249.96| 80|<- 3| 10.14.110.214|29989| outweb|

10.18.66.79|29660|-> 4| 192.168.254.69| 80| inweb|

192.168.254.69| 80|<- 4| 10.18.66.79|29660| outweb|

Using the sIP and dIP fields is confusing when the file you are examining contains both incoming and
outgoing flow records. To make the output from rwmatch more clear, use the int-ext-fields(3) plug-in as
well. That plug-in allows you to display the external IPs in one column and the internal IPs in a another
column. See its manual page for additional information.

$ export INCOMING_FLOWTYPES=all/in,all/inweb

$ export OUTGOING_FLOWTYPES=all/out,all/outweb

$ rwcut --plugin=cutmatch.so --plugin=int-ext-fields.so --num-rec=8 \

--fields=ext-ip,ext-port,match,int-ip,int-port,proto matched.rw

ext-ip|ext-p| <->Match#| int-ip|int-p| type|

10.4.52.235|29631|-> 1|192.168.233.171| 80| inweb|

10.4.52.235|29631|<- 1|192.168.233.171| 80| outweb|

10.9.77.117|29906|-> 2| 192.168.184.65| 80| inweb|

10.9.77.117|29906|<- 2| 192.168.184.65| 80| outweb|

10.14.110.214|29989|-> 3| 192.168.249.96| 80| inweb|

10.14.110.214|29989|<- 3| 192.168.249.96| 80| outweb|

10.18.66.79|29660|-> 4| 192.168.254.69| 80| inweb|

10.18.66.79|29660|<- 4| 192.168.254.69| 80| outweb|

ENVIRONMENT

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwmatch may use this environment variable when searching for the SiLK site configuration
file.

SiLK-3.23.1 253

rwmatch(1) The SiLK Reference Guide

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwmatch may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfilter(1), rwsort(1), rwcut(1), rwfileinfo(1), rwscan(1), rwscanquery(1), cutmatch(3), int-ext-
fields(3), sensor.conf(5), silk(7), zlib(3)

NOTES

SiLK 3.9.0 expanded the set of fields accepted by the --relate switch and added support for IPv6 flow
records.

254 SiLK-3.23.1

The SiLK Reference Guide rwnetmask(1)

rwnetmask

Zero out lower bits of IP addresses in SiLK Flow records

SYNOPSIS

rwnetmask [--4sip-prefix-length=N] [--6sip-prefix-length=N]

[--4dip-prefix-length=N] [--6dip-prefix-length=N]

[--4nhip-prefix-length=N] [--6nhip-prefix-length=N]

[--sip-prefix-length=N] [--dip-prefix-length=N]

[--nhip-prefix-length=N] [--output-path=PATH]

[--print-filenames] [--ipv6-policy=POLICY]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwnetmask --help

rwnetmask --version

DESCRIPTION

rwnetmask reads SiLK Flow records, sets the prefix of the source IP, destination IP, and/or next hop IP to
the specified value(s) by masking the least significant bits of the address(es), and writes the modified SiLK
Flow records to the specified output path. Modifying the IP addresses allows one to group IPs into arbitrary
CIDR blocks. Multiple prefix-lengths may be specified; at least one must be specified.

When SiLK is compiled with IPv6 support, a separate mask can be specified for IPv4 and IPv6 addresses.
Records are processed using the IP-version in which they are read. The --ipv6-policy switch can be used
to force the records into a particular IP-version or to ignore records of a particular IP-version.

rwnetmask reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it
is read. When the --xargs switch is provided, rwnetmask reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

When no output path is specified and the standard output is not connected to a terminal, rwnetmask
writes the records to the standard output.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

One of these switches must be provided:

--4sip-prefix-length=N

SiLK-3.23.1 255

rwnetmask(1) The SiLK Reference Guide

--sip-prefix-length=N

For IPv4 addresses, specify the number of most significant bits of the source address to keep. The
default is to not mask off any bits (i.e., N=32).

--4dip-prefix-length=N

--dip-prefix-length=N

For IPv4 addresses, specify the number of most significant bits of the destination address to keep. The
default is to not mask off any bits (i.e., N=32).

--4nhip-prefix-length=N

--nhip-prefix-length=N

For IPv4 addresses, specify the number of most significant bits of the next-hop address to keep. The
default is to not mask off any bits (i.e., N=32).

--6sip-prefix-length=N

For IPv6 addresses, specify the number of most significant bits of the source address to keep. The
default is to not mask off any bits (i.e., N=128).

--6dip-prefix-length=N

For IPv6 addresses, specify the number of most significant bits of the destination address to keep. The
default is to not mask off any bits (i.e., N=128).

--6nhip-prefix-length=N

For IPv6 addresses, specify the number of most significant bits of the next-hop address to keep. The
default is to not mask off any bits (i.e., N=128).

These switches are optional:

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output to
the standard output. If PATH names an existing file, rwrwnetmask exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwrwnetmask to exit with an error.

--print-filenames

Print to the standard error the names of the input files as the files are opened.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains. Only records
marked as IPv4 will be processed.

256 SiLK-3.23.1

The SiLK Reference Guide rwnetmask(1)

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flows.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Process only flow records that are marked as IPv6 and ignore IPv4 flow records in the input.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwnetmask searches for the site configuration file in the locations specified in the FILES section.

SiLK-3.23.1 257

rwnetmask(1) The SiLK Reference Guide

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwnetmask opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following example, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To summarize the TCP traffic from your network to each /24 on the Internet, use:

$ rwfilter --type=out,outweb --proto=6 --pass=stdout \

| rwnetmask --dip-prefix-length 24 \

| rwaddrcount --use-dest --sort --print-rec

IP Address| Bytes|Packets|Records| Start Time|...

10.10.35.0| 2345| 52| 6|01/15/2003 19:30:31|

10.23.3.0| 118| 2| 1|01/16/2003 19:38:40|

10.23.4.0| 20858| 263| 16|01/16/2003 16:54:25|

10.31.49.0|266920| 3885| 1092|01/11/2003 02:04:11|

10.126.7.0| 36912| 260| 9|01/16/2003 17:03:28|

....

ENVIRONMENT

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

258 SiLK-3.23.1

The SiLK Reference Guide rwnetmask(1)

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwnetmask may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwnetmask may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfileinfo(1), silk(7), zlib(3)

SiLK-3.23.1 259

rwp2yaf2silk(1) The SiLK Reference Guide

rwp2yaf2silk

Convert PCAP data to SiLK Flow Records with YAF

SYNOPSIS

rwp2yaf2silk --in=INPUT_SPEC --out=FILE [--dry-run]

[--yaf-program=YAF] [--yaf-args=’ARG1 ARG2’]

[--rwipfix2silk-program=RWIPFIX2SILK]

[--rwipfix2silk-args=’ARG1 ARG2’]

rwp2yaf2silk --help

rwp2yaf2silk --man

rwp2yaf2silk --version

DESCRIPTION

rwp2yaf2silk is a script to convert a pcap(3) file, such as that produced by tcpdump(1), to a single file
of SiLK Flow records. The script assumes that the yaf(1) and rwipfix2silk(1) commands are available on
your system.

The --in and --out switches are required. Note that the --in switch is processed by yaf, and the --out
switch is processed by rwipfix2silk.

For information on reading live pcap data and using rwflowpack(8) to store that data in hourly files, see
the SiLK Installation Handbook.

Normally yaf groups multiple packets into flow records. You can almost force yaf to create a flow record
for every packet so that its output is similar to that of rwptoflow(1): When you give yaf the --idle-
timeout=0 switch, yaf creates a flow record for every complete packet and for each packet that it is able
to completely reassemble from packet fragments. Any fragmented packets that yaf cannot reassemble are
dropped.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--in=INPUT SPEC

Read the pcap records from INPUT SPEC. Often INPUT SPEC is the name of the pcap file to read
or the string string - or stdin to read from standard input. To process multiple pcap files, create
a text file that lists the names of the pcap files. Specify the text file as INPUT SPEC and use
--yaf-args=--caplist to tell yaf the INPUT SPEC contains the names of pcap files.

--out=FILE

Write the SiLK Flow records to FILE. The string stdout or - may be used for the standard output,
as long as it is not connected to a terminal.

260 SiLK-3.23.1

The SiLK Reference Guide rwp2yaf2silk(1)

--dry-run

Do not invoke any commands, just print the commands that would be invoked.

--yaf-program=YAF

Use YAF as the location of the yaf program. When not specified, rwp2yaf2silk assumes there is a
program yaf on your $PATH.

--yaf-args=ARGS

Pass the additional ARGS to the yaf program.

--rwipfix2silk-program=RWIPFIX2SILK

Use RWIPFIX2SILK as the location of the rwipfix2silk program. When not specified, rwp2yaf2silk
assumes there is a program rwipfix2silk on your $PATH.

--rwipfix2silk-args=ARGS

Pass the additional ARGS to the rwipfix2silk program.

--help

Display a brief usage message and exit.

--man

Display full documentation for rwp2yaf2silk and exit.

--version

Print the version number and exit the application.

SEE ALSO

yaf(1), rwipfix2silk(1), rwflowpack(8), rwptoflow(1), silk(7), tcpdump(1), pcap(3), SiLK Instal-
lation Handbook

SiLK-3.23.1 261

rwpcut(1) The SiLK Reference Guide

rwpcut

Outputs a tcpdump dump file as ASCII

SYNOPSIS

rwpcut [--columnar]

[--delimiter=DELIMITER]

[--epoch-time]

[--fields=PRINT_FIELDS]

[--integer-ips]

[--zero-pad-ips]

FILE...

DESCRIPTION

rwpcut outputs tcpdump files in an easy to parse way. It supports a user-defined list of fields to output
and a user-defined delimiter between columns.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option.

OUTPUT SWITCHES

--columnar

Pad each field with whitespace so that it always takes up the same number of columns. The two
payload printing fields, payhex and payascii, never pad with whitespace.

--delimiter=DELIMITER

DELIMITER is used as the delimiter between columns instead of the default ’|’.

--epoch-time

Display the timestamp as epoch time seconds instead of a formatted timestamp.

--fields=PRINT FIELDS

PRINT FIELDS is a comma-separated list of fields to include in the output. The available fields are:

timestamp - packet timestamp sip - source IP address. dip - destination IP address sport - source
port dport - destination port proto - IP protocol payhex - Payload printed as a hex stream payascii -
Payload printed as an ascii stream. Non-printing characters are represented with periods.

--integer-ips

Display IP addresses as integers instead of in dotted quad notation.

--zero-pad-ips

Pad dotted quad notation IP addresses so that each quad occupies three columns.

262 SiLK-3.23.1

The SiLK Reference Guide rwpcut(1)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

$ rwpcut --fields=sip,dip,sport,dport,proto --columnar data.dmp

sip| dip|sport|dport|proto|

220.245.221.126| 192.168.1.100|21776| 6882| 6|

220.245.221.126| 192.168.1.100|21776| 6882| 6|

$ rwpcut --fields=timestamp,payhex data.dmp

(Carriage returns mid-payload added for legibility)

timestamp|payhex|

2005-04-20 04:28:59.091470|4500003cd85840003206f3e2dcf5dd7

ec0a8016455101ae2811b6bce00000000a002ffff59990000020405ac0

10303000101080a524dc5cc00000000|

2005-04-20 04:29:02.057390|4500003cd88c40003206f3aedcf5dd7

ec0a8016455101ae2811b6bce00000000a002ffff59930000020405ac0

10303000101080a524dc5d200000000|

SEE ALSO

rwptoflow(1), silk(7)

BUGS

Note that payhex and payascii do not whitespace pad themselves if --columnar is used.

The payascii field does not escape the delimiter character in any way, so care should be taken when parsing
it.

SiLK-3.23.1 263

rwpdedupe(1) The SiLK Reference Guide

rwpdedupe

Eliminate duplicate packets collected by several sensors

SYNOPSIS

rwpdedupe { --first-duplicate | --random-duplicate[=SCALAR] }

[--threshold=MILLISECONDS] FILE... > OUTPUT-FILE

rwpdedupe --help

rwpdedupe --version

DESCRIPTION

Detects and eliminates duplicate records from tcpdump(1) capture files. Duplicate records are defined as
having timestamps within a user-configurable time of each other. In addition, their Ethernet (OSI layer 2)
headers must match. If they are not IP packets, then their entire Ethernet payload must match. If they are
IP packets, then their source and destination addresses, protocol, and IP payload must match.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--threshold=MILLISECONDS

Set the maximum number of milliseconds which may elapse between two packets and still have those
packets be detected as duplicates. Default 0 (exact timestamp match). Must be a value between 0 and
1,000,000 milliseconds.

One and only one of the following switches is required:

--first-duplicate

When selecting between multiple duplicate packets, always choose the packet with the earliest times-
tamp. Not compatible with --random-duplicate.

--random-duplicate

--random-duplicate=SCALAR

Select a random packet from the list of duplicate packets. SCALAR is a random number seed, so that
multiple runs can produce identical results.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

264 SiLK-3.23.1

The SiLK Reference Guide rwpdedupe(1)

EXAMPLES

In the following example, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Given tcpdump files data1.tcp and data2.tcp, detect and eliminate duplicate packets which occur within
one second of each other (when choosing which timestamp to output, pick one randomly.) Store the result
file in out.tcp.

$ rwpdedupe --threshold=1000 --random-duplicate \

data1.tcp data2.tcp > out.tcp

SEE ALSO

silk(7), mergecap(1), tcpdump(1), pcap(3)

NOTES

mergecap(1) can be used to merge two tcpdump capture files without eliminating duplicate packets.

SiLK-3.23.1 265

rwpdu2silk(1) The SiLK Reference Guide

rwpdu2silk

Convert NetFlow v5 records to SiLK Flow records

SYNOPSIS

rwpdu2silk [--silk-output=PATH] [--print-statistics]

[--log-destination={stdout | stderr | none | PATH}]

[--log-flags={none | { {all | bad | default | missing

| record-timestamps} ...} }]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD]

{--xargs | --xargs=FILENAME | PDUFILE [PDUFILE...]}

rwpdu2silk --help

rwpdu2silk --version

DESCRIPTION

rwpdu2silk reads NetFlow v5 PDU (Protocol Data Units) records from one or more files, converts the
records to the SiLK Flow format, and writes the SiLK records to the path specified by --silk-output or
to the standard output when --silk-output is not provided. Note that rwpdu2silk cannot read from the
standard input.

rwpdu2silk expects its input files to be a the format created by Cisco’s NetFlow Collector: The file’s size
must be an integer multiple of 1464, where each 1464 octet chunk contains a 24 octet NetFlow v5 header
and space for thirty 48 octet NetFlow v5 records. The number of valid records per chunk is specified in the
header.

rwpdu2silk reads NetFlow v5 records from the files named on the command line when --xargs is not
present. If an input file name ends in .gz, the file is uncompressed as it is read. When the --xargs switch is
provided, rwpdu2silk reads the names of the files to process from the named text file or from the standard
input if no file name argument is provided to the switch. The input to --xargs must contain one file name
per line.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--silk-output=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwpdu2silk exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwpdu2silk to exit with an error.

266 SiLK-3.23.1

The SiLK Reference Guide rwpdu2silk(1)

--print-statistics

Print, to the standard error, the number of records that were written to the SiLK output file. See also
--log-destination.

--log-destination={none | stdout | stderr | PATH}

Write more detailed information to the specified destination. The default destination is none which
suppresses messages. Use stdout or stderr to send messages to the standard output or standard
error, respectively. Any other value is treated as a file name in which to write the messages. When
an existing file is specified, rwpdu2silk appends any messages to the file. Information that is written
includes the following:

• For each input stream, the number of PDU records read, number of SiLK records generated,
number of missing records (based on the NetFlow v5 sequence number), and number of invalid
records.

• Messages about each NetFlow v5 packet that was rejected due a bad version number or having a
record count of 0 or more than 30.

• Additional messages enabled by the --log-flags switch.

--log-flags=FLAGS

Write additional messages regarding the NetFlow v5 data to the --log-destination, where FLAGS is a
comma-separated list of names specifying the type messages to write. When this switch is not specified,
the default value for FLAGS is none. This switch takes the same values as the log-flags setting in the
sensor.conf(5) file. This manual page documents the values that are relevant for NetFlow v5 data.
Since SiLK 3.10.0.

all

Log everything.

bad

Write messages about an individual NetFlow v5 record where the packet or octet count is zero,
the packet count is larger than the octet count, or the duration of the flow is larger than 45 days.

default

Enable the default set of log-flags used by sensor.conf : bad, missing. Despite the name, this is
not the default setting for this switch; none is.

missing

Examine the sequence numbers of NetFlow v5 packets and write messages about missing and
out-of-sequence packets.

none

Log nothing. It is an error to combine this log-flag name with any other. This is the default
setting for --log-flags.

record-timestamps

Log the timestamps that appear on each record. This produces a lot of output, and it is primarily
used for debugging.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

SiLK-3.23.1 267

rwpdu2silk(1) The SiLK Reference Guide

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwpdu2silk opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

268 SiLK-3.23.1

The SiLK Reference Guide rwpdu2silk(1)

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SEE ALSO

rwfileinfo(1), rwflowpack(8), sensor.conf(5), silk(7), zlib(3)

BUGS

rwpdu2silk cannot read from the standard input.

SiLK-3.23.1 269

rwpmapbuild(1) The SiLK Reference Guide

rwpmapbuild

Create a binary prefix map from a text file

SYNOPSIS

rwpmapbuild [--input-path=PATH] [--output-path=PATH]

[--mode={ipv4|ipv6|proto-port}] [--dry-run] [--ignore-errors]

[--note-add=TEXT] [--note-file-add=FILENAME]

[--invocation-strip]

rwpmapbuild --help

rwpmapbuild --version

DESCRIPTION

rwpmapbuild reads a white-space-delimited stream of text and writes a binary output stream representing
a prefix map. The syntax of this input is described in the INPUT FILE FORMAT section below.

The textual input is read from the file specified by --input-path or from the standard input when the switch
is not provided. The binary output is written to the location named by --output-path or to the standard
output when the switch is not provided and the standard output is not connected to a terminal.

A prefix map file is a binary file that maps a value (specifically either an IP addresses or a protocol-port
pair) to a string label.

Once you have created a prefix map file, you may use the file in rwfilter(1), rwstats(1), rwuniq(1),
rwgroup(1), rwsort(1), or rwcut(1) to partition, count, sort and display SiLK flow records based on the
string labels defined in the prefix map. See the pmapfilter(3) manual page for details. To view the contents
of a prefix map file, use rwpmapcat(1). To query the contents of a prefix map, use rwpmaplookup(1).

The remainder of this section provides example files that could be used as input to rwpmapbuild, and
a note on the proper ordering of the input. For details on the syntax of the input, see the INPUT FILE
FORMAT section that follows the description of the command line OPTIONS.

Sample IPv4 input file

The following is a sample input file for rwpmapbuild that describes the registry of special-purpose IPv4
addresses. Any IP address that is not a special-purpose address get the label Normal.

Prefix map sample input file for special purpose IPv4 addresses

map-name ipv4-special

mode ipv4

default Normal

Each line has an either a CIDR block or a pair of IP

addresses and then a label for that range

0.0.0.0/8 This host on this network [RFC1122 section 3.2.1.3]

10.0.0.0/8 Private-Use [RFC1918]

270 SiLK -3.23.1

The SiLK Reference Guide rwpmapbuild(1)

100.64.0.0/10 Shared Address Space [RFC6598]

127.0.0.0/8 Loopback [RFC1122 section 3.2.1.3]

169.254.0.0/16 Link Local [RFC3927]

172.16.0.0/12 Private-Use [RFC1918]

192.0.0.0/24 IETF Protocol Assignments [RFC6890 section 2.1]

192.0.0.0/29 IPv4 Service Continuity Prefix [RFC7335]

A range of a single IP address requires a "/32" suffix or

that the IP address be repeated

192.0.0.8/32 IPv4 dummy address [RFC7600]

192.0.0.9/32 Port Control Protocol Anycast [RFC7723]

192.0.0.10/32 Traversal Using Relays around NAT Anycast [draft]

A range may be specified as two IP addresses

192.0.0.170 192.0.0.171 NAT64/DNS64 Discovery [RFC7050 section 2.2]

192.0.2.0/24 Documentation (TEST-NET-1) [RFC5737]

192.31.196.0/24 AS112-v4 [RFC7535]

192.52.193.0/24 AMT [RFC7450]

192.88.99.0/24 Deprecated (6to4 Relay Anycast) [RFC7526]

192.168.0.0/16 Private-Use [RFC1918]

192.175.48.0/24 Direct Delegation AS112 Service [RFC7534]

198.18.0.0/15 Benchmarking [RFC2544]

198.51.100.0/24 Documentation (TEST-NET-2) [RFC5737]

203.0.113.0/24 Documentation (TEST-NET-3) [RFC5737]

240.0.0.0/4 Reserved [RFC1112 section 4]

255.255.255.255/32 Limited Broadcast [RFC919 section 7]

Sample IPv6 input file

The following input file for rwpmapbuild describes IPv6 address space. The file demonstrates the use of
the label statement. It uses a hyphen (”-”) as the label for any undefined ranges.

Prefix map sample input file for IPv6 address space

map-name iana-ipv6

mode ipv6

label 0 RFC3849

label 1 RFC3879

label 2 RFC4048

label 3 RFC4193

label 4 RFC4291

label 5 RFC4291 Loopback Address

label 6 RFC4291 Unspecified Address

label 7 RFC4291 IPv4-mapped Address

label 8 RFC5180

label 9 RFC6666

label 10 RFC7723

label 11 -

default -

0000::/8 4

SiLK -3.23.1 271

rwpmapbuild(1) The SiLK Reference Guide

::1/128 5

::/128 6

::ffff:0:0/96 7

0100::/8 4

0100::/64 9 # RFC6666

0200::/7 2 # RFC4048

0400::/6 4

0800::/5 4

1000::/4 4

2000::/3 4

2001:1::1/128 10 # RFC7723

2001:2::/48 8 # Benchmarking

2001:db8::/32 0 # Documentation

4000::/3 4

6000::/3 4

8000::/3 4

a000::/3 4

c000::/3 4

e000::/4 4 # You may use the label number or the

f000::/5 RFC4291 # exact label name, but any other text

f800::/6 4 # causes rwpmapbuild to issue an error

fc00::/7 RFC4193

fe00::/9 4

fe80::/10 4

fec0::/10 RFC3879

ff00::/8 4

Sample protocol-port input file

This is a small sample of a file that could be used to label IP protocols, specific ports within the TCP and
UDP protocols, and ICMP type and code values. When ranges overlap or one range is a specialization of
another, the wider or more general range should be listed first, followed by the narrower or more specific
ranges.

map-name protocol-port-example

mode proto-port

The range is either a single protocol or a protocol and

a port separated by a slash.

1 1 ICMP

Specify the wider categories first, then specialize

6 6 TCP

6/0 6/1024 TCP/Generic reserved

A range of a single port requires both the starting

value and the ending value

6/21 6/21 TCP/FTP

6/22 6/22 TCP/SSH

6/25 6/25 TCP/SMTP

6/80 6/80 TCP/HTTP

6/443 6/443 TCP/HTTPS

6/6000 6/6063 TCP/X11

272 SiLK -3.23.1

The SiLK Reference Guide rwpmapbuild(1)

17 17 UDP

17/0 17/1024 UDP/Generic reserved

17/53 17/53 UDP/DNS

17/67 17/68 UDP/DHCP

50 50 ESP

58 58 ICMPv6

For ICMP Type/Code, convert the type and code to a port

value using this expression: type * 256 + code

1/0 1/255 ICMP/Echo Reply

1/768 1/1023 ICMP/Destination Unreachable

1/1024 1/1279 ICMP/Source Quench

1/768 1/768 ICMP/Net Unreachable

1/769 1/769 ICMP/Host Unreachable

1/770 1/770 ICMP/Protocol Unreachable

1/771 1/771 ICMP/Port Unreachable

Complete ICMPv4 Prefix Map

An ideal candidate for port-based prefix maps is for decoding ICMP types and codes. Although most SiLK
commands support a form of ICMP type and code options, these are all based on the actual number values.
However, a prefix map may be useful to decode the noun-name of the ICMP types and codes. The following
prefix map can be used for that purpose. (Note that ICMP type and code is always in the destination port
field, regardless of the traffic direction.)

Identify this as a protocol-port prefix map, rather than an IP-range map

mode proto-port

Set a default value for all records

0 255 Other

Set the default value for all ICMP records

1 1 ICMP/Undefined

ICMP specific entries

1/0 1/255 ICMP/Echo Reply

1/768 1/768 ICMP/Destination Unreachable/Net Unreachable

1/769 1/769 ICMP/Destination Unreachable/Host Unreachable

1/770 1/770 ICMP/Destination Unreachable/Protocol Unreachable

1/771 1/771 ICMP/Destination Unreachable/Port Unreachable

1/772 1/772 ICMP/Destination Unreachable/Fragmentation Needed and Don’t Fragment was Set

1/773 1/773 ICMP/Destination Unreachable/Source Route Failed

1/774 1/774 ICMP/Destination Unreachable/Destination Network Unknown

1/775 1/775 ICMP/Destination Unreachable/Destination Host Unknown

1/776 1/776 ICMP/Destination Unreachable/Source Host Isolated

1/777 1/777 ICMP/Destination Unreachable/Communication with Destination Network is Administratively Prohibited

1/778 1/778 ICMP/Administratively Prohibited/Communication with Destination Host is Administratively Prohibited

1/779 1/779 ICMP/Administratively Prohibited/Destination Network Unreachable for Type of Service

1/780 1/780 ICMP/Administratively Prohibited/Destination Host Unreachable for Type of Service

1/781 1/781 ICMP/Administratively Prohibited/Communication Administratively Prohibited

1/782 1/782 ICMP/Administratively Prohibited/Host Precedence Violation

SiLK -3.23.1 273

rwpmapbuild(1) The SiLK Reference Guide

1/783 1/783 ICMP/Administratively Prohibited/Precedence cutoff in effect

1/1024 1/1279 ICMP/Source Quench

1/1280 1/1280 ICMP/Redirect/Redirect Datagram for the Network (or subnet)

1/1281 1/1281 ICMP/Redirect/Redirect Datagram for the Host

1/1282 1/1282 ICMP/Redirect/Redirect Datagram for the Type of Service and Network

1/1283 1/1283 ICMP/Redirect/Redirect Datagram for the Type of Service and Host

1/1536 1/1536 ICMP/Alternate Host Address/Alternate Address for Host

1/2048 1/2303 ICMP/Echo

1/2304 1/2304 ICMP/Router Advertisement/Normal router advertisement

1/2320 1/2320 ICMP/Router Advertisement/Does not route common traffic

1/2560 1/2815 ICMP/Router Selection

1/2816 1/2816 ICMP/Time Exceeded/Time to Live exceeded in Transit

1/2817 1/2817 ICMP/Time Exceeded/Fragment Reassembly Time Exceeded

1/3072 1/3072 ICMP/Parameter Problem/Pointer indicates the error

1/3073 1/3073 ICMP/Parameter Problem/Missing a Required Option

1/3074 1/3074 ICMP/Parameter Problem/Bad Length

1/3328 1/3583 ICMP/Timestamp

1/3584 1/3839 ICMP/Timestamp Reply

1/3840 1/4095 ICMP/Information Request

1/4096 1/4351 ICMP/Information Reply

1/4352 1/4607 ICMP/Address Mask Request

1/4608 1/4863 ICMP/Address Mask Reply

1/7680 1/7935 ICMP/Traceroute

1/7936 1/8191 ICMP/Datagram Conversion Error

1/8192 1/8447 ICMP/Mobile Host Redirect

1/8448 1/8703 ICMP/IPv6 Where-Are-You

1/8704 1/8959 ICMP/IPv6 I-Am-Here

1/8960 1/9215 ICMP/Mobile Registration Request

1/9216 1/9471 ICMP/Mobile Registration Reply

1/9984 1/10239 ICMP/SKIP

1/10240 1/10240 ICMP/Photuris/Bad SPI

1/10241 1/10241 ICMP/Photuris/Authentication Failed

1/10242 1/10242 ICMP/Photuris/Decompression Failed

1/10243 1/10243 ICMP/Photuris/Decryption Failed

1/10244 1/10244 ICMP/Photuris/Need Authentication

1/10245 1/10245 ICMP/Photuris/Need Authorization

A few other well-known protocols

6 6 TCP

17 17 UDP

50 50 ESP

51 51 AH

Proper Ordering of rwpmapbuild Input

When creating the textual input for rwmpabuild, be sure to put the most general attributes first in the
list.

For example, suppose we administer the address block 12.0.0.0/8, and would like to report on address ranges
delegated within the organization, A prefix map can be used as follows to show utilization for each address
block, as well as unallocated (and presumably unauthorized) usage.

274 SiLK-3.23.1

The SiLK Reference Guide rwpmapbuild(1)

Display the contents of input file:

$ cat network.pmap.txt

12.0.0.0/8 Assigned, Unallocated

12.1.0.0/16 RESERVED

12.38.0.0/16 Client Network 1

12.127.0.0/16 Data Center (Primary)

12.130.0.0/16 Client Network 2

12.154.0.0/16 Client Network 3

12.186.0.0/16 Data Center (Secondary)

12.210.0.0/16 RESERVED

Create the binary prefix map:

$ rwpmapbuild --input=network.pmap.txt --output=network.pmap

Use rwfilter(1) to select IPs in the 12.0.0.0/8 netblock, and use rwuniq(1) to bin the results according to
the prefix map:

$ rwfilter --start=2007/07/30:00 --saddr=12.x.x.x --pass=stdout \

| rwuniq --pmap-file=network.pmap --field=sval --value=bytes

sval| Bytes|

RESERVED| 39749|

Data Center (Primary)| 87621|

Assigned, Unallocated| 4296212|

Client Network 2| 545848|

Data Center (Secondary)| 18228|

Client Network 1| 112404|

Client Network 3| 68820|

Suppose the input file had placed the most general entry at the bottom, like so:

$ cat network.pmap.txt

12.1.0.0/16 RESERVED

12.38.0.0/16 Client Network 1

12.127.0.0/16 Data Center (Primary)

12.130.0.0/16 Client Network 2

12.154.0.0/16 Client Network 3

12.186.0.0/16 Data Center (Secondary)

12.210.0.0/16 RESERVED

12.0.0.0/8 Assigned, Unallocated

The general entry would overwrite the other entries:

$ rwpmapbuild --input=network.pmap.txt --output=network.pmap

$ rwfilter --start=2007/07/30:00 --saddr=12.x.x.x --pass=stdout \

| rwuniq --pmap-file=network.pmap --fields=sval --bytes

sval| Bytes|

Assigned, Unallocated| 5168882|

SiLK -3.23.1 275

rwpmapbuild(1) The SiLK Reference Guide

This is easy to see by using rwpmapcat(1) to print the contents of the prefix map:

$ rwpmapcat --map-file=network.pmap

ipBlock| label|

0.0.0.0/5| UNKNOWN|

8.0.0.0/6| UNKNOWN|

12.0.0.0/8| Assigned, Unallocated|

13.0.0.0/8| UNKNOWN|

14.0.0.0/7| UNKNOWN|

16.0.0.0/4| UNKNOWN|

32.0.0.0/3| UNKNOWN|

64.0.0.0/2| UNKNOWN|

128.0.0.0/1| UNKNOWN|

(rwpmapcat lists all possible addresses from 0.0.0.0 to 255.255.255.255 and their labels. The default label
is UNKNOWN unless the default is set to something else.)

The best way to make sure your entries are properly ordered is to explicitly order them before compiling the
prefix map. When the data uses the CIDR-block format, the UNIX sort(1) command often produces the
proper output.

$ cat network.pmap.txt

12.1.0.0/16 RESERVED

12.38.0.0/16 Client Network 1

12.127.0.0/16 Data Center (Primary)

12.130.0.0/16 Client Network 2

12.154.0.0/16 Client Network 3

12.186.0.0/16 Data Center (Secondary)

12.210.0.0/16 RESERVED

12.0.0.0/8 Assigned, Unallocated

Split the input at the / and sort the input numerically by the bitmask size. (A small bitmask represents a
large netblock.)

$ sort -n -k 2 -t "/" network.pmap.txt

12.0.0.0/8 Assigned, Unallocated

12.1.0.0/16 RESERVED

12.127.0.0/16 Data Center (Primary)

12.130.0.0/16 Client Network 2

12.154.0.0/16 Client Network 3

12.186.0.0/16 Data Center (Secondary)

12.210.0.0/16 RESERVED

12.38.0.0/16 Client Network 1

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

276 SiLK-3.23.1

The SiLK Reference Guide rwpmapbuild(1)

--input-path=PATH

Read the textual input from PATH. You may use stdin or - to represent the standard input. When
this switch is not provided, the input is read from the standard input unless the standard input is a
terminal. rwpmapbuild will read textual input from the terminal if the standard input is explicitly
specified as the input. The input file format is described below. (Added in SiLK 3.17.0 as a replacement
for --input-file.)

--output-path=PATH

Write the binary prefix map to PATH. You may use stdout or - to represent the standard output.
When this switch is not provided, the prefix map is written to the standard output unless the standard
output is connected to a terminal. (Added in SiLK 3.17.0 as a replacement for --output-file.)

--mode={ipv4|ipv6|proto-port}

Specify the type of the input, as if a mode statement appeared in the input stream. The value specified
by this switch must not conflict with an explicit mode statement appearing in the input.

--dry-run

Do not write the output file. Simply check the syntax of the input file.

--ignore-errors

Write the output file regardless of any errors encountered while parsing the input file.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--invocation-strip

Do not record the command used to create the prefix map in the output. When this switch is not given,
the invocation is written to the file’s header, and the invocation may be viewed with rwfileinfo(1).
Since SiLK 3.12.0.

--input-file=PATH

Read the textual input from PATH. An alias for --input-path. Deprecaated as of SiLK 3.17.0.

--output-file=PATH

Write the binary prefix map to PATH. An alias for --output-path. Deprecaated as of SiLK 3.17.0.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 277

rwpmapbuild(1) The SiLK Reference Guide

INPUT FILE FORMAT

This section describes the format of the textual input file for rwpmapbuild. Three example files are shown
above in the DESCRIPTION section.

Blank lines or lines containing only whitespace in the input file are ignored.

The file may contain comments, and these are ignored. A comment begins with the first # character on a
line and extends to the end of the line. Note that # appearing in a textual label is treated as the beginning
of a comment.

Each non-blank line in the input file that is not a comment is considered a statement. A statement must be
completed on a single line, and only one statement may appear on a line.

The delimiter in the input file is whitespace---specifically one or more space and/or tab characters.

rwpmapbuild supports five types of statements. Four of those statements begin with a specific keyword:
one of mode, map-name, label, and default. Any line that does not begin with with a keyword is expected
to contain a range definition, which maps a range to a label. The format of the range definition depends on
the mode.

The four statement types that begin with a keyword are all optional. They are:

mode { ipv4 | ipv6 | proto-port | ip }
Specify what types of ranges are defined in the file. The mode statement must appear before any
ranges are specified. The mode may also be set using the --mode command line switch. When both the
mode statement and the --mode switch are given, their values must match. When neither the mode
statement nor the --mode switch is provided, rwpmapbuild processes the input in IPv4 address
mode. The ip mode is deprecated; it is an alias for ipv4. The mode statement may only appear one
time.

map-name simple-string

Create a name for the data in this prefix map file that other SiLK tools may use to refer to this
prefix map file. When the prefix map file is used by rwfilter(1), the simple-string is used to generate
the filtering switch names. When the prefix map file is used by rwcut(1), rwgroup(1), rwsort(1),
rwstats(1), or rwuniq(1), the simple-string is used to generate the field names. See pmapfilter(3)
for details. The simple-string may not contain whitespace, a comma, or a colon. The map-name
statement may only appear one time.

label num label-text

Associate the numeric identifier num with the given label text label-text. By specifying a label state-
ment, the identifier num is expanded to label-text when the range definitions are being defined.

Either all labels used in the file must appear in label statements, or no label statements may appear
in which case rwpmapbuild creates labels as it parses the range definitions. All label statements
must appear before the default statement and before the range definitions.

label-text is a textual string that begins at the first non-whitespace character and extends to the final
non-whitespace character on that line that does not appear in a comment. The label-text may include
embedded whitespace and non-alphanumeric characters. While a comma (,) is legal in the label-text,
using a comma prevents the label from being used by the --pmap-src and --pmap-dest switches in
rwfilter(1).

If no label statements appear in the input, any text containing at least one non-whitespace character
may be used as the label in the default statement and the range definitions.

It is an error if num or label-text appear in any other label statement. The minimum value for num
is 0 and the maximum value is 2147483647. Note that rwpmapbuild creates labels for all numeric

278 SiLK-3.23.1

The SiLK Reference Guide rwpmapbuild(1)

identifiers between 0 and the maximum identifier used in the input file, and using an unnecessarily
large value creates many empty entries.

default label-value

Use the label label-value for any ranges not explicitly mentioned in this input file. The label-value text
is one of

1. when label statements are used, a numerical label identifier that was specified in one of the
statements

2. when label statements are used, a string that is an exact match of the label-text that was specified
in one of those statements

3. when label statements are not used, a string that begins at the first non-whitespace character
and extends to the final non-whitespace character on that line that does not appear in a comment

The default statement must appear before the range definitions are specified. If the default statement
does not appear in the input, the label UNKNOWN is automatically defined and used as the default.

As mentioned above, any line that does not begin with one of the above keywords must contain a range
definition, and the format of the line depends on the type of data in the input file--that is, the mode of the
input.

Regardless of the input mode, the final item in each range definition is the label to assign to that range.
The label has the same form as that described for the default statement above, and the label is denoted by
label-value in the following.

Address Mode

When the mode is either ipv4 or ipv6, rwpmapbuild parses the file in address mode. In address mode,
each range definition contains an IP range and a label-value.

A range is either a CIDR block or a pair of IP addresses that specify the starting IP and ending IP of the
range. To provide a label for a single IP address, you must either use the same IP address as the starting and
ending values of the range, append /32 to a single IPv4 address, or append /128 to a single IPv6 address.
When the mode is ipv4, an IPv6 address in the input file raises an error. rwpmapbuild also accepts
integer representations of IP addresses when in ipv4 mode,

When ranges overlap or one range is a specialization of another, the wider or more general range should be
listed first, followed by the narrower or more specific ranges.

cidr-block label-value

Associate the given label identifier or label text with this CIDR block. The CIDR block is composed
of an IP address in canonical notation (e.g, dotted-decimal for IPv4), a slash /, and the number of
significant bits.

low-ip high-ip label-value

Associate the given label identifier or label text with this IP range, where low-ip and high-ip are in
canonical notation.

low-int high-int label-value

Treat low-int and high-int as 32-bit values, convert the values to IPv4 addresses, and associate the
given label identifier or label text with the IPv4 range.

SiLK-3.23.1 279

rwpmapbuild(1) The SiLK Reference Guide

Protocol/Port Mode

When the mode is proto-port, rwpmapbuild parses the file in protocol/port mode. In protocol/port
mode, each range definition contains a starting value, an ending value, and the label-value.

The starting and ending values may both be integers between 0 and 255, inclusive. The numbers are treated
as protocol values, where 6 is TCP, 17 is UDP, and 1 is ICMP.

The starting and ending values may also both be a number, a slash (/), and a number. The first number is
treated as the protocol and the second number as a port number (or service) in that protocol. For example,
6/80 is considered the http service of TCP.

When ranges overlap or one range is a specialization of another, the wider or more general range should be
listed first, followed by the narrower or more specific ranges. That is, specify the generic protocol first, then
port numbers within that protocol.

proto/port proto/port label-value

Associate the given label identifier or label text with all protocols and port numbers between these two
values inclusive. Note that while port is not meaningful for all protocols (specifically, it is meaningful
for TCP and UDP and may contain type/code information for ICMP), rwpmapbuild accepts port
numbers for any protocol.

proto proto label-value

Associate the given label identifier or label text for all protocols between these two values inclusive.

EXAMPLE

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Reading from and writing to a file:

$ rwpmapbuild --input iana-ipv6.txt --output iana-ipv6.pmap

Reading from the standard input and writing to the standard output:

$ cat ipv4-special.txt \

| rwpmapbuild > ipv4-special.pmap

For example input files, see the DESCRIPTION section above.

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SEE ALSO

pmapfilter(3), rwfilter(1), rwfileinfo(1), rwpmapcat(1), rwpmaplookup(1), rwcut(1), rw-
group(1), rwsort(1), rwstats(1), rwuniq(1), silk(7)

280 SiLK-3.23.1

The SiLK Reference Guide rwpmapcat(1)

rwpmapcat

Print each range and label present in a prefix map file

SYNOPSIS

rwpmapcat [--output-types={mapname | type | ranges | labels}]

[--ignore-label=LABEL] [--ip-label-to-ignore=IP_ADDRESS]

[--left-justify-labels] [--no-cidr-blocks]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--no-titles] [--no-columns] [--column-separator=C]

[--no-final-delimiter] [{--delimited | --delimited=C}]

[--output-path=PATH] [--pager=PAGER_PROG]

[{ --map-file=PMAP_FILE | PMAP_FILE

| --address-types | --address-types=MAP_FILE

| --country-codes | --country-codes=MAP_FILE }]

rwpmapcat --help

rwpmapcat --version

DESCRIPTION

rwpmapcat reads a prefix map file created by rwpmapbuild(1) or rwgeoip2ccmap(1) and prints its
contents.

By default, rwpmapcat prints the range/label pairs that exist in the prefix map. Use the --output-types
switch to print additional information or information other than the range/label pairs.

When printing the range/label pairs of a prefix map file that contain IP address data, rwpmapcat defaults
to printing the range as an address block in CIDR notation and the label associated with that block. To
print the ranges as a starting address and ending address, specify the --no-cidr-blocks switch.

If the prefix map file contains protocol/port pairs, rwpmapcat prints three fields: the starting protocol and
port separated by a slash (/), the ending protocol and port, and the label.

The printing of ranges having a specific label may be suppressed with the --ignore-label switch. To have
rwpmapcat to look up a label based on an IP address and then ignore all entries with that label, pass the
IP address to the --ip-label-to-ignore switch.

To print the contents of an arbitrary prefix map file, one may pipe the file to rwpmapcat’s standard input,
name the file as the argument to the --map-file switch, or name the file on the command line.

To print the contents of the default country codes mapping file (see ccfilter(3)), specify the --country-
codes switch with no argument. To print the contents of a specific country codes mapping file, name that
file as the argument to the --country-codes switch.

For printing the address types mapping file (see addrtype(3)), use the --address-types switch which works
similarly to the --country-codes switch.

SiLK-3.23.1 281

rwpmapcat(1) The SiLK Reference Guide

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Many of options are ignored unless rwpmapcat is printing the range/label pairs present in the prefix map
file.

--map-file=PMAP FILE

Specify the path of the prefix map file to print. If this switch is omitted and neither --country-codes
nor --address-types is specified, the name of the file to be read is taken as the first non-switch
command-line argument. If no argument is given, rwpmapcat attempts to read the map from the
standard input.

--address-types

Print the contents of the address types mapping file (addrtype(3)) specified by the
SILK ADDRESS TYPES environment variable, or in the default address types mapping file if that
environment variable is not set. This switch may not be combined with the --map-file or --country-
codes switches.

--address-types=ADDRTYPE FILE

Print the contents of the address types mapping file specified by ADDRTYPE FILE.

--country-codes

Print the contents of the country code mapping file (ccfilter(3)) specified by the
SILK COUNTRY CODES environment variable, or in the default country code mapping file if
that environment variable is not set. This switch may not be combined with the --map-file or
--address-types switches.

--country-codes=COUNTRY CODE FILE

Print the contents of the country code mapping file specified by COUNTRY CODE FILE.

--output-types={type | mapname | label | ranges}

Specify the type(s) of output to produce. When this switch is not provided, the default is to print
ranges. Specify multiple types as a comma separated list of names; regardless of the order in which
the types are given, the output will appear in the order shown below. Country-code prefix map files
only support the ranges output type. A type can be specified using the shortest unique prefix for the
type. The available types are:

type

Print the type of this prefix map file. The value will be one of IPv4-address, IPv6-address,
or proto-port. The type will be preceded by the string TYPE: and a space character unless
--no-titles is specified.

mapname

Print the name that is stored in the prefix map file. This mapname is used to generate switch
names and field names when this prefix map is used with rwfilter(1), rwcut(1), rwgroup(1),
rwsort(1), rwstats(1), and rwuniq(1). See pmapfilter(3) for details. The mapname will be
preceded by the string MAPNAME: and a space character unless --no-titles is specified.

282 SiLK-3.23.1

The SiLK Reference Guide rwpmapcat(1)

label

Print the names of the labels that exist in the prefix map file. The labels are printed left-justified,
one per line, with no delimiter. The labels will be preceded by LABELS: on its own line unless
--no-titles is specified. If ranges is also specified, a blank line will separate the labels and the
range/label columns.

ranges

Print the range and label for each block in the prefix map file. If the prefix map contains proto-
col/port pairs, the output will contain three columns (startPair, endPair, label), where startPair
and endPair contain protocol/port. If the prefix map contains IP addresses, the form of the output
will depend on whether --no-cidr-blocks is specified. When it is not specified, the output will
contain two columns (ipBlock, label), where ipBlock contains the IP range in CIDR notation. If
--no-cidr-blocks is specified, the output will contain three columns: startIP, endIP, label.

--ignore-label=LABEL

For the ranges output-type, do not print entries whose label is LABEL. By default, all entries in the
prefix map file are printed.

--ip-label-to-ignore=IP ADDRESS

For the ranges output-type, find the label associated with the IP address IP ADDRESS and ignore
all ranges that match that label. By default, all entries in the prefix map are printed.

--left-justify-labels

For the ranges output-type, left-justify the labels when columnar output is printed. Normally, the
labels are right-justified.

--no-cidr-blocks

Cause each IP address block to be printed as a starting and ending IP address. By default, IP addresses
are grouped into CIDR blocks. This switch is ignored for prefix map files containing protocol/port
pairs.

--ip-format=FORMAT

Specify how IP addresses are printed, where FORMAT is a comma-separated list of the arguments
described below. This switch is ignored for prefix map files containing protocol/port pairs. When this
switch is not specified, the SILK IP FORMAT environment variable is checked for a value and that
format is used if it is valid. The default FORMAT is canonical according to whether the prefix map
file is IPv4 or IPv6. Since SiLK 3.7.0.

canonical

Print IP addresses in the canonical format. For an IPv4 prefix map, use dot-separated decimal
(192.0.2.1). For an IPv6 prefix map, use colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

SiLK-3.23.1 283

rwpmapcat(1) The SiLK Reference Guide

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively. Note: This
setting does not apply to CIDR prefix values which are printed as decimal.

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal. As of SiLK 3.18.0, the values of CIDR prefix are
also zero-padded.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

When the prefix map contains only IPv4 addresses, change all IPv4 addresses to IPv4-mapped
IPv6 addresses (addresses in the ::ffff:0:0/96 netblock) prior to formatting. Since SiLK 3.17.0.

unmap-v6

When the prefix map contains IPv6 addresses, change any IPv4-mapped IPv6 addresses (addresses
in the ::ffff:0:0/96 netblock) to IPv4 addresses prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in their canonical form. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

284 SiLK-3.23.1

The SiLK Reference Guide rwpmapcat(1)

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwpmapcat exits with an
error unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If
this switch is not given, the output is either sent to the pager or written to the standard output. Since
SiLK 3.15.0.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

rwpmapbuild(1) creates the prefix map file sample.pmap from the textual input.

$ cat sample.txt

mode ip

map-name addrtype

label 0 non-routable

label 1 internal

label 2 external

default external

0.0.0.0/8 non-routable

10.0.0.0/8 non-routable

127.0.0.0/8 non-routable

169.254.0.0/16 non-routable

172.16.0.0/12 non-routable

192.0.2.0/24 non-routable

192.168.0.0/16 non-routable

255.255.255.255/32 non-routable

$ rwpmapbuild --input-path=sample.txt --output-path=sample.txt

Invoking rwpmapcat with the name of the file as its only argument prints the range-to-label contents of
the prefix map file, and the contents are printed as CIDR blocks if the file contains IP addresses.

SiLK -3.23.1 285

rwpmapcat(1) The SiLK Reference Guide

$ rwpmapcat sample.pmap | head -10

ipBlock| label|

0.0.0.0/8|non-routable|

1.0.0.0/8| external|

2.0.0.0/7| external|

4.0.0.0/6| external|

8.0.0.0/7| external|

10.0.0.0/8|non-routable|

11.0.0.0/8| external|

12.0.0.0/6| external|

16.0.0.0/4| external|

Use the --no-cidr-blocks switch to print the range as a pair of IPs. The --map-file switch may be use to
specify the name of the file.

$ rwpmapcat --map-file=sample.pmap --no-cidr-block

startIP| endIP| label|

0.0.0.0| 0.255.255.255|non-routable|

1.0.0.0| 9.255.255.255| external|

10.0.0.0| 10.255.255.255|non-routable|

11.0.0.0|126.255.255.255| external|

127.0.0.0|127.255.255.255|non-routable|

128.0.0.0|169.253.255.255| external|

169.254.0.0|169.254.255.255|non-routable|

169.255.0.0| 172.15.255.255| external|

172.16.0.0| 172.31.255.255|non-routable|

172.32.0.0| 192.0.1.255| external|

192.0.2.0| 192.0.2.255|non-routable|

192.0.3.0|192.167.255.255| external|

192.168.0.0|192.168.255.255|non-routable|

192.169.0.0|255.255.255.254| external|

255.255.255.255|255.255.255.255|non-routable|

The --output-types switch determines what output is produced. Specifying an argument of label prints
the labels that were specified when the file was built.

$ rwpmapcat --map-file=sample.pmap --output-types=label

LABELS:

non-routable

internal

external

Multiple types of output may be requested

$ rwpmapcat --map-file=sample.pmap --output-types=type,mapname

TYPE: IPv4-address

MAPNAME: addrtype

Sometimes the content of the prefix map more clear if you eliminate the ranges that were assigned to the
default label. There are two ways to filter a label: either specify the label with the --ignore-label switch
or find an IP address that has that label and specify the IP address to the --ip-label-to-ignore switch:

286 SiLK -3.23.1

The SiLK Reference Guide rwpmapcat(1)

$ cat sample.pmap | rwpmapcat --ignore-label=external

ipBlock| label|

0.0.0.0/8|non-routable|

10.0.0.0/8|non-routable|

127.0.0.0/8|non-routable|

169.254.0.0/16|non-routable|

172.16.0.0/12|non-routable|

192.0.2.0/24|non-routable|

192.168.0.0/16|non-routable|

255.255.255.255/32|non-routable|

$ cat sample.pmap | rwpmapcat --ip-label-to-ignore=0.0.0.0 | head -7

ipBlock| label|

1.0.0.0/8| external|

2.0.0.0/7| external|

4.0.0.0/6| external|

8.0.0.0/7| external|

11.0.0.0/8| external|

12.0.0.0/6| external|

rwpmapcat also supports viewing the contents of prefix map files containing protocol/port pairs.

$ rwpmapcat proto.pmap

startPair| endPair| label|

...

6/0| 6/0| TCP|

6/1| 6/1| tcpmux|

6/2| 6/3| compressnet|

6/4| 6/4| TCP|

6/5| 6/5| rje|

6/6| 6/6| TCP|

6/7| 6/7| echo|

6/8| 6/8| TCP|

...

As of SiLK 3.8.0, rwpmapcat supports printing the contents of the country code mapping file created by
rwgeoip2ccmap(1) (for use in the country code plug-in ccfilter(3)) when the --country-codes switch is
used.

$ rwpmapcat --no-cidr --country-codes=country_codes.pmap | head

startIP| endIP|label|

0.0.0.0| 2.6.190.55| --|

2.6.190.56| 2.6.190.63| gb|

2.6.190.64| 2.255.255.255| --|

3.0.0.0| 4.17.135.31| us|

4.17.135.32| 4.17.135.63| ca|

4.17.135.64| 4.17.142.255| us|

4.17.143.0| 4.17.143.15| ca|

4.17.143.16| 4.18.32.71| us|

4.18.32.72| 4.18.32.79| mx|

SiLK-3.23.1 287

rwpmapcat(1) The SiLK Reference Guide

ENVIRONMENT

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwpmapcat automatically invokes this program to display its output
a screen at a time. If set to an empty string, rwpmapcat does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwpmapcat automatically invokes this program to display its
output a screen at a time.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file to use when the
--country-codes switch is specified without an argument. The variable’s value may be a complete
path or a file relative to SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file to use when the
--address-types switch is specified without an argument. The variable’s value may be a complete
path or a file relative to the SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwpmapcat may use this environment variable. See the FILES section for details.

FILES

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country codes mapping file when the --country-codes switch is specified
without an argument.

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file when the --address-types switch is specified
without an argument.

288 SiLK-3.23.1

The SiLK Reference Guide rwpmapcat(1)

SEE ALSO

rwpmapbuild(1), rwgeoip2ccmap(1), addrtype(3), pmapfilter(3), ccfilter(3), rwfilter(1), rw-
cut(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), silk(7)

NOTES

The --country-codes and --address-types switches were added in SiLK 3.8.0.

SiLK-3.23.1 289

rwpmaplookup(1) The SiLK Reference Guide

rwpmaplookup

Map keys to prefix map entries

SYNOPSIS

rwpmaplookup { --map-file=MAP_FILE | --address-types[=MAP_FILE]

| --country-codes[=MAP_FILE] }

[--fields=FIELDS] [--ipset-files] [--no-errors]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[{--output-path=PATH | --pager=PAGER_PROG}]

[--no-files ARG [ARGS...] | --xargs[=FILE] | FILE [FILES...]]

rwpmaplookup --help

rwpmaplookup --version

DESCRIPTION

rwpmaplookup finds keys in a binary prefix map file and prints the key and its value in a textual, bar (|)
delimited format.

By default, rwpmaplookup expects its arguments to be the names of text files containing keys---one key
per line. When the --ipset-files switch is given, rwpmaplookup takes IPset files as arguments and uses
the IPs as the keys. The --no-files switch causes rwpmaplookup to treat each command line argument
itself as a key to find in the prefix map.

When --no-files is not specified, rwpmaplookup reads the keys from the files named on the command line
or from the standard input when no file names are specified and neither --xargs nor --no-files is present.
To read the standard input in addition to the named files, use - or stdin as a file name. When the --xargs
switch is provided, rwpmaplookup reads the names of the files to process from the named text file or from
the standard input if no file name argument is provided to the switch. The input to --xargs must contain
one file name per line.

You must tell rwpmaplookup the prefix map to use for look-ups using one of three switches:

• To use an arbitrary prefix map, use the --map-file switch.

• If you want to map IP addresses to country codes (see ccfilter(3)), use the --country-codes switch.
To use the default country code prefix map, do not provide an argument to the switch. To use a specific
country code mapping file, specify the file as the argument.

• If you want to map IP addresses to address types (see addrtype(3)), use the --address-types switch.
To use the default address types prefix map, do not provide an argument to the switch. To use a specific
address types mapping file, specify the file as the argument.

If the --map-file switch specifies a prefix map containing protocol/port pairs, each input file should contain
one protocol/port pair per line in the form PROTOCOL/PORT, where PROTOCOL is a number between

290 SiLK-3.23.1

The SiLK Reference Guide rwpmaplookup(1)

0 and 255 inclusive, and PORT is a number between 0 and 65535 inclusive. When the --ipset-files switch
is specified, it is an error if the --map-file switch specifies a prefix map containing protocol/port pairs.

When querying any other type of prefix map and the --ipset-files switch is not present, each textual input
file should contain one IP address per line, where the IP is a single IP address (not a CIDR block) in
canonical form or the integer representation of an IPv4 address.

The --fields switch allows you to specify which columns appear in the output. The default columns are the
key and the value, where the key is the IP address or protocol/port pair, and the value is the textual label
for that key.

If the prefix map contains IPv6 addresses, any IPv4 address in the input is mapped into the ::ffff:0:0/96
netblock when searching.

If the prefix map contains IPv4 addresses only, any IPv6 address in the ::ffff:0:0/96 netblock is converted
to IPv4 when searching. Any other IPv6 address is ignored, and it is not printed in the output unless the
input field is requested.

Prefix map files are created by the rwpmapbuild(1) and rwgeoip2ccmap(1) utilities. IPset files are
created most often by rwset(1) and rwsetbuild(1).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

One of --map-file, --address-types, or --country-codes is required.

--map-file=PMAP FILE

Find the IP addresses or protocol/port pairs in the prefix map file PMAP FILE.

--address-types

Find the IP addresses in the address types (see addrtype(3)) mapping file specified by the
SILK ADDRESS TYPES environment variable, or in the default address types mapping file if that
environment variable is not set.

--address-types=ADDRTYPE FILE

Find the IP addresses in the address types mapping file specified by ADDRTYPE FILE.

--country-codes

Find the IP addresses in the country code (see ccfilter(3)) mapping file specified by the
SILK COUNTRY CODES environment variable, or in the default country code mapping file if that
environment variable is not set.

--country-codes=COUNTRY CODE FILE

Find the IP addresses in the country code mapping file specified by COUNTRY CODE FILE.

--fields=FIELDS

Specify the columns to include in the output. The columns are displayed in the order the fields are
specified. FIELDS is a comma separated list of field-names. Field-names are case-insensitive. When
this switch is not provided, the default fields are key,value. The list of available fields are:

SiLK-3.23.1 291

rwpmaplookup(1) The SiLK Reference Guide

key

The key used to search the prefix map.

value

The label returned from the prefix map for the key.

block

The block in the prefix map that contains the key. For a prefix map file that contains IPv4
addresses, the result will be a CIDR block such as 10.18.26.32/27.

start-block

The value at the start of the block in the prefix map that contains the key.

end-block

The value at the end of the block in the prefix map that contains the key.

input

The text read from the input file that rwpmaplookup attempted to parse. Note that blank lines,
lines containing only whitespace and comments, and lines longer than 2048 characters will not be
printed. In addition, any comments appearing after the text are stripped. When --ipset-files is
specified, this field contains the IP address in its canonical form.

--no-files

Causes rwpmaplookup to treat the command line arguments as the text to be parsed. This allows
one to look up a handful of values without having to create a temporary file. Use of the --no-files
switch disables paging of the output. This switch may not be combined with --ipset-files.

--no-errors

Disables printing of errors when the input cannot be parsed as an IP address or a protocol/port pair.
This switch is ignored when --ipset-files is specified.

--ipset-files

Causes rwpmaplookup to treat the command line arguments as the names of IPset files to read
and use as keys into the prefix map. It is an error to use this switch when --map-file specifies a
protocol/port prefix map. When --ipset-files is active, the input column of --fields contains the IP
in its canonical form, regardless of the --ip-format switch. This switch may not be combined with
--no-files.

--ip-format=FORMAT

When printing the key of a prefix map containing IP addresses, specify how IP addresses are printed,
where FORMAT is a comma-separated list of the arguments described below. When this switch is not
specified, the SILK IP FORMAT environment variable is checked for a value and that format is used
if it is valid. The default FORMAT is canonical according to whether the prefix map file is IPv4 or
IPv6. Since SiLK 3.7.0.

canonical

Print IP addresses in the canonical format. For an IPv4 prefix map, use dot-separated decimal
(192.0.2.1). For an IPv6 prefix map, use colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

292 SiLK-3.23.1

The SiLK Reference Guide rwpmaplookup(1)

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively. Note: This
setting does not apply to CIDR prefix values which are printed as decimal.

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal. As of SiLK 3.18.0, the values of CIDR prefix are
also zero-padded.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

When the prefix map contains only IPv4 addresses, change all IPv4 addresses to IPv4-mapped
IPv6 addresses (addresses in the ::ffff:0:0/96 netblock) prior to formatting. Since SiLK 3.17.0.

unmap-v6

When the prefix map contains IPv6 addresses, change any IPv4-mapped IPv6 addresses (addresses
in the ::ffff:0:0/96 netblock) to IPv4 addresses prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release.

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in their canonical form. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

SiLK-3.23.1 293

rwpmaplookup(1) The SiLK Reference Guide

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwpmaplookup exits with
an error unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten.
If this option is not given, the output is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When the --no-files switch has not been specified and output is to a terminal, invoke the program
PAGER PROG to view the output one screen full at a time. This switch overrides the SILK PAGER
environment variable, which in turn overrides the PAGER variable. If the --output-path switch is
given or if the value of the pager is determined to be the empty string, no paging is performed and all
output is written to the terminal.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwpmaplookup opens each named
file in turn and reads the IPset, the textual IP addresses, or the textual protocol/port pairs from it as
if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Country code examples

Print the country code for a list of addresses read from the standard input.

$ cat my-addrs.txt

128.2.0.0

128.2.0.1

$ cat my-addrs.txt | rwpmaplookup --country-codes

key| value|

128.2.0.0| us|

128.2.0.1| us|

294 SiLK-3.23.1

The SiLK Reference Guide rwpmaplookup(1)

Use --no-files to list the address on the command line.

$ rwpmaplookup --country-codes 128.2.0.0 128.2.0.1

key| value|

128.2.0.0| us|

128.2.0.1| us|

Use --ipset-files to read the addresses from an IPset file.

$ rwsetbuild my-addrs.txt my-addrs.set

$ rwpmaplookup --country-codes --ipset-files my-addrs.set

key| value|

128.2.0.0| us|

128.2.0.1| us|

Use the --fields switch to control which columns are printed.

$ rwpmaplookup --country-codes --fields=value my-addrs.txt

value|

us|

us|

Add the --delimited and --no-titles switches so the output only contains the value column. Print the
country code for a single address using the default country code prefix map.

$ rwpmaplookup --country-codes --fields=value --delimited \

--no-titles --no-files 128.2.0.0

us

Alternatively

$ echo 128.2.0.0 \

| rwpmaplookup --country-codes --fields=value --delim --no-title

us

To use a different country code mapping file, provide that file as the argument to the --country-codes
switch.

$ rwpmaplookup --country-code=old-address-map.pmap --no-files 128.2.0.0

key|value|

128.2.0.0| us|

CIDR block input

Note that rwpmaplookup does not parse text that contains CIDR blocks.

$ echo ’128.2.0.0/31’ \

| rwpmaplookup --country-codes

key|value|

rwpmaplookup: Invalid IP ’128.2.0.1/31’ at -:1: Extra text follows value

SiLK-3.23.1 295

rwpmaplookup(1) The SiLK Reference Guide

For this case, use the IPset tool rwsetbuild(1) to parse the CIDR block list and create a binary IPset
stream, and pipe the IPset to rwpmaplookup.

$ echo ’128.2.0.0/31’ \

| rwsetbuild \

| rwpmaplookup --country-code --ipset-files

key|value|

128.2.0.0| --|

128.2.0.1| --|

For versions of rwpmaplookup that do not have the --ipset-files switch, you can have rwsetcat(1) read
the binary IPset stream and print the IP addresses as text, and pipe that into rwpmaplookup. Be sure to
include the --cidr-blocks=0 switch to rwsetcat which forces individual IP addresses to be printed.

$ echo ’128.2.0.0/31’ \

| rwsetbuild \

| rwsetcat --cidr-blocks=0 \

| rwpmaplookup --country-code

key|value|

128.2.0.0| --|

128.2.0.1| --|

General prefix map usage

Consider a user-defined prefix map, assigned-slash-8s.pmap, that maps each /8 in the IPv4 address space to
its assignment.

$ rwpmapcat assigned-slash-8s.pmap | head -4

ipBlock| label|

0.0.0.0/8| IANA - Local Identification|

1.0.0.0/8| APNIC|

2.0.0.0/8| RIPE NCC|

Use the --map-file switch to map from IPs to labels using this prefix map.

$ cat my-addrs.txt

17.17.17.17

9.9.9.9

$ cat my-addrs.txt | rwpmaplookup --map-file=assigned-slash-8s.pmap

key| value|

17.17.17.17| Apple Computer Inc.|

9.9.9.9| IBM|

Use --ip-format=decimal to print the output as integers.

$ cat my-addrs.txt \

| rwpmaplookup --ip-format=decimal --map-file=assigned-slash-8s.pmap

key| value|

286331153| Apple Computer Inc.|

151587081| IBM|

296 SiLK -3.23.1

The SiLK Reference Guide rwpmaplookup(1)

Add the input field to see the input as well.

$ cat my-addrs.txt \

| rwpmaplookup --ip-format=decimal --fields=key,value,input \

--map-file=assigned-slash-8s.pmap

key| value| input|

286331153| Apple Computer Inc.| 17.17.17.17|

151587081| IBM| 9.9.9.9|

Combine the input field with the --no-errors switch to see a row for each key.

$ rwpmaplookup --fields=key,value,input --no-errors --no-files \

--map-file=assigned-slash-8s.pmap 9.9.9.9 17.1717.17

key| value| input|

9.9.9.9| Apple Computer Inc.| 9.9.9.9|

| | 17.1717.17|

The input can contain integer values.

$ echo 151587081 \

| rwpmaplookup --fields=key,value,input --delimited=, \

--map-file=assigned-slash-8s.pmap

key,value,input

9.9.9.9,IBM,151587081

Block output

Specifying block in the --fields switch causes rwpmaplookup to print the CIDR block that contains the
address key.

$ cat my-addrs.txt

9.8.7.6

9.10.11.12

17.16.15.14

17.18.19.20

$ rwpmaplookup --map-file=assigned-slash-8s.pmap \

--fields=key,value,block my-addrs.txt

key| value| block|

9.8.7.6| IBM| 9.0.0.0/8|

9.10.11.12| IBM| 9.0.0.0/8|

17.16.15.14| Apple Computer Inc.| 17.0.0.0/8|

17.18.19.20| Apple Computer Inc.| 17.0.0.0/8|

To break the CIDR block into its starting and ending value, specify the start-block and end-block fields.

$ rwpmaplookup --map-file=assigned-slash-8s.pmap \

--fields=key,value,start-block,end-block my-addrs.txt

key| value| start-block| end-block|

9.8.7.6| IBM| 9.0.0.0| 9.255.255.255|

SiLK-3.23.1 297

rwpmaplookup(1) The SiLK Reference Guide

9.10.11.12| IBM| 9.0.0.0| 9.255.255.255|

17.16.15.14| Apple Computer Inc.| 17.0.0.0| 17.255.255.255|

17.18.19.20| Apple Computer Inc.| 17.0.0.0| 17.255.255.255|

To get a unique list of blocks for the input keys, do not output the key field and pipe the output of
rwpmaplookup to the uniq(1) command. (This works as long as the input data is sorted).

$ cat my-addrs.txt \

| rwpmaplookup --map-file=assigned-slash-8s.pmap \

--fields=block,value \

| uniq

block| value|

9.0.0.0/8| IBM|

17.0.0.0/8| Apple Computer Inc.|

The values printed in the block column corresponds to the CIDR block that were used when the prefix map
file was created.

$ rwpmaplookup --map=assigned-slash-8s.pmap --fields=block,value \

--no-files 128.2.0.1 129.0.0.1

block| value|

128.0.0.0/8|Administered by ARIN|

129.0.0.0/8|Administered by ARIN|

In the output from rwpmapcat(1), those two blocks are combined into a larger range.

$ rwpmapcat --map=assigned-slash-8s.pmap | grep 128

128.0.0.0/6|Administered by ARIN|

Working with IPsets

Assume you have a binary IPset file, my-ips.set, that has the contents shown here, and you want to find the
list of unique assignments from the assigned-slash-8s.pmap file.

$ rwsetcat --cidr-blocks=1 my-ips.set

9.9.9.0/24

13.13.13.0/24

15.15.15.0/24

16.16.16.0/24

17.17.17.0/24

18.18.18.0/24

Since the blocks in the assigned-slash-8s.pmap file are /8, use the rwsettool(1) command to mask the IPs
in the IPset to the unique /8 that contains each of the IPs.

$ rwsettool --mask=8 my-ips.set \

| rwpmaplookup --map-file=assigned-slash-8s.pmap

key| value|

9.0.0.0| IBM|

298 SiLK -3.23.1

The SiLK Reference Guide rwpmaplookup(1)

13.0.0.0| Xerox Corporation|

15.0.0.0| Hewlett-Packard Company|

16.0.0.0|Digital Equipment Corporation|

17.0.0.0| Apple Computer Inc.|

18.0.0.0| MIT|

Protocol/port prefix maps

Assume the service.pmap prefix map file maps protocol/port pairs to the name of the service running on
the named port.

$ rwpmapcat service.pmap

startPair| endPair| label|

0/0| 0/65535| unknown|

1/0| 1/65535| ICMP|

2/0| 5/65535| unknown|

6/0| 6/21| TCP|

6/22| 6/22| TCP/SSH|

...

17/0| 17/52| UDP|

17/53| 17/53| UDP/DNS|

...

To query this prefix map, the input must contain two numbers separated by a slash.

$ rwpmaplookup --map-file=service.pmap --no-files 6/80

key| value|

6/80| TCP/HTTP|

Specifying block, start-block, and end-block in the --fields switch also works for Protocol/port prefix
map files. The block column contains the same information as the start-block and end-block columns
separated by a single space.

$ rwpmaplookup --map-file=service.pmap --no-files \

--fields=key,value,start,end,block \

6/80 6/6000 17/0 17/53 128/128

key| value|start-blo|end-block| block|

6/80| TCP/HTTP| 6/80| 6/80| 6/80 6/80|

6/6000| TCP| 6/4096| 6/6143| 6/4096 6/6143|

17/0| UDP| 17/0| 17/31| 17/0 17/31|

17/53| UDP/DNS| 17/53| 17/53| 17/53 17/53|

200/200|Unassigned| 192/0|223/65535| 192/0 223/65535|

Using the pmapfilter(3) plug-in to rwcut(1), you can print the label for the source port and destination
port in the SiLK Flow file data.rw.

$ rwcut --pmap-file=service.pmap --num-rec=5 \

--fields=proto,sport,src-service,dport,dst-service data.rw

pro|sPort|src-service|dPort|dst-service|

SiLK -3.23.1 299

rwpmaplookup(1) The SiLK Reference Guide

17|29617| UDP| 53| UDP/DNS|

17| 53| UDP/DNS|29617| UDP|

6|29618| TCP| 22| TCP/SSH|

6| 22| TCP/SSH|29618| TCP|

1| 0| ICMP| 771| ICMP|

The pmapfilter plug-in does not provide a way to print the values based on the application field. You can
get that information by having rwcut print the protocol and application separated by a slash, and pipe the
result into rwpmaplookup.

$ rwcut --fields=proto,application --num-rec=5 \

--delimited=/ --no-title \

| rwpmaplookup --map-file=service.pmap

key| value|

17/53| UDP/DNS|

17/53| UDP/DNS|

6/22| TCP/SSH|

6/22| TCP/SSH|

1/0| ICMP|

ENVIRONMENT

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwpmaplookup automatically invokes this program to display its
output a screen at a time unless the --no-files switch is given. If this variable is set to an empty string,
rwpmaplookup does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwpmaplookup automatically invokes this program to display
its output a screen at a time.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file to use when the
--country-codes switch is specified without an argument. The variable’s value may be a complete
path or a file relative to SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file to use when the
--address-types switch is specified without an argument. The variable’s value may be a complete
path or a file relative to the SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwpmaplookup may use this environment variable. See the FILES section for details.

300 SiLK-3.23.1

The SiLK Reference Guide rwpmaplookup(1)

FILES

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country codes mapping file when the --country-codes switch is specified
without an argument.

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file when the --address-types switch is specified
without an argument.

NOTES

rwpmaplookup was added in SiLK 3.0.

rwpmaplookup duplicates the functionality of rwip2cc(1). rwip2cc is deprecated, and it will be removed
in the SiLK 4.0 release. Examples of using rwpmaplookup in place of rwip2cc are provided in the latter’s
manual page.

SEE ALSO

rwpmapbuild(1), rwpmapcat(1), ccfilter(3), addrtype(3), pmapfilter(3), rwgeoip2ccmap(1), rw-
cut(1), rwset(1), rwsetbuild(1), rwsetcat(1), rwsettool(1), silk(7), uniq(1)

SiLK-3.23.1 301

rwpmatch(1) The SiLK Reference Guide

rwpmatch

Filter a tcpdump file using a SiLK Flow file

SYNOPSIS

rwpmatch --flow-file=FLOW_FILE [--msec-compare] [--ports-compare]

TCPDUMP_INPUT > TCPDUMP_OUTPUT

rwpmatch --help

rwpmatch --version

DESCRIPTION

rwpmatch reads each packet from the pcap(3) (tcpdump(1)) capture file TCPDUMP INPUT and writes
the packet to the standard output if the specified FLOW FILE contains a matching SiLK Flow record. It
is designed to reverse the input from rwptoflow(1).

rwpmatch will read the pcap capture data from its standard input if TCPDUMP INPUT is specified as
stdin. The application will fail when attempting to read or write binary data from or to a terminal.

The SiLK Flow records in FLOW FILE should appear in time sorted order.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--flow-file=FLOW FILE

FLOW FILE refers to a file, named pipe, or the string stdin. The flow file determines which packet
records should be output to the new packet file. This switch is required.

--msec-compare

Compare times down to the millisecond (rather than the default of second).

--ports-compare

For TCP and UDP data, compare the source and destination ports when matching.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

302 SiLK-3.23.1

The SiLK Reference Guide rwpmatch(1)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

Given the pcap capture file data.pcap, use rwptoflow(1) to convert it to a SiLK flow file:

$ rwptoflow data.pcap --packet-pass=good.pcap --flow-out=data.rw

With rwfilter(1), select the SiLK Flow records whose source IPs are found in the IPset file sip.set :

$ rwfilter --sipset=sip.set --pass=filtered.rw data.rw

Match the original pcap file against the filtered SiLK file, in effect generating a pcap file which has been
filtered by sip.set :

$ rwpmatch --flow-file=filtered.rw good.pcap > filtered.pcap

NOTES

For best results, the tcpdump input to rwpmatch should be the output from --packet-pass-output
switch on rwptoflow. This ensures that only well-behaved packets are given to rwpmatch.

The flow file input to rwpmatch should contain single-packet flows originally derived from a tcpdump
file using rwptoflow. If a flow record is found which does not represent a corresponding tcpdump record,
rwpmatch will return an error.

Both the tcpdump and the SiLK file inputs must be time-ordered.

rwpmatch is an expensive I/O application since it reads the entire tcpdump capture file and the entire
SiLK Flow file. It may be worthwhile to optimize an analysis process to avoid using rwpmatch until payload
filtering is necessary. Saving the output from rwpmatch as a partial-results file, and matching against that
in the future (rather than the original tcpdump file) can also provide significant performance gains.

SiLK releases before 3.23 supported only millisecond timestamps. When reading packets whose timestamps
have finer precision, the times are truncated at the millisecond position.

SEE ALSO

rwptoflow(1), rwfilter(1), silk(7), tcpdump(1), pcap(3)

SiLK-3.23.1 303

rwptoflow(1) The SiLK Reference Guide

rwptoflow

Generate SiLK Flow records from packet data

SYNOPSIS

rwptoflow [--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--active-time=YYYY/MM/DD:hh:dd:mm:ss.uuuuuu-YYYY/MM/DD:hh:dd:mm:ss.uuuuuu]

[--flow-output=FLOW_PATH] [--packet-pass-output=PCKTS_PASS]

[--packet-reject-output=PCKTS_REJECT]

[--reject-all-fragments] [--reject-nonzero-fragments]

[--reject-incomplete] [--set-sensorid=SCALAR]

[--set-inputindex=SCALAR] [--set-outputindex=SCALAR]

[--set-nexthopip=IP_ADDRESS] [--print-statistics]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD] TCPDUMP_INPUT

rwptoflow [--plugin=PLUGIN ...] --help

rwptoflow --version

DESCRIPTION

rwptoflow attempts to generate a SiLK Flow record for every Ethernet IP IPv4 packet in the pcap(3)
(tcpdump(1)) capture file TCPDUMP INPUT. TCPDUMP INPUT must contain data captured from an
Ethernet datalink.

rwptoflow does not attempt to reassemble fragmented packets or to combine multiple packets into a single
flow record. rwptoflow is a simple program that creates one SiLK Flow record for every IPv4 packet in
TCPDUMP INPUT. (For an alternate approach, consider using the rwp2yaf2silk(1) tool as described at
the end of this section.)

rwptoflow will read from its standard input if TCPDUMP INPUT is specified as stdin. The SiLK Flow
records are written to the specified flow-output file or to the standard output. The application will fail
when attempting to read or write binary data from or to a terminal.

Packets outside of a user-specified active-time window can be ignored. Additional filtering on the TCP-
DUMP INPUT can be performed by using tcpdump with an expression filter and piping tcpdump’s
output into rwptoflow.

In addition to generating flow records, rwptoflow can write pcap files containing the packets that it used to
generate each flow, and/or the packets that were rejected. Note that packets falling outside the active-time
window are ignored and are not written to the packet-reject-output.

Statistics of the number of packets read, rejected, and written can be printed.

rwptoflow will reject any packet that is not an IPv4 Ethernet packet and any packet that is too short to
contain the Ethernet and IP headers. At the user’s request, packets may be rejected when

• they are fragmented---either the initial (zero-offset) fragment or a subsequent fragment

• they have a non-zero fragment offset

304 SiLK-3.23.1

The SiLK Reference Guide rwptoflow(1)

• they are not fragmented or they are the zero-fragment but the capture file does not contain enough
information about the packet to set protocol-specific information---namely the ICMP type and code,
the UDP source and destination ports, or the TCP source and destination ports and flags

Since the input packet formats do not contain some fields normally found in NetFlow data, rwptoflow
provides a way to set those flow values in all packets. For example, it is possible to set the sensor-id
manually for a tcpdump source, so that flow data can be filtered or sorted by that value later.

Alternative to rwptoflow

As mentioned above, rwptoflow is a simple program for processing Ethernet IP IPv4 packets. rwptoflow
does not:

• reassemble fragmented packets

• support IPv6 packets

• combine multiple packets into a single flow record

• support any decoding of packets (e.g., 802.1q)

For these features (and others), you should use the yaf(1) application (http://tools.netsa.cert.org/yaf/) to
read the pcap file and generate an IPFIX stream, and pipe the IPFIX stream into rwipfix2silk(1) to convert
it to SiLK Flow records.

The rwp2yaf2silk(1) script makes this common usage more convenient by wrapping the invocation of yaf
and rwipfix2silk. You give rwp2yaf2silk a pcap file and it writes SiLK Flow records.

By default, rwptoflow creates a flow record for every packet, fragments and all. You can almost force yaf
to create a flow record for every packet: When you give yaf the --idle-timeout=0 switch, yaf creates
a flow record for every complete packet and for each packet that it is able to completely reassemble from
packet fragments. Any fragmented packets that yaf cannot reassemble are dropped.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--plugin=PLUGIN

Use the specified plug-in to ignore or reject packets or to modify the flow record that is generated
from the packet. The switch may be repeated to load multiple plug-ins. See the PLUG-IN SUPPORT
section below for details.

--active-time=YYYY/MM/DD[:hh[:dd[:mm[:ss[.uuuuuu]]]]]

--active-time=YYYY/MM/DD[:hh[:dd[:mm[:ss[.uuuuuu]]]]]-YYYY/MM/DD[:hh[:dd[:mm[:ss[.uuuuuu]]]]]

Ignore all packets whose time falls outside the specified range. The times must be specified to at least
day precision. The start time is required; when the end-time is not present, it is treated as infinite. The
end-time will be rounded-up to instant before the next time unit; i.e., an end-time of 2006/08/31:15 is
treated as 2006/08/31:15:59:59.999999.

SiLK-3.23.1 305

http://tools.netsa.cert.org/yaf/

rwptoflow(1) The SiLK Reference Guide

--flow-output=FLOW PATH

Write the generated SiLK Flow records to the specified file at FLOW PATH. When this switch is not
provided, the flows are written to the standard output.

--packet-pass-output=PCKTS PASS

For each generated SiLK Flow record, write the packet that generated the flow to the pcap file specified
by PCKTS PASS. Use stdout to write the packets to the standard output.

--packet-reject-output=PCKTS REJECT

Write each packet that occurs within the active-time window but for which a SiLK Flow record was
not generated to the pcap file specified by PCKTS REJECT. Use stdout to write the packets to the
standard output.

The packets that get written to this file may include packets that were shorter than that required to
get the IP header, non-IPv4 packets, and packets that get treated as reject packets by the following
switches.

--reject-all-fragments

Do not generate a SiLK Flow record for the packet when the packet is fragmented. This includes the
initial (zero-offset) fragment and all subsequent fragments. If --packet-reject-output is specified,
the packet will be written to that file.

--reject-nonzero-fragments

Do not generate a SiLK Flow record for the packet when the packet is fragmented unless this is the
initial fragment. That is, reject all packets that have a non-zero fragmentation offset. Normally flow
records are generated for these packets, but the ports and TCP flag information is set to zero. If
--packet-reject-output is specified, the packet will be written to that file.

--reject-incomplete

Do not generate a SiLK Flow record for the packet when the packet’s fragmentation-offset is zero yet
the packet does not contain enough information to completely specify an ICMP, UDP, or TCP record
(that is, the packet is too short to set the ICMP type and code, the UDP or TCP source or destination
port, or the TCP flags). Normally, flow records are generated for these packets but the ports and TCP
flag information is set to zero. This switch has no effect on packets where the protocol is not 1,6, or
17.

This switch does not imply --reject-nonzero-fragments; to indicate that all generated flow records
must have valid port and TCP flag information, specify --reject-nonzero-fragments --reject-
incomplete.

--set-sensorid=SCALAR

Set the sensor ID for all flows to SCALAR. SCALAR should be an integer value between 0 and 65534,
inclusive. When not specified, the sensor ID is set to 65535.

--set-inputindex=SCALAR

Set the input SNMP index value for all flows to SCALAR. SCALAR should be an integer value between
0 and 4294967295, inclusive. When not specified, the SNMP input is set to 0.

--set-outputindex=SCALAR

Set the output SNMP index value for all flows to SCALAR. SCALAR should be an integer value
between 0 and 4294967295, inclusive. When not specified, the SNMP output is set to 0.

306 SiLK-3.23.1

The SiLK Reference Guide rwptoflow(1)

--set-nexthopip=IP ADDRESS

Set the next-hop IP address for all flows to IP ADDRESS ; IP ADDRESS may be in its canonical form
or an integer. When not specified, the next-hop IP is set to 0.0.0.0.

--print-statistics

Print a summary of the packets that were processed. This summary includes

• the total number of packets read

• the number that fell outside the time-window

• the number that were too short to get the IP header

• the number that were not IPv4

• the number that were discarded by a plug-in

• the total number of fragmented packets

• the number of fragments where the offset was zero

• the number of zero-offset packets that were incomplete

• the number of flows written to the output

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

SiLK-3.23.1 307

rwptoflow(1) The SiLK Reference Guide

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--help

Print the available options and exit. Options that add fields can be specified before --help so that the
new options appear in the output.

--version

Print the version number and information about how SiLK was configured, then exit the application.

PLUG-IN SUPPORT

rwptoflow allows the user to provide additional logic to ignore or reject packets, or to modify the flow
record that is generated from the packet. To do this, the user creates a plug-in that gets loaded at run-time
by giving rwptoflow the --plugin switch with the path to the plug-in as the parameter to the switch.

A plug-in is a shared object file (a.k.a. dynamic library) that is compiled from C source code. The plug-in
should have four subroutines defined:

setup()

is called when the object is first loaded. This is the place to initialize global variables to their default
values. If the plug-in provides switches of its own, they must be registered in this subroutine.

initialize()

gets called after all options have been processed but before any packets are read from the input. If this
subroutine does not return 0, the application will quit.

ptoflow()

will be called for every packet that rwptoflow is able to convert into a flow record just before the flow
record is written. This subroutine will not see packets that are short or that are not IPv4; it will also
not see fragmented packets if --reject-all-fragments is specified.

The ptoflow() function is called with two parameters:

• a pointer to the rwRec object that rwptoflow created from the packet. The subroutine may
modify the record as it sees fit.

• a void pointer that the function may cast to a pointer to the C structure:

typedef struct _sk_pktsrc_t {

/* the source of the packets */

pcap_t *pcap_src;

/* the pcap header as returned from pcap_next() */

const struct pcap_pkthdr *pcap_hdr;

/* the packet as returned from pcap_next() */

const u_char *pcap_data;

} sk_pktsrc_t;

308 SiLK-3.23.1

The SiLK Reference Guide rwptoflow(1)

This structure gives the user access to all the information about the packet.

The following return values from ptoflow() determines whether rwptoflow writes the flow and the
packet:

0

Write the flow record to the flow-output and the packet to the PCKTS PASS unless another
plug-in instructs otherwise.

1

Write the flow record to the flow-output and the packet to the PCKTS PASS immediately; do
not call the ptoflow() routine on any other plug-in.

2

Treat the packet as a reject: Do not write the flow record; write the packet to the
PCKTS REJECT immediately; do not call the ptoflow() routine on any other plug-in.

3

Ignore the packet immediately: Do not write the flow record nor the packet; do not call the
ptoflow() routine on any other plug-in.

If ptoflow() returns any other value, the rwptoflow application will terminate with an error.

teardown()

is called as the application exits. The user can use this routine to print results and to free() any data
structures that were used.

rwptoflow uses the following rules to find the plug-in: When PLUGIN contains a slash (/), rw-
ptoflow assumes the path to PLUGIN is correct. Otherwise, rwptoflow will attempt to find the file
in $SILK PATH/lib/silk, $SILK PATH/share/lib, $SILK PATH/lib, and in these directories parallel to the
application’s directory: lib/silk, share/lib, and lib. If rwptoflow does not find the file, it assumes the
plug-in is in the current directory. To force rwptoflow to look in the current directory first, specify -
-plugin=./PLUGIN. When the SILK PLUGIN DEBUG environment variable is non-empty, rwptoflow
prints status messages to the standard error as it tries to open each of its plug-ins.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

Given the packet capture file data.pcap, convert it to a SiLK flow file, data.rw, and copy the packets that
rwptoflow understands to the file good.pcap:

$ rwptoflow data.pcap --packet-pass=good.pcap --flow-out=data.rw

Use rwfilter(1) to partition the SiLK Flows records, writing those records whose source IPs are found in
the IPset file sip.set to filtered.rw :

$ rwfilter --sipset=sip.set --pass=filtered.rw data.rw

Use rwpmatch(1) to match the capture file, good.pcap, against the filtered SiLK file, in affect generating a
capture file which has been filtered by sip.set :

$ rwpmatch --flow-file=filtered.rw good.pcap > filtered.pcap

SiLK-3.23.1 309

rwptoflow(1) The SiLK Reference Guide

ENVIRONMENT

SILK PLUGIN DEBUG

When set to 1, rwptoflow print status messages to the standard error as it tries to open each of its
plug-ins.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK PATH

This environment variable gives the root of the install tree. When searching for a plug-in, rwptoflow
may use this environment variable.

SEE ALSO

rwpmatch(1), rwpdedupe(1), rwfilter(1), rwfileinfo(1), rwp2yaf2silk(1), rwipfix2silk(1), silk(7),
yaf(1), tcpdump(1), pcap(3), mergecap(1), zlib(3)

NOTES

SiLK releases before 3.23 supported only millisecond timestamps. When reading packets whose timestamps
have finer precision, the times are truncated at the millisecond position.

The mergecap(1) or rwpdedupe(1) programs can be used to join multiple tcpdump capture files in
order to convert into a single flow file.

310 SiLK-3.23.1

The SiLK Reference Guide rwrandomizeip(1)

rwrandomizeip

Randomize the IP addresses in a SiLK Flow file

SYNOPSIS

rwrandomizeip [--seed=NUMBER] [--only-change-set=CHANGE_IPSET]

[--dont-change-set=KEEP_IPSET]

[--consistent] [--save-table=FILE] [--load-table=FILE]

[--site-config-file=FILENAME]

[INPUT_FILE [OUTPUT_FILE]]

rwrandomizeip --help

rwrandomizeip --version

DESCRIPTION

Read SiLK Flow records from INPUT FILE, substitute a pseudo-random IP address for the source and
destination IP addresses, and write the result to OUTPUT FILE.

rwrandomizeip reads its input from the standard input either when no non-switch arguments are given
or when INPUT FILE is the string stdin or -. rwrandomizeip writes its output to the standard output
either when the number of non-switch arguments is less than two or when OUTPUT FILE is the string
stdout or -. Since rwrandomizeip processes binary data, it exits with an error if either INPUT FILE
or OUTPUT FILE refer to a terminal. rwrandomizeip is able to read and write files that have been
compressed with gzip(1) when the file name ends with .gz.

To only change a subset of the IP addresses, the optional switches --only-change-set or --dont-change-
set may be used; each switch takes an IPset file as its required argument. When the --only-change-
set=CHANGE IPSET switch is given, rwrandomizeip modifies only the IP addresses listed in the
CHANGE IPSET file. To change all addresses except a specified set, use rwsetbuild(1) to create an
IPset file containing those IPs and pass the name of the file to the --dont-change-set switch. An address
listed in both the only-change-set and the dont-change-set is not modified. When the same IPset is
passed to the --only-change-set and --dont-change-set switches, the output is identical to the input for
all records.

The --seed switch may be used to initialize the pseudo-random number generator to a known state.

Use of the --consistent, --load-table, or --save-table switches causes rwrandomizeip to operate in
consistent mode. When none of the switches are specified, it operates in inconsistent mode.

Consistent Mode

In consistent mode, the octets of an IPv4 address are modified such that structural information of the data
is maintained, and multiple instances of an input IP address are mapped to the same randomized output
address. Unfortunately, this comes at a cost of less randomness in the output. Specifically, rwrandomizeip
creates four internal tables with each table having 256 entries containing the values 0--255 that have been
randomly shuffled. When an IP address is read, each table is used to map the values for a specific octet
of that IP address. For example, when modifying the IP address 10.10.10.10, the value at position 10 from
each table is substituted into the IP.

SiLK-3.23.1 311

rwrandomizeip(1) The SiLK Reference Guide

Inconsistent Mode

In this mode, rwrandomizeip uses a pseudo-random address for each source and destination IP address
it processes. Each record is handled individually, and an IP address that appears multiple times in the
input file is mapped to a different output address each time. Thus, no structural information in the input
is maintained. rwrandomizeip changes each IP address to a non-routable address from the CIDR blocks
10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--seed=NUMBER

Use NUMBER to seed the pseudo-random number generator. This may be used to put the random
number generator into a known state, which is useful for testing.

--only-change-set=CHANGE IPSET

Only modify the source or destination IP address if it appears in the given IPset file CHANGE IPSET.
The rwsetbuild command may be used to create an IPset file. When the --dont-change-
set=KEEP IPSET switch is also given, the IPs it contains override those in the CHANGE IPSET
file.

--dont-change-set=KEEP IPSET

Do not modify the source or destination IP address if the address appears in the given IPset file
KEEP IPSET. The rwsetbuild command may be used to create an IPset file. The interaction of this
switch with the --only-change-set switch is described immediately above.

--consistent

Randomize the IP addresses consistently, so that an input IP address is always mapped to the same
value. The default behavior is to use a random IP address for each IP, even if the IP has been seen
before.

--save-table=FILE

Randomize the IP addresses consistently and save this run’s randomization table for future use. The
table is written to the specified FILE, which must not not exist. This switch is incompatible with the
--load-table switch.

--load-table=FILE

Randomize the IP addresses consistently using the randomization table contained in FILE that was
created by a previous invocation of rwrandomizeip. This switch is incompatible with the --save-
table switch.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwrandomizeip searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

312 SiLK-3.23.1

The SiLK Reference Guide rwrandomizeip(1)

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This variable gives the root of the directory tree where the data store of SiLK Flow files is maintained,
overriding the location that is compiled into the tools (/data). rwswapbytes may search for the site
configuration file, silk.conf, in this directory. See the FILES section for details.

SILK PATH

This environment variable gives the root of the directory tree where the tools are installed. As part of
its search for the site configuration file, rwrandomizeip may use this variable. See the FILES section
for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file.

SEE ALSO

rwsetbuild(1), silk(7)

BUGS

rwrandomizeip does not support IPv6 flow records. When an input file contains IPv6 records, rwran-
domizeip converts records that contain addresses in the ::ffff:0:0/96 prefix to IPv4 and processes them.
rwrandomizeip silently ignores IPv6 records containing addresses outside of that prefix.

Only the source and destination IP fields are modified; additional fields in the SiLK Flow records may leak
sensitive information.

Prior to SiLK 3.16.0, rwrandomizeip required explicit arguments for the input file and the output file.

SiLK-3.23.1 313

rwrecgenerator(1) The SiLK Reference Guide

rwrecgenerator

Generate random SiLK Flow records

SYNOPSIS

rwrecgenerator { --silk-output-path=PATH | --text-output-path=PATH

| { --output-directory=DIR_PATH

--processing-directory=DIR_PATH }}

--log-destination=DESTINATION [--log-level=LEVEL]

[--log-sysfacility=NUMBER] [--seed=SEED]

[--start-time=START_DATETIME --end-time=END_DATETIME]

[--time-step=MILLISECONDS] [--events-per-step=COUNT]

[--num-subprocesses=COUNT] [--flush-timeout=MILLISEC]

[--file-cache-size=SIZE] [--compression-method=COMP_METHOD]

[--timestamp-format=FORMAT] [--epoch-time]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--integer-sensors] [--integer-tcp-flags] [--no-titles]

[--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [--delimited=[CHAR]]]

[--site-config-file=FILENAME] [--sensor-prefix-map=FILE]

[--flowtype-in=CLASS/TYPE] [--flowtype-inweb=CLASS/TYPE]

[--flowtype-out=CLASS/TYPE] [--flowtype-outweb=CLASS/TYPE]

rwrecgenerator --help

rwrecgenerator --version

DESCRIPTION

rwrecgenerator uses pseudo-random numbers to generate events, where each consists of one or more SiLK
Flow records. These flow records can written as a single binary file, as text (in either a columnar or a comma
separated value format) similar to the output from rwcut(1), or as a directory of small binary files to mimic
the incremental files produced by rwflowpack(8). The type of output to produce must be specified using
the appropriate switches. Currently only one type of output may be produced in a single invocation.

rwrecgenerator works through a time window, where the starting and ending times for the window may be
specified on the command line. When not specified, the window defaults to the previous hour. By default,
rwrecgenerator will generate one event at the start time and one event at the end time. To modify the
size of the steps rwrecgenerator takes across the window, specify the --time-step switch. The number of
events to create at each step may be specified with the --events-per-step switch.

The time window specifies when the events begin. Since most events create multiple flow records with small
time offsets between them (and some events may create flow records across multiple hours), flow records will
exist that begin after the time window.

To generate a single SiLK flow file, specify its location with the --silk-output-path switch. A value of -
will write the output to the standard output unless the standard output is connected to a terminal.

To produce textual output, specify --text-output-path. rwrecgenerator has numerous switches to control
the appearance of the text; however, currently rwrecgenerator produces a fixed set of fields.

314 SiLK-3.23.1

The SiLK Reference Guide rwrecgenerator(1)

When creating incremental files, the --output-directory and --processing-directory switches are re-
quired. rwrecgenerator creates files in the processing directory, and moves the files to the output directory
when the flush timeout arrives. The default flush timeout is 30,000 milliseconds (30 seconds); the user may
modify the value with the --flush-timeout switch. Any files in the processing directory are removed when
rwrecgenerator starts.

The --num-subprocesses switch tells rwrecgenerator to use multiple subprocesses when creating incre-
mental files. When the switch is specified, rwrecgenerator will split the time window into multiple pieces
and give each subprocess its own time window to create. The initial rwrecgenerator process then waits
for the subprocesses to complete. When --num-subprocesses is specified, rwrecgenerator will create
subdirectories under the --processing-directory, where each subprocess gets its own processing directory.

The --seed switch may be specified to provide a consistent set of flow records across multiple invocations.
(Note that the names of the incremental files will differ across invocations since those names are created
with the mkstemp(3) function.)

Given the same seed for the pseudo-random number generator and assuming the --num-subprocesses is
not specified, the output from rwrecgenerator will contain the same data regardless of whether the output
is written to a single SiLK flow file, a text file, or a series of incremental files.

When both --seed and --num-subprocesses is specified, the incremental files will contain the same flow
records across invocations, but the flow records will not be consistent with those created by --silk-output-
path or --text-output-path.

rwrecgenerator must have access to a silk.conf(5) site configuration file, either specified by the --site-
config-file switch on the command line or specified by the typical methods.

The --flowtype-in, --flowtype-inweb, --flowtype-out, and --flowtype-outweb switches may be used to
specify the flowtype (that is, the class/type pair) that rwrecgenerator uses for its flow records. When these
switches are not specified, rwrecgenerator attempts to use the flowtypes defined in the silk.conf file for the
twoway site. Specifically, it attempts to use ”all/in”, ”all/inweb”, ”all/out”, and ”all/outweb”, respectively.

Use of the --sensor-prefix-map switch is recommended. The argument should name a prefix map file that
maps from an internal IP address to a sensor number. If the switch is not provided, all flow records will use
the first sensor in the silk.conf file that is supported by the class specified by the flowtypes. When using the
--sensor-prefix-map, make certain the sensors you choose are in the class specified in the --flowtype-*
switches.

When using the --sensor-prefix-map switch and creating incremental files, it is recommended that you use
the --file-cache-size switch to increase the size of the stream cache to be approximately 12 to 16 times the
number of sensors. This will reduce the amount of time spent closing and reopening the files.

The --log-destination switch is required. Specify none to disable logging.

Currently, rwrecgenerator only supports generating IPv4 addresses. Addresses in 0.0.0.0/1 are considered
internal, and addresses in 128.0.0.0/1 are considered external. All flow records are between an internal and
an external address. Whether the internal addresses is the source or destination of the unidirectional flow
record is determined randomly.

The types of flow records that rwrecgenerator creates are:

• HTTP traffic on port 80/tcp that consists of a query and a response. This traffic will be about 30% of
the total by flow count.

• HTTPS traffic on port 443/tcp that consists of a query and a response. This traffic will be about 30%
of the total by flow count.

SiLK-3.23.1 315

rwrecgenerator(1) The SiLK Reference Guide

• DNS traffic on port 53/udp that consists of a query and a response. This traffic will be about 10% of
the total by flow count.

• FTP traffic on port 21/tcp that consists of a query and a response. This traffic will be about 4% of
the total by flow count.

• ICMP traffic on that consists of a single message. This traffic will be about 4% of the total by flow
count.

• IMAP traffic on port 143/tcp that consists of a query and a response. This traffic will be about 4% of
the total by flow count.

• POP3 traffic on port 110/tcp that consists of a query and a response. This traffic will be about 4% of
the total by flow count.

• SMTP traffic on port 25/tcp that consists of a query and a response. This traffic will be about 4% of
the total by flow count.

• TELNET traffic on port 23/tcp between two machines. This traffic may involve multiple flow records
that reach the active timeout of 1800 seconds. This traffic will be about 4% of the total by flow count.

• Traffic on IP Protocols 47, 50, or 58 that consists of a single record. This traffic will be about 4% of
the total by flow count.

• Scans of every port on one IP address. This traffic will be about 1% of the total by flow count.

• Scans of a single port across a range of IP addresses. This traffic will be about 1% of the total by flow
count.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Output Switches

Exactly one of the following switches is required.

--silk-output-path=PATH

Tell rwrecgenerator to create a single binary file of SiLK flow records at the specified location. If
PATH is -, the records are written to the standard output. rwrecgenerator does not support writing
binary data to a terminal.

--output-directory=DIR PATH

Name the directory into which the incremental files are written once the flush timeout is reached.

--text-output-path=PATH

Tell rwrecgenerator to convert the flow records it creates to text and to print the result in a format
similar to that created by rwcut(1). The output is written to the specified location. If PATH is -,
the records are written to the standard output.

316 SiLK-3.23.1

The SiLK Reference Guide rwrecgenerator(1)

Logging Switches

The --log-destination switch is required. Use a value of none to disable logging.

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

none

Messages are not written anywhere.

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-level=LEVEL

Set the severity of messages that will be logged. The levels from most severe to least are: emerg,
alert, crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where rwrecgenerator is running.
This switch produces an error unless --log-destination=syslog is specified.

General Switches

The following are general purpose switches. None are required.

--seed=SEED

Seed the pseudo-random number generator with the value SEED. When not specified, rwrecgenerator
creates its own seed. Specifying the seed allows different invocations of rwrecgenerator to produce
the same output (assuming the same value is given for all switches and that the time window is
specified).

--start-time=YYYY/MM/DD[:HH[:MM[:SS[.ssssss]]]]

--start-time=EPOCH SECONDS PLUS MILLISECONDS

Specify the earliest date and time at which an event is started. The specified time must be given to at
least day precision. Any parts of the date-time string that are not specified are set to 0. The switch
also accepts UNIX epoch seconds with optional fractional seconds. When not specified, defaults to the
beginning of the previous hour.

--end-time=YYYY/MM/DD[:HH[:MM[:SS[.ssssss]]]]

SiLK-3.23.1 317

rwrecgenerator(1) The SiLK Reference Guide

--end-time=EPOCH SECONDS PLUS MILLISECONDS

Specify the latest date and time at which an event is started. This time does not specify the latest
end-time for the flow records or even the latest start-time, since many events simulate a query/response
pair, with the response following the query by a few milliseconds. The specified time must be given
to at least day precision, and it must not be less than the start-time. Any parts of the date-time
string that are not specified are set to 0. The switch also accepts UNIX epoch seconds with optional
fractional seconds. When not specified, defaults to the end of the previous hour.

--time-step=MILLISECONDS

Move forward MILLISECONDS milliseconds at each step as rwrecgenerator moves through the time
window. When not specified, defaults to the difference between the start-time and end-time; that is,
rwrecgenerator will generate events at the start-time and then at the end-time. A MILLISECONDS
value of 0 indicates rwrecgenerator should only create events at the start-time.

--events-per-step=COUNT

Create COUNT events at each time step. The default is 1.

--help

Print the available options and exit.

--version

Print the version number and information about how rwrecgenerator was configured, then exit the
application.

Incremental Files Switches

The following switches are used when creating incremental files.

--processing-directory=DIR PATH

Name the directory under the incremental files are initially created. Any files in this directory are
removed when rwrecgenerator is started. When the flush timeout is reached, the files are closed and
moved from this directory to the output-directory. If --num-subprocesses is specified, subdirectories
are created under DIR PATH, and each subprocess is given its own subdirectory.

--num-subprocesses=COUNT

Tell rwrecgenerator to create COUNT subprocesses to generate incremental files. This switch is
ignored when incremental files are not being created. When this switch is specified, rwrecgenerator
creates subdirectories below the processing directory. The default value for COUNT is 0.

--flush-timeout=MILLISECONDS

Set the timeout for flushing any in-memory records to disk to MILLISECONDS milliseconds. At this
time, the incremental files are closed and the files are moved from the processing directory to the output
directory. The timeout uses the internal time as rwrecgenerator moves through the time window. If
not specified, the default is 30,000 milliseconds (30 seconds). This switch is ignored when incremental
files are not being created.

--file-cache-size=SIZE

Set the maximum number of data files to have open for writing at any one time to SIZE. If not specified,
the default is 32 files.

318 SiLK-3.23.1

The SiLK Reference Guide rwrecgenerator(1)

--compression-method=COMP METHOD

Specify the compression library to use when writing binary output files. If this switch is not given,
the value in the SILK COMPRESSION METHOD environment variable is used if the value names
an available compression method. When no compression method is specified, binary output is com-
pressed using the default chosen when SiLK was compiled. The valid values for COMP METHOD
are determined by which external libraries were found when SiLK was compiled. To see the available
compression methods and the default method, use the --help or --version switch. SiLK can support
the following COMP METHOD values when the required libraries are available.

none

Do not compress the SiLK Flow records using an external library.

zlib

Use the zlib(3) library for compressing the flow records.

lzo1x

Use the lzo1x algorithm from the LZO real-time compression library for compressing the flow
records.

snappy

Use the snappy library for compressing the flow records. Since SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available.

Text File Switches

The following switches can be used when creating textual output.

--timestamp-format=FORMAT

When producing textual output, specify the format, timezone, and/or precision (representation of
fractional seconds) to use when printing timestamps and the duration. When this switch is not spec-
ified, the SILK TIMESTAMP FORMAT environment variable is checked for a format, timezone, and
precision. If it is empty or contains invalid values, timestamps are printed in the default format with
milliseconds, and the timezone is UTC unless SiLK was compiled with local timezone support. FOR-
MAT is a comma-separated list of a format, a timezone, and/or a precision in any order. The format
is one of:

default

Print the timestamps as YYYY /MM /DDThh:mm:ss.sss.

iso

Print the timestamps as YYYY -MM -DD hh:mm:ss.sss.

m/d/y

Print the timestamps as MM /DD/YYYY hh:mm:ss.sss.

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

The --timestamp-format switch may change the representation of fractional seconds, or precision,
of the timestamp and duration fields from their default of milliseconds. Note: When using a precision
less than that used by SiLK internally, the printed start time and duration may not equal the printed
end time. The available precisions are:

SiLK-3.23.1 319

rwrecgenerator(1) The SiLK Reference Guide

no-frac

Truncate the fractional seconds value on the timestamps and on the duration field. Previously
this was called no-msec. Since SiLK 3.23.0.

milli

Print the fractional seconds to 3 decimal places. Since SiLK 3.23.0.

micro

Print the fractional seconds to 6 decimal places. Since SiLK 3.23.0.

nano

Print the fractional seconds to 9 decimal places. Since SiLK 3.23.0.

no-msec

Truncate the fractional seconds value on the timestamps and on the duration field. This is an
alias for no-frac and is deprecated as of SiLK 3.23.0.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

--epoch-time

When producing textual output, print timestamps as epoch time (number of seconds since midnight
GMT on 1970-01-01). This switch is equivalent to --timestamp-format=epoch, it is deprecated as
of SiLK 3.8.1, and it will be removed in the SiLK 4.0 release.

--ip-format=FORMAT

When producing textual output, specify how IP addresses are printed, where FORMAT is a
comma-separated list of the arguments described below. When this switch is not specified, the
SILK IP FORMAT environment variable is checked for a value and that format is used if it is valid.
The default FORMAT is canonical. Since SiLK 3.8.1.

canonical

Print IP addresses in the canonical format. For an IPv4 record, use dot-separated decimal
(192.0.2.1). For an IPv6 records, use either colon-separated hexadecimal (2001:db8::1) a or
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively.

320 SiLK-3.23.1

The SiLK Reference Guide rwrecgenerator(1)

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

Change IPv4 addresses to IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock)
prior to formatting. Since SiLK 3.17.0.

unmap-v6

Change any IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock) to IPv4 addresses
prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

When producing textual output, print IP addresses as integers. This switch is equivalent to --ip-
format=decimal, it is deprecated as of SiLK 3.8.1, and it will be removed in the SiLK 4.0 release.

--zero-pad-ips

When producing textual output, print IP addresses as fully-expanded, zero-padded values in their
canonical form. This switch is equivalent to --ip-format=zero-padded, it is deprecated as of SiLK
3.8.1, and it will be removed in the SiLK 4.0 release.

--integer-sensors

When producing textual output, print the integer ID of the sensor rather than its name.

--integer-tcp-flags

When producing textual output, print the TCP flag fields (flags, initialFlags, sessionFlags) as an integer
value. Typically, the characters F,S,R,P,A,U,E,C are used to represent the TCP flags.

--no-titles

When producing textual output, turn off column titles. By default, titles are printed.

--no-columns

When producing textual output, disable fixed-width columnar output.

--column-separator=C

When producing textual output, use specified character between columns and after the final column.
When this switch is not specified, the default of ’|’ is used.

--no-final-delimiter

When producing textual output, do not print the column separator after the final column. Normally
a delimiter is printed.

SiLK-3.23.1 321

rwrecgenerator(1) The SiLK Reference Guide

--delimited

--delimited=C

When producing textual output, run as if --no-columns --no-final-delimiter --column-sep=C had
been specified. That is, disable fixed-width columnar output; if character C is provided, it is used as
the delimiter between columns instead of the default ’|’.

SiLK Site Specific Switches

The following switches control the class/type and sensor that rwrecgenerator assigns to every flow record.

--sensor-prefix-map=FILE

Load a prefix map from FILE and use it to map from the internal IP addresses to sensor numbers. If
the switch is not provided, all flow records will use the first sensor in the silk.conf file that is supported
by the class named in the flowtype. The sensor IDs specified in FILE should agree with the class
specified in the --flowtype-* switches.

--flowtype-in=CLASS/TYPE

Set the class/type pair for flow records where the source IP is external, the destination IP is internal,
and the flow record is not considered to represent a web record to CLASS/TYPE. Web records are
those that appear on ports 80/tcp, 443/tcp, and 8080/tcp. When not specified, rwrecgenerator
attempts to find the flowtype ”all/in” in the silk.conf file.

--flowtype-inweb=CLASS/TYPE

Set the class/type pair for flow records representing web records where the source IP is external and
the destination IP is internal to CLASS/TYPE. When not specified and the --flowtype-in switch is
given, that CLASS/TYPE pair will be used. When neither this switch nor --flowtype-in is given,
rwrecgenerator attempts to find the flowtype ”all/inweb” in the silk.conf file.

--flowtype-out=CLASS/TYPE

Set the class/type pair for flow records where the source IP is internal, the destination IP is external,
and the flow record is not considered to represent a web record to CLASS/TYPE. When not specified,
rwrecgenerator attempts to find the flowtype ”all/out” in the silk.conf file.

--flowtype-outweb=CLASS/TYPE

Set the class/type pair for flow records representing web records where the source IP is internal and
the destination IP is external to CLASS/TYPE. When not specified and the --flowtype-out switch is
given, that CLASS/TYPE pair will be used. When neither this switch nor --flowtype-out is given,
rwrecgenerator attempts to find the flowtype ”all/outweb” in the silk.conf file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwrecgenerator searches for the site configuration file in the locations specified in the FILES section.

ENVIRONMENT

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

322 SiLK-3.23.1

The SiLK Reference Guide rwrecgenerator(1)

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwrecgenerator may use this environment variable when searching for the SiLK site config-
uration file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwrecgenerator may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone in
which rwrecgenerator displays timestamps. (If both of those are false, the TZ environment variable
is ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwrecgenerator --version.) The
TZ environment variable is also used when rwrecgenerator parses the timestamp specified in the
--start-time or --end-time switches if SiLK is built with local timezone support.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SiLK-3.23.1 323

rwrecgenerator(1) The SiLK Reference Guide

SEE ALSO

silk(7), rwcut(1), rwflowpack(8), silk.conf(5), syslog(3), zlib(3), tzset(3), environ(7)

324 SiLK-3.23.1

The SiLK Reference Guide rwresolve(1)

rwresolve

Convert IP addresses in delimited text to hostnames

SYNOPSIS

rwresolve [--ip-fields=FIELDS] [--delimiter=C] [--column-width=N]

[--resolver={ c-ares | adns | getnameinfo | gethostbyaddr }]

[--max-requests=N]

rwresolve --help

rwresolve --version

DESCRIPTION

rwresolve is an application that reads delimited textual input and maps IP addresses in the input to host
names up performing a reverse DNS look-up. If the look-up succeeds, the IP is replaced with the host name
(rwresolve uses the first host name returned by the resolver). If the look-up fails, the IP address remains
unchanged.

rwresolve does a DNS query for every IP address, so it can be extremely slow. rwresolve works best on
very limited data sets. To reduce the number of DNS calls it makes, rwresolve caches the results of queries.
There are two libraries that support asynchronous DNS queries which rwresolve can use if either of those
libraries was found when SiLK was configured. These libraries are the ADNS library and the c-ares library.
Specify the --resolver switch to have rwresolve use a particular function for look-ups.

When an IP address resolves to multiple names, rwresolve prints the first name returned by the resolver.

rwresolve is designed specifically to deal with the output of rwcut(1), though it will work with other SiLK
tools that produce delimited text. rwresolve reads the standard input, splits the line into fields based on
the delimiter (default ’|’), converts the specified FIELDS (default fields 1 and 2) from an IP address in its
canonical form (e.g., dotted decimal for IPv4) to a hostname. If the field cannot be parsed as an address or
if the look up fails to return a hostname, the field is not modified. The fields to convert are specified via the
--ip-fields=FIELDS option. The --delimiter option can be used to specify an alternate delimiter.

Since hostnames are generally wider than IP addresses, the use of the --column-width field is advised
to increase the width of the IP columns. If this switch is not specified, no justification of hostnames is
attempted.

By default, rwresolve will use the c-ares library if available, then it will use the ADNS library if available.
To choose a different IP look up option, use the --resolver switch.

The maximum number of parallel DNS queries to attempt with c-ares or ADNS can be specified with the
--max-requests switch.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

SiLK-3.23.1 325

rwresolve(1) The SiLK Reference Guide

--ip-fields=FIELDS

Specify the column number(s) of the input that should be considered IP addresses. Column numbers
start from 1. If not specified, the default is 1,2.

--delimiter=C

Specify the character that separates the columns of the input. The default is ’|’.

--column-width=WIDTH

Set the width of the columns specified in --ip-fields to WIDTH. When specified, the FIELDS columns
always have the specified WIDTH regardless of whether the IP to hostname mapping was successful.
If this switch is not specified, fields containing IP addresses that could not be resolved will maintain
their input length, and fields where the lookup was successful will be printed with no padding.

--resolver=c-ares

Use the c-ares library to convert the IP addresses to hostnames. Requires that the c-ares library was
found when SiLK was configured. This library supports IPv6 look-ups when SiLK is compiled to
support IPv6.

--resolver=adns

Use the ADNS library to convert the IP addresses to hostnames. Requires that the ADNS library was
found when SiLK was configured. This library only supports IPv4 look-ups.

--resolver=getnameinfo

Use the getnameinfo(3) C library function to convert IP addresses to hostnames. This function
supports IPv6 look-ups when SiLK is compiled to support IPv6.

--resolver=gethostbyaddr

Use the gethostbyaddr(3) C library function to convert IP addresses to hostnames. This function
only supports IPv4.

--max-requests=MAX

When the c-ares or ADNS library is used, limit the number of outstanding DNS queries active at any
one time to MAX. The default is 128. This switch is not available if neither c-ares nor ADNS were
found when SiLK was compiled.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLE

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Suppose you have found some interesting data in the file interesting.rw, and you want to view the data using
rwcut(1), but you also want to determine the hostname of each the source IPs and append that hostname
to the rwcut output. In the example command below, note how the source IP field (rwcut field 1) was
specified twice in the rwcut invocation, and rwresolve is told to resolve the second occurrence, which is
field in column 13. This allows you to see the source IP (in the first column) and the host name it mapped
to (in the final column).

326 SiLK -3.23.1

The SiLK Reference Guide rwresolve(1)

$ rwcut --fields=1-12,1 interesting.rw \

| rwresolve --ip-field=13

ENVIRONMENT

When ADNS is used, the following environment variables affect it. The ADNS form of each variable takes
precedence.

RES CONF

ADNS RES CONF

A filename, whose contents are in the format of resolv.conf.

RES CONF TEXT

ADNS RES CONF TEXT

A string in the format of resolv.conf.

RES OPTIONS

ADNS RES OPTIONS

These are parsed as if they appeared in the options line of a resolv.conf. In addition to being parsed
at this point in the sequence, they are also parsed at the very beginning before resolv.conf or any other
environment variables are read, so that any debug option can affect the processing of the configuration.

LOCALDOMAIN

ADNS LOCALDOMAIN

These are interpreted as if their contents appeared in a search line in resolv.conf.

SEE ALSO

rwcut(1), silk(7), gethostbyaddr(3), getnameinfo(3)

BUGS

Because rwresolve must do a DNS query for every IP address, it is extremely slow.

The output from rwresolve is rarely columnar because hostnames can be very long. You may want to
consider putting the resolved hostnames in the final column of output.

SiLK-3.23.1 327

rwscan(1) The SiLK Reference Guide

rwscan

Detect scanning activity in a SiLK dataset

SYNOPSIS

rwscan [--scan-model=MODEL] [--output-path=PATH]

[--trw-internal-set=SETFILE]

[--trw-theta0=PROB] [--trw-theta1=PROB]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--integer-ips] [--model-fields] [--scandb]

[--threads=THREADS] [--queue-depth=DEPTH]

[--verbose-progress=CIDR] [--verbose-flows]

[{--verbose-results | --verbose-results=NUM}]

[--site-config-file=FILENAME]

[FILES...]

rwscan --help

rwscan --version

DESCRIPTION

rwscan reads sorted SiLK Flow records, performs scan detection analysis on those records, and outputs
textual columnar output for the scanning IP addresses. rwscan writes its out to the --output-path or to
the standard output when --output-path is not specified.

The types of scan detection analysis that rwscan supports are Threshold RandomWalk (TRW) and Bayesian
Logistic Regression (BLR). Details about these techniques are described in the METHOD OF OPERATION
section below.

rwscan is designed to write its data into a database. This database can be queried using the rwscan-
query(1) tool. See the EXAMPLES section for the recommended database schema.

The input to rwscan should be pre-sorted using rwsort(1) by the source IP, protocol, and destination IP
(i.e., --fields=sip,proto,dip).

rwscan reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified. To read the standard input in addition to the named files, use - or stdin
as a file name. If an input file name ends in .gz, the file is uncompressed as it is read.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--scan-model=MODEL

Select a specific scan detection model. If not specified, the default value for MODEL is 0. See the
METHOD OF OPERATION section for more details.

328 SiLK-3.23.1

The SiLK Reference Guide rwscan(1)

0

Use the Threshold Random Walk (TRW) and Bayesian Logistic Regression (BLR) scan detection
models in series.

1

Use only the TRW scan detection model.

2

Use only the BLR scan detection model.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwscan exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is either sent to the pager or written to the standard output.

--trw-internal-set=SETFILE

Specify an IPset file containing all valid internal IP addresses. This parameter is required when using
the TRW scan detection model, since the TRW model requires the list of targeted IPs (i.e., the IPs
to detect the scanning activity to). This switch is ignored when the TRW model is not used. For
information on creating IPset files, see the rwset(1) and rwsetbuild(1) manual pages. Prior to SiLK
3.4, this switch was named --trw-sip-set.

--trw-sip-set=SETFILE

This is a deprecated alias for --trw-internal-set.

--trw-theta0=PROB

Set the theta 0 parameter for the TRW scan model to PROB, which must be a floating point number
between 0 and 1. theta 0 is defined as the probability that a connection succeeds given the hypothesis
that the remote source is benign (not a scanner). The default value for this option is 0.8. This option
should only be used by experts familiar with the TRW algorithm.

--trw-theta1=PROB

Set the theta 1 parameter for the TRW scan model to PROB, which must be a floating point number
between 0 and 1. theta 1 is defined as the probability that a connection succeeds given the hypothesis
that the remote source is malicious (a scanner). The default value for this option is 0.2. This option
should only be used by experts familiar with the TRW algorithm.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns. When this switch is not specified, the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

SiLK-3.23.1 329

rwscan(1) The SiLK Reference Guide

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width column output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--integer-ips

Print IP addresses as decimal integers instead of in their canonical representation.

--model-fields

Show scan model detail fields. This switch controls whether additional informational fields about the
scan detection models are printed.

--scandb

Produce output suitable for loading into a database. Sample database schema are given below under
EXAMPLES. This option is equivalent to --no-titles --no-columns --no-final-delimiter --model-
fields --integer-ips.

--threads=THREADS

Specify the number of worker threads to create for scan detection processing. By default, one thread
will be used. Changing this number to match the number of available CPUs will often yield a large
performance improvement.

--queue-depth=DEPTH

Specify the depth of the work queue. The default is to make the work queue the same size as the
number of worker threads, but this can be changed. Normally, the default is fine.

--verbose-progress=CIDR

Report progress as rwscan processes input data. The CIDR argument should be an integer that
corresponds to the netblock size of each line of progress. For example, --verbose-progress=8 would
print a progress message for each /8 network processed.

--verbose-flows

Cause rwscan to print very verbose information for each flow. This switch is primarily useful for
debugging.

--verbose-results

--verbose-results=NUM

Print detailed information on each IP processed by rwscan. If a NUM argument is provided, only
print verbose results for sources that sent at least NUM flows. This information includes scan model
calculations, overall scan scores, etc. This option will generate a lot of output, and is primarily useful
for debugging.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwscan searches for the site configuration file in the locations specified in the FILES section.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

330 SiLK-3.23.1

The SiLK Reference Guide rwscan(1)

METHOD OF OPERATION

rwscan’s default behavior is to consult two scan detection models to determine whether a source is a
scanner. The primary model used is the Threshold Random Walk (TRW) model. The TRW algorithm takes
advantage of the tendency of scanners to attempt to contact a large number of IPs that do not exist on the
target network.

By keeping track of the number of ”hits” (successful connections) and ”misses” (attempts to connect to
IP addresses that are not active on the target network), scanners can be detected quickly and with a high
degree of accuracy. Sequential hypothesis testing is used to analyze the probability that a source is a scanner
as each flow record is processed. Once the scan probability exceeds a configured maximum, the source is
flagged as a scanner, and no further analysis of traffic from that host is necessary.

The TRW model is not 100% accurate, however, and only finds scans in TCP flow data. In the case where
the TRW model is inconclusive, a secondary model called BLR is invoked. BLR stands for ”Bayesian Logistic
Regression.” Unlike TRW, the BLR approach must analyze all traffic from a given source IP to determine
whether that IP is a scanner.

Because of this, BLR operates much slower than TRW. However, the BLR model has been shown to detect
scans that are not detected by the TRW model, particularly scans in UDP and ICMP data, and vertical
TCP scans which focus on finding services on a single host. It does this by calculating metrics from the flow
data from each source, and using those metrics to arrive at an overall likelihood that the flow data represents
scanning activity.

The metrics BLR uses for detecting scans in TCP flow data are:

• the ratio of flows with no ACK bit set to all flows

• the ratio of flows with fewer than three packets to all flows

• the average number of source ports per destination IP address

• the ratio of the number of flows that have an average of 60 bytes/packet or greater to all flows

• the ratio of the number of unique destination IP addresses to the total number of flows

• the ratio of the number of flows where the flag combination indicates backscatter to all flows

The metrics BLR uses for detecting scans in UDP flow data are:

• the ratio of flows with fewer than three packets to all flows

• the maximum run length of IP addresses per /24 subnet

• the maximum number of unique low-numbered (less than 1024) destination ports contacted on any one
host

• the maximum number of consecutive low-numbered destination ports contacted on any one host

• the average number of unique source ports per destination IP address

• the ratio of flows with 60 or more bytes/packet to all flows

• the ratio of unique source ports (both low and high) to the number of flows

The metrics BLR uses for detecting scans in ICMP flow data are:

SiLK-3.23.1 331

rwscan(1) The SiLK Reference Guide

• the maximum number of consecutive /24 subnets that were contacted

• the maximum run length of IP addresses per /24 subnet

• the maximum number of IP addresses contacted in any one /24 subnet

• the total number of IP addresses contacted

• the ratio of ICMP echo requests to all ICMP flows

Because the TRW model has a lower false positive rate than the BLR model, any source identified as a
scanner by TRW will be identified as a scanner by the hybrid model without consulting BLR. BLR is only
invoked in the following cases:

• The traffic being analyzed is UDP or ICMP traffic, which rwscan’s implementation of TRW cannot
process.

• The TRW model has identified the source as benign. This occurs when the scan probability drops
below a configured minimum during sequential hypothesis testing.

• The TRW model has identified the source as unknown (where the scan probability never exceeded the
minimum or maximum thresholds during sequential hypothesis testing).

In situations where the use of one model is preferred, the other model can be disabled using the --scan-model
switch. This may have an impact on the performance and/or accuracy of the system.

LIMITATIONS

rwscan detects scans in IPv4 flows only.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Basic Usage

Assuming a properly sorted SiLK Flow file as input, the basic usage for Bayesian Logistic Regression (BLR)
scan detection requires only the input file, data.rw, and output file, scans.txt, arguments.

$ rwscan --scan-model=2 --output-path=scans.txt data.rw

Basic usage of Threshold Random Walk (TRW) scan detection requires the IP addresses of the targeted
network (i.e., the internal IP space), specified in the internal.set IPset file.

$ rwscan --trw-internal-set=internal.set --output-path=scans.txt data.rw

332 SiLK-3.23.1

The SiLK Reference Guide rwscan(1)

Typical Usage

More commonly, an analyst uses rwfilter(1) to query the data repository for flow records within a time
window. First, the analyst has rwset(1) put the source addresses of outgoing flow records into an IPset,
resulting in the IPset containing the IPs of active hosts on the internal network. Next, the incoming traffic
is piped to rwsort(1) and then to rwscan.

$ rwfilter --start=2004/12/29:00 --type=out,outweb --all-dest=stdout \

| rwset --sip=internal.set

$ rwfilter --start=2004/12/29:00 --type=in,inweb --all-dest=stdout \

| rwsort --fields=sip,proto,dip \

| rwscan --trw-internal-set=internal.set --scan-model=0 \

--output-path=scans.txt

Storing Scans in a PostgreSQL Database

Instead of having the analyst run rwscan directly, often the output from rwscan is put into a database
where it can be queried by rwscanquery(1). The output produced by the --scandb switch is suitable for
loading into a database of scans. The process for using the PostgreSQL database is described in this section.

Schemas for Oracle, MySQL, and SQLite are provided below, but the details to create users with the proper
rolls are not included.

Here is the schema for PostgreSQL:

CREATE DATABASE scans

CREATE SCHEMA scans

CREATE SEQUENCE scans_id_seq

CREATE TABLE scans (

id BIGINT NOT NULL DEFAULT nextval(’scans_id_seq’),

sip BIGINT NOT NULL,

proto SMALLINT NOT NULL,

stime TIMESTAMP without time zone NOT NULL,

etime TIMESTAMP without time zone NOT NULL,

flows BIGINT NOT NULL,

packets BIGINT NOT NULL,

bytes BIGINT NOT NULL,

scan_model INTEGER NOT NULL,

scan_prob FLOAT NOT NULL,

PRIMARY KEY (id)

)

CREATE INDEX scans_stime_idx ON scans (stime)

CREATE INDEX scans_etime_idx ON scans (etime)

;

A database user should be created for the purposes of populating the scan database, e.g.:

SiLK -3.23.1 333

rwscan(1) The SiLK Reference Guide

CREATE USER rwscan WITH PASSWORD ’secret’;

GRANT ALL PRIVILEGES ON DATABASE scans TO rwscan;

Additionally, a user with read-only access should be created for use by the rwscanquery tool:

CREATE USER rwscanquery WITH PASSWORD ’secret’;

GRANT SELECT ON DATABASE scans TO rwscanquery;

To import rwscan’s --scandb output into a PostgreSQL database, use a command similar to the following:

$ cat /tmp/scans.import.txt \

| psql -c \

"COPY scans \

(sip, proto, stime, etime, \

flows, packets, bytes, \

scan_model, scan_prob) \

FROM stdin DELIMITER as ’|’" scans

Sample Schema for Oracle

CREATE TABLE scans (

id integer unsigned not null unique,

sip integer unsigned not null,

proto tinyint unsigned not null,

stime datetime not null,

etime datetime not null,

flows integer unsigned not null,

packets integer unsigned not null,

bytes integer unsigned not null,

scan_model integer unsigned not null,

scan_prob float unsigned not null,

primary key (id)

);

Sample Schema for MySQL

CREATE TABLE scans (

id integer unsigned not null auto_increment,

sip integer unsigned not null,

proto tinyint unsigned not null,

stime datetime not null,

etime datetime not null,

flows integer unsigned not null,

packets integer unsigned not null,

bytes integer unsigned not null,

scan_model integer unsigned not null,

scan_prob float unsigned not null,

334 SiLK -3.23.1

The SiLK Reference Guide rwscan(1)

primary key (id),

INDEX (stime),

INDEX (etime)

) TYPE=InnoDB;

Sample Schema and Import Command for SQLite

CREATE TABLE scans (

id INTEGER PRIMARY KEY AUTOINCREMENT,

sip INTEGER NOT NULL,

proto SMALLINT NOT NULL,

stime TIMESTAMP NOT NULL,

etime TIMESTAMP NOT NULL,

flows INTEGER NOT NULL,

packets INTEGER NOT NULL,

bytes INTEGER NOT NULL,

scan_model INTEGER NOT NULL,

scan_prob FLOAT NOT NULL

);

CREATE INDEX scans_stime_idx ON scans (stime);

CREATE INDEX scans_etime_idx ON scans (etime);

To import rwscan’s --scandb output into a SQLite database, use the following command:

$ perl -nwe ’chomp;

print "INSERT INTO scans VALUES (NULL,",

(join ",",map { / / ? qq("$_") : $_ } split /\|/),

");\n";’ \

scans.txt | sqlite3 scans.sqlite

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwscan may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwscan may use this environment variable. See the FILES section for details.

SiLK-3.23.1 335

rwscan(1) The SiLK Reference Guide

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwscanquery(1), rwfilter(1), rwsort(1), rwset(1), rwsetbuild(1), silk(7)

BUGS

When used in an IPv6 environment, rwscan converts IPv6 flow records that contain addresses in the
::ffff:0:0/96 prefix to IPv4. IPv6 records outside of that prefix are silently ignored.

336 SiLK-3.23.1

The SiLK Reference Guide rwscanquery(1)

rwscanquery

Query the network scan database

SYNOPSIS

rwscanquery [options]

Report Options:

--report=REPORT_TYPE Select query and output options. Values

for REPORT_TYPE are standard, volume,

scanset, scanflows, respflows, and export

--start-date=YYYY/MM/DD:HH Report on scans active after this date.

--end-date=YYYY/MM/DD:HH Defaults to start-date.

--saddress=ADDR_SPEC Show scans originating from matching hosts.

--sipset=IPSET_FILE Show scans originating from hosts in set.

--daddress=IP_WILDCARD Show only scans targeting matching hosts.

--dipset=IPSET_FILE Show only scans targeting hosts in set.

--show-header Display column titles at start of output.

--columnar Display more human-readable columnar view.

--output-path=PATH Write results to the specified file.

Configuration Options:

--database=DBNAME Query an alternate scan database

Help Options:

--help Display this brief help message.

--man Display the full documentation.

--version Display the version information.

DESCRIPTION

rwscanquery queries the network scan database---that is, the database that contains scans found by rws-
can(1). The type of output rwscanquery creates is controlled by the --report switch as described in the
Report Options section below. rwscanquery writes its output to the location specified by the --output-
path switch or to the standard output when that switch is not provided.

rwscanquery runs a query of the scan database and then, depending on the report type, either displays
the result set as text or creates a binary SiLK from the result set. The database rows that are part of the
result set may be limited by using the --start-date, --end-date, --saddress, and --sipset switches. The
result set is always limited to a time window, and the current day is used when no --start-date is given.

SiLK-3.23.1 337

rwscanquery(1) The SiLK Reference Guide

The following three report types produce textual output. The default output displays the values separated
by a vertical bar (|) with no spacing. The --columnar switch causes the output to appear in columns with
a space-delimiter between the columns. The output includes no title line unless the --show-header switch
is specified.

• The standard report contains most of the columns in the database for the rows in the result set. (The
columns containing the scan model and scan probability are not included.)

• The volume report groups the rows in the result set by day and shows sums the flows, packets, and
bytes columns for each day.

• The export report contains all the columns in the database for the rows in the result set, and the rows
are displayed in a format compatible with rwscan.

The following three report types create a binary SiLK file as their result. These report types invoke other
SiLK tools (namely rwfilter(1), rwset(1), rwsetbuild(1), and rwsetcat(1)) and the report types assume
rwfilter has access to a SiLK data repository.

The first step in all three of these report types is for rwscanquery to get the distinct IP addresses for
the rows in the result set and pass them into rwsetbuild to create a temporary IPset file containing the
scanning IPs.

• A scanflows report produces a file of SiLK Flow records whose source IP is a scanning IPs. rwscan-
query uses the temporary IPset as an argument to rwfilter to find flow records in your data repository
that originated from the scanning IPs within the time window. You may choose to limit the report to
particular IPs targeted by the scanning IPs by specifying the --daddress or --dipset switches. The
output from rwfilter is the output of the report. The rwfilter invocation uses the configuration values
rw in class and rw in type if they are specified in the configuration file (c.f. CONFIGURATION).

• A respflows report produces a file of SiLK Flow records whose destination IP is a scanning IP. These
flow records may represent responses to a scan. To create this report, rwscanquery performs steps
similar to those for the scanflows report except the direction of the rwfilter command is reversed to
find flow records going to the scanning IPs. You may choose to limit the report to particular IPs that
responded to the scan by specifying the --daddress or --dipset switches. The output from rwfilter
is the output of the report. The rwfilter invocation uses the configuration values rw out class and
rw out type if they are specified in the configuration file (c.f. CONFIGURATION).

• A scanset report produces a binary IPset file.

– If neither the --daddress nor --dipset switches are specified, the output of the this report is the
temporary IPset file containing the scanning IPs; that is, all the scanning IPs in the time window.

– Otherwise, rwscanquery performs the same steps it does as when creating scanflows report.
Next, instead of returning the output from rwfilter, rwscanquery passes the flow records into
rwset to create an IPset file containing the scanning IPs that targeted particular IP addresses.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

338 SiLK-3.23.1

The SiLK Reference Guide rwscanquery(1)

Report Options

--report=TYPE

Specify the query and the type of output to create. When this switch is not specified, the default is a
standard report. The supported values for TYPE are:

standard

Write one textual line of output for each scan record in the scan database. By default, the output
has no titles and it is not in columnar form. Specify the --show-header and/or --columnar
switches to make the output more human readable.

volume

Write a daily scan activity volume summary report for each day within the time period. By
default, the output has no titles and it is not in columnar form. Specify the --show-header
and/or --columnar switches to make the output more human readable.

scanset

Write an IPset file containing the IP addresses which were the sources of scan activity during the
selected time period. The output of this report type is binary, so you must redirect or pipe the
output to a location or specify the --output-path switch.

scanflows

Write a SiLK Flow file containing all flows originating from scanning IP addresses within the
specified time period. This flow data includes flows originating from any host that would be listed
as a scan source by your query, from any time within the time period specified by --start-date
and --end-date. Note that this may include flows that were not identified by the scan analysis as
being part of a scan. The output of this report type is binary, so you must redirect or pipe the
output to a location or specify the --output-path switch.

respflows

Write a SiLK Flow file containing all flows sent to scanning IP addresses within the specified time
period---that is, possible responses to the scanners. The output of this report type is binary, so
you must redirect or pipe the output to a location or specify the --output-path switch.

export

Write textual output consistent with the output format of the rwscan(1) tool. Specify the
--show-header switch to include a title line.

--start-date=YYYY/MM/DD:HH

Display scans which were active after this hour. When this argument contains a date with no hour and
no --end-date switch is specified, scans for that entire day are returned. If this switch is not specified
at all, scans for the current day (based on the local time on the host machine) are returned.

--end-date=YYYY/MM/DD:HH

Display scans which were active before the end of this hour. If no end-date is given, defaults to the
same as start-date. It is an error to provide an end-date without a start-date.

--saddress=ADDR SPEC

Display scans originating from hosts described in ADDR SPEC, where ADDR SPEC is a list of ad-
dresses, address ranges, and CIDR blocks. Only scans originating from hosts in the list are displayed.

--sipset=IPSET FILE

Display scans originating from hosts in IPSET FILE, where IPSET FILE is a standard SiLK IPset
file as created by rwset(1) or rwsetbuild(1). Note that a very complex IPset may take a long time
to process, or even fail to return any results.

SiLK-3.23.1 339

rwscanquery(1) The SiLK Reference Guide

--daddress=IP WILDCARD

Display scans targeting hosts described in IP WILDCARD, where IP WILDCARD is a single IP
address, a single CIDR block, or an IP Wildcard expression accepted by rwfilter(1). To match on
multiple IPs or networks, use the --dipset switch. This switch is ignored for --report types other
than scanset, scanflows, and respflows.

--dipset=IPSET FILE

Display scans targeting hosts in IPSET FILE, where IPSET FILE is a standard SiLK IPset file. This
switch is ignored for --report types other than scanset, scanflows, and respflows.

--show-header

Display a header line giving a short name (or title) for each field when printing textual output with
the standard, volume, or export report types. By default, no header is displayed.

--columnar

Display output in more human-readable columnar format when printing textual output with the
standard or volume report types. When this switch is not given, the output is presented as data
fields delimited by the | character.

--output-path=PATH

Write results to PATH instead of to the standard output.

Configuration Options

--database=DBNAME

Select a database instance other than the default. The default is specified by the db instance value
in the configuration file as described in CONFIGURATION below.

Other Options

--help

Display a brief usage message and exit.

--man

Display full documentation for rwscanquery and exit.

--version

Print the version number and exit the application.

CONFIGURATION

rwscanquery reads configuration information from a file named .rwscanrc. If the RWSCANRC environment
variable is set, it is used as the location of the .rwscanrc file. When RWSCANRC is not set, rwscanquery
attempts to find a file name .rwscanrc in the directories specified in the FILES section below.

The format of the .rwscanrc file is name=value pairs, one per line. The configuration parameters currently
read from .rwscanrc are:

db driver

The type of database to connect to. rwscanquery supports oracle, postgresql, mysql, and sqlite.

340 SiLK-3.23.1

The SiLK Reference Guide rwscanquery(1)

db userid

The userid to use when connecting to the scan database.

db password

The password to use when connecting to the scan database.

db instance

The name of the database instance to connect to if none is provided with the --database command
line switch. If neither this configuration option nor the --database command line switch are specified,
the hard-coded default database instance ”SCAN” is used.

rw in class

The class for incoming flow data. The rw in class and rw in type values are used to query scan flows
when the scanflows report type is requested or when the --daddress or --dipset switches are used
for the scanset report type. If not specified, rwfilter’s default is used.

rw in type

The type(s) for incoming flow data. See rw in class for details.

rw out class

The class for outgoing flow data. The rw out class and rw out type values are used to query scan
flows when the respflows report type is requested. If not specified, rwfilter’s default is used.

rw out type

The type(s) for outgoing flow data. See rw out class for details. (Note that rwfilter often defaults
to querying incoming flows, so this parameter ought to be specified.)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Display information on all scans occurring during the 12:00 hour (12:00:00 to 12:59:59) of 2009/02/12.

$ rwscanquery --show-header --start-date=2009/02/12:12

scan-id|stime|etime|proto|srcaddr|flows|packets|bytes

499|2009-02-12 12:01:56|2009-02-12 12:08:39|6|10.199.151.231|256|256|10240

365|2009-02-12 12:08:40|2009-02-12 12:14:54|6|10.146.88.117|256|256|10240

57|2009-02-12 12:28:51|2009-02-12 12:34:55|6|10.29.23.160|256|256|10240

627|2009-02-12 11:52:07|2009-02-12 12:41:16|17|10.253.24.230|1023|1023|30175

366|2009-02-12 12:41:50|2009-02-12 12:48:14|6|10.146.89.46|256|256|10240

182|2009-02-12 12:54:39|2009-02-12 13:01:20|6|10.79.26.176|256|256|10240

4|2009-02-12 12:41:19|2009-02-12 13:33:57|17|10.2.47.87|1023|1023|30205

Create the IPset file scan.set containing the scanners discovered during that hour.

$ rwscanquery --report=scanset --start-date=2009/02/12:12 \

--output-path=scan.set

$ rwsetcat scan.set

10.2.47.87

SiLK -3.23.1 341

rwscanquery(1) The SiLK Reference Guide

10.29.23.160

10.79.26.176

10.146.88.117

10.146.89.46

10.199.151.231

10.253.24.230

Repeat the first query but limit the output to scanners coming from the CIDR block 10.199.0.0/16.

$ rwscanquery --show-header --start-date=2009/02/12:12 \

--saddr=10.199.0.0/16

scan-id|stime|etime|proto|srcaddr|flows|packets|bytes

499|2009-02-12 12:01:56|2009-02-12 12:08:39|6|10.199.151.231|256|256|10240

Expand the query for that CIDR block to include the preceding and following hours (11:00:00 to 13:59:59).

$ rwscanquery --start-date=2009/02/12:11 --end-date=2009/02/12:13 \

--saddr=10.199.0.0/16

499|2009-02-12 12:01:56|2009-02-12 12:08:39|6|10.199.151.231|256|256|10240

497|2009-02-12 13:33:57|2009-02-12 14:24:35|17|10.199.98.5|1023|1023|30079

Create the IPset file scanning-cidr.set that contains the CIDR block 10.199.0.0/16, and then search for scans
coming from that IP on Feb 13, 2009.

$ cat scanning-cidr.txt

10.199.0.0/16

$ rwsetbuild scanning-cidr.txt scanning-cidr.set

$

$ rwscanquery --start-date=2009/02/13 --sipset=scanning-cidr.set

500|2009-02-13 22:42:25|2009-02-13 22:48:45|6|10.199.207.32|256|256|10240

Print the volume of data attributed to scans over a three day period.

$ rwscanquery --report=volume --show-header \

--start-date=2009/02/12 --end-date=2009/02/14

date|flows|packets|bytes

2009/02/12|137452|137499|17149008

2009/02/13|74727|76167|2798040

2009/02/14|76160|76160|2750531

The following limits the volume report to the IPs in the file scanning-cidr.set and displays the results in
columns.

$ rwscanquery --report=volume --show-header --columnar \

--start-date=2009/02/12 --end-date=2009/02/14 \

--sipset=scanning-cidr.set

date flows packets bytes

2009/02/12 1279 1279 40319

2009/02/13 256 256 10240

2009/02/14 256 256 10240

342 SiLK -3.23.1

The SiLK Reference Guide rwscanquery(1)

Get the SiLK Flow records coming from the scanners during the 12:00 hour on 2009/02/12 and store in the
file scanning-flows.rw.

$ rwscanquery --report=scanflows --start-date=2009/02/12:12 \

--output=scanning-flows.rw

Use rwuniq(1) to summarize the file scanning-flows.rw.

$ rwuniq --fields=sip --values=flows,packets,bytes \

--sort-output scanning-flows.rw

sIP| Records| Packets| Bytes|

10.2.47.87| 373| 373| 11032|

10.29.23.160| 256| 256| 10240|

10.79.26.176| 203| 203| 8120|

10.146.88.117| 256| 256| 10240|

10.146.89.46| 256| 256| 10240|

10.199.151.231| 256| 256| 10240|

10.253.24.230| 846| 846| 24921|

Run a respflows report to verify that there were no responses to the scan.

$ rwscanquery --report=respflows --start-date=2009/02/12:12 \

--output=scanning-response.rw

$

$ rwuniq --fields=sip --values=flows,packets,bytes \

--sort-output scanning-response.rw

sIP| Records| Packets| Bytes|

Create the IPset subnet-scan.set for scanners that targeted the 192.168.186.0/24 CIDR block during the
12:00 hour on 2009/02/12.

$ rwscanquery --report=scanset --start-date=2009/02/12:12 \

--daddress=192.168.186.0/24 --output-path=subnet-scan.set

Store the corresponding flow records for those scans in the file subset-scan.rw.

$ rwscanquery --report=scanflows --start-date=2009/02/12:12 \

--daddress=192.168.186.0/24 --output-path=subnet-scan.rw

Determine how many IPs in that subnet were targeted.

$ rwuniq --fields=sip --values=flows,distinct:dip subnet-scan.rw

sIP| Records|dIP-Distin|

10.146.89.46| 256| 256|

Display the title line for an export report.

$ rwscanquery --report=export --start-date=2009/02/12:12 \

--show-header | head -1

id|sip|proto|stime|etime|flows|packets|bytes|scan_model|scan_prob

SiLK-3.23.1 343

rwscanquery(1) The SiLK Reference Guide

ENVIRONMENT

RWSCANRC

This environment variable allows the user to specify the location of the .rwscanrc configuration file.
The value may be a complete path or a file relative to the user’s current directory. See the FILES
section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction for the report types of scanset, scanflows, and respflows.

SILK CONFIG FILE

This environment variable is used as the location for the site configuration file, silk.conf, for report
types that use rwfilter. When this environment variable is not set, rwfilter searches for the site
configuration file in the locations specified in the FILES section.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository for report types that use
rwfilter. This value overrides the compiled-in value. In addition, rwfilter may use this value when
searching for the SiLK site configuration files. See the FILES section for details.

SILK RWFILTER THREADS

The number of threads rwfilter uses when reading files from the data store.

SILK PATH

This environment variable gives the root of the install tree. When searching for the site configuration
file, rwfilter may use this environment variable. See the FILES section for details.

PATH

This is the standard UNIX path (c.f., environ(7)). Depending on the report type, rwscanquery
may invoke rwfilter(1), rwset(1), rwsetbuild(1), or rwsetcat(1) as part of its processing.

RWFILTER

Complete path to rwfilter. If not set, rwscanquery attempts to find rwfilter on your PATH.

RWSET

Complete path to rwset. If not set, rwscanquery attempts to find rwset on your PATH.

RWSETBUILD

Complete path to rwsetbuild. If not set, rwscanquery attempts to find rwsetbuild on your PATH.

RWSETCAT

Complete path to rwsetcat. If not set, rwscanquery attempts to find rwsetcat on your PATH.

FILES

${RWSCANRC}

${HOME}/.rwscanrc

/usr/local/share/silk/.rwscanrc

Possible locations for the rwscanquery configuration file, .rwscanrc. In addition, rwscanquery
checks the parent directory of the directory containing the rwscanquery script.

344 SiLK-3.23.1

The SiLK Reference Guide rwscanquery(1)

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file---for report types that use rwfilter.

SEE ALSO

rwscan(1), rwfilter(1), rwset(1), rwsetbuild(1), rwsetcat(1), rwuniq(1), silk(7), environ(7)

SiLK-3.23.1 345

rwset(1) The SiLK Reference Guide

rwset

Generate binary IPset files of unique IP addresses

SYNOPSIS

rwset {--sip-file=FILE | --dip-file=FILE

| --nhip-file=FILE | --any-file=FILE [...]}

[--record-version=VERSION] [--invocation-strip]

[--note-strip] [--note-add=TEXT] [--note-file-add=FILE]

[--print-filenames] [--copy-input=PATH]

[--compression-method=COMP_METHOD]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwset --help

rwset --version

DESCRIPTION

rwset reads SiLK Flow records and generates one to four binary IPset file(s). In a single pass, rwset can
create one of each type of its possible outputs, which are IPset files containing:

• the unique source IP addresses

• the unique destination IP addresses

• the unique next-hop IP addresses

• the unique source and destination IP addresses

The output files must not exist prior to invoking rwset. To write an IPset file to the standard output,
specify stdout or - as the output file name. rwset will complain if you attempt to write the IPset to the
standard output and standard output is connected to the terminal. Only one IPset file may be written to
the standard output.

rwset reads SiLK Flow records from the files named on the command line or from the standard input when
no file names are specified and --xargs is not present. To read the standard input in addition to the named
files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it is read.
When the --xargs switch is provided, rwset reads the names of the files to process from the named text file
or from the standard input if no file name argument is provided to the switch. The input to --xargs must
contain one file name per line.

IPset files are in a binary format that efficiently stores a set of IP addresses. The file only stores the presence
of an IP address; no volume information (such as a count of the number of times the IP address occurs) is
maintained. To store volume information, use rwbag(1).

Use rwsetcat(1) to see the IP addresses in a binary IPset file. To create a binary IPset file from a list of
IP addresses, use rwsetbuild(1). rwsettool(1) allows you to perform set operations on binary IPset files.
To determine if an IP address is a member of a binary IPset, use rwsetmember(1).

346 SiLK -3.23.1

The SiLK Reference Guide rwset(1)

To list the IPs that appear in the SiLK Flow file flows.rw, the command

$ rwset --sip-file=stdout flows.rw | rwsetcat

is faster than rwuniq(1), but rwset does not report the number of flow records or compute byte and packets
counts.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

At least one of the following output switches is required; multiple output switches can be given, but an
output switch cannot be repeated.

--sip-file=FILE

Store the unique source IP addresses in the binary IPset file FILE. rwset will write the IPset file to
the standard output when FILE is stdout or - and the standard output is not a terminal.

--dip-file=FILE

Store the unique destination IP addresses in the binary IPset file FILE. rwset will write the IPset file
to the standard output when FILE is stdout or - and the standard output is not a terminal.

--nhip-file=FILE

Store the unique next-hop IP addresses in the binary IPset file FILE. rwset will write the IPset file
to the standard output when FILE is stdout and the standard output is not a terminal.

--any-file=FILE

Store the unique source and destination IP addresses in the binary IPset file FILE. rwset will write
the IPset file to the standard output when FILE is stdout or - and the standard output is not a
terminal.

Only one of the above switches my use stdout as the name of the file.

rwset supports these additional switches:

--record-version=VERSION

Specify the format of the IPset records that are written to the output. VERSION may be 2, 3, 4,
5 or the special value 0. When the switch is not provided, the SILK IPSET RECORD VERSION
environment variable is checked for a version. The default version is 0.

0

Use the default version for an IPv4 IPset and an IPv6 IPset. Use the --help switch to see the
versions used for your SiLK installation.

2

Create a file that may hold only IPv4 addresses and is readable by all versions of SiLK.

3

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.0 and later.

SiLK-3.23.1 347

rwset(1) The SiLK Reference Guide

4

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.7 and later. These
files are more compact that version 3 and often more compact than version 2.

5

Create a file that may hold only IPv6 addresses and is readable by SiLK 3.14 and later. When
this version is specified, IPsets containing only IPv4 addresses are written in version 4. These
files are usually more compact that version 4.

--invocation-strip

Do not record any command line history: do not copy the invocation history from the input files to
the output file, and do not record the current command line invocation in the output. The invocation
may be viewed with rwfileinfo(1).

--note-strip

Do not copy the notes (annotations) from the input files to the output file. Normally notes from the
input files are copied to the output.

--note-add=TEXT

Add the specified TEXT to the header of every output file as an annotation. This switch may be
repeated to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of every output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as no IPset file is being written there.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains. Only IP
addresses contained in IPv4 flow records will be added to the IPset(s).

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flow records. When the input contains IPv6
addresses outside of the ::ffff:0:0/96 netblock, this policy is equivalent to force; otherwise it is
equivalent to asv4.

348 SiLK-3.23.1

The SiLK Reference Guide rwset(1)

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Process only flow records that are marked as IPv6. Only IP addresses contained in IPv6 flow
records will be added to the IPset(s).

Regardless of the IPv6 policy, when all IPv6 addresses in the IPset are in the ::ffff:0:0/96 netblock,
rwset treats them as IPv4 addresses and writes an IPv4 IPset. When any other IPv6 addresses are
present in the IPset, the IPv4 addresses in the IPset are mapped into the ::ffff:0:0/96 netblock and
rwset writes an IPv6 IPset.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwset searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwset opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

SiLK-3.23.1 349

rwset(1) The SiLK Reference Guide

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

rwset is intended to work tightly with rwfilter(1). For example, consider generating two IPsets: the first
file, low packet tcp.set, contains the source IP addresses for incoming flow records (that is, the external hosts)
where the record has no more than three packets in its sessions. The second IPset file, high packet tcp.set,
contains the external IPs for records with four or more packets.

The first set, for TCP traffic on 03/01/2003 can be generated with:

$ rwfilter --start-date=2003/03/01:00 --end-date=2003/03/01:23 \

--proto=6 --packets=1-3 --pass=stdout \

| rwset --sip-file=low_packet_tcp.set

The second set with:

$ rwfilter --start-date=2003/03/01:00 --end-date=2003/03/01:23 \

--proto=6 --packets=4- --pass=stdout \

| rwset --sip-file=high_packet_tcp.set

ENVIRONMENT

SILK IPSET RECORD VERSION

This environment variable is used as the value for the --record-version when that switch is not
provided. Since SiLK 3.7.0.

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwset may use this environment variable when searching for the SiLK site configuration file.

350 SiLK-3.23.1

The SiLK Reference Guide rwset(1)

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwset may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwsetbuild(1), rwsetcat(1), rwsettool(1), rwsetmember(1), rwfilter(1), rwfileinfo(1), rwbag(1),
rwuniq(1), silk(7), zlib(3)

NOTES

Prior to SiLK 3.0, an IPset file could not contain IPv6 addresses and the record version was 2. The --record-
version switch was added in SiLK 3.0 and its default was 3. In SiLK 3.6, an argument of 0 was allowed and
made the default. Version 4 was added in SiLK 3.7 as was support for the SILK IPSET RECORD VERSION
environment variable. Version 5 was added in SiLK 3.14.

SiLK-3.23.1 351

rwsetbuild(1) The SiLK Reference Guide

rwsetbuild

Create a binary IPset file from list of IPs

SYNOPSIS

rwsetbuild [{--ip-ranges | --ip-ranges=DELIM}]

[--record-version=VERSION] [--invocation-strip]

[--note-add=TEXT] [--note-file-add=FILENAME]

[--compression-method=COMP_METHOD]

[{INPUT_TEXT_FILE | -} [{OUTPUT_SET_FILE | -}]]

rwsetbuild --help

rwsetbuild --version

DESCRIPTION

rwsetbuild creates a binary IPset file from textual input. The IPset is written to the second command line
argument if it has been specified; otherwise the IPset is written to the standard output if the standard output
is not a terminal. rwsetbuild will not overwrite an existing file unless the SILK CLOBBER environment
variable is set. The textual input is read from the first command line argument if it has been specified;
otherwise the text is read from the standard input if the standard input is not a terminal. A input file name
of stdin or - means the standard input; an output file name of stdout or - means the standard output.
rwsetbuild will read textual IPs from the terminal if the standard input is explicitly given as the input.
rwsetbuild exits with an error if the input file cannot be read or the output file cannot be written.

Comments are ignored in the input file; they begin with the ’#’ symbol and continue to the end of the line.
Whitespace and blank lines are also ignored. Otherwise, a line should contain a single IP addresses unless
the --ip-ranges switch is specified, in which case a line may contain two IP addresses separated by the
user-specified delimiter, which defaults to hyphen (-).

rwsetbuild supports IPv4 addresses and, when SiLK has been built with IPv6 support, IPv6 addresses.
When the input contains a mixture of IPv4 and IPv6 addresses, the IPv4 addresses are mapped into the
::ffff:0:0/96 block of IPv6. When writing the IPset, rwsetbuild converts the output to IPv4 if all IPv6
addresses are in the ::ffff:0:0/96 block. rwsetbuild does not allow the input to contain both integer values
and IPv6 addresses.

Each IP address must be expressed in one of these formats:

• Canonical IPv4 address (i.e., dotted decimal---all 4 octets are required):

10.1.2.4

• An unsigned 32-bit integer:

167838212

• Canonical IPv6 address:

352 SiLK -3.23.1

The SiLK Reference Guide rwsetbuild(1)

2001:db8::f00

• Any of the above with a CIDR designation:

10.1.2.4/31

167838212/31

192.168.0.0/16

2001:db8::/48

• SiLK IP Wildcard: An IP Wildcard can represent multiple IPv4 or IPv6 addresses. An IP Wildcard
contains an IP in its canonical form, except each part of the IP (where part is an octet for IPv4 or a
hexadectet for IPv6) may be a single value, a range, a comma separated list of values and ranges, or
the letter x to signify all values for that part of the IP (that is, 0-255 for IPv4). You may not specify
a CIDR suffix when using IP Wildcard notation. IP Wildcard notation is not supported when the
--ip-ranges switch is specified.

10.x.1-2.4,5

2001:db8::aaab-ffff,aaaa,0-aaa9

• IP Range: An IPv4 address, an unsigned 32-bit integer, or an IPv6 address to use as the start of the
range, a delimiter, and an IPv4 address, an unsigned 32-bit integer, or an IPv6 address to use as the
end of the range. The default delimiter is the hyphen (-), but a different delimiter may be specified
as a parameter to the --ip-ranges switch. Whitespace around the IP addresses is ignored. Only valid
when --ip-ranges is specified.

10.1.2.4-10.1.2.5

167838212-167838213

192.168.0.0-192.168.255.255

2001:db8::f00-2001:db8::fff

If an IP address cannot be parsed, rwsetbuild exits with an error.

Use rwsetcat(1) to see the contents of an IPset file. To check for a specific IP address in an IPset, use
rwsetmember(1). rwsettool(1) manipulates IPset files. To build an IPset file from SiLK Flow data, use
rwset(1).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--ip-ranges

--ip-ranges=DELIM

Allow lines of the the input file to contain a pair of IP addresses, separated by DELIM, that create
an IP address range, and do not allow the IP Wildcard syntax. A line may also contain a single IP
address or a 32-bit integer; these lines may have a CIDR designation. CIDR designations are not
supported on lines that contain a pair of IP addresses. If DELIM is not specified, hyphen (’-’) is used
as the delimiter. When DELIM is a whitespace character, any amount of whitespace may surround
and separate the two IP addresses. Since ’#’ is used to denote comments and newline is used to denote
records, neither is a valid delimiter character.

SiLK-3.23.1 353

rwsetbuild(1) The SiLK Reference Guide

--record-version=VERSION

Specify the format of the IPset records that are written to the output. VERSION may be 2, 3, 4,
5 or the special value 0. When the switch is not provided, the SILK IPSET RECORD VERSION
environment variable is checked for a version. The default version is 0.

0

Use the default version for an IPv4 IPset and an IPv6 IPset. Use the --help switch to see the
versions used for your SiLK installation.

2

Create a file that may hold only IPv4 addresses and is readable by all versions of SiLK.

3

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.0 and later.

4

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.7 and later. These
files are more compact that version 3 and often more compact than version 2.

5

Create a file that may hold only IPv6 addresses and is readable by SiLK 3.14 and later. When
this version is specified, IPsets containing only IPv4 addresses are written in version 4. These
files are usually more compact that version 4.

--invocation-strip

Do not record any command line history; that is, do not record the current command line invocation
in the output file.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

354 SiLK-3.23.1

The SiLK Reference Guide rwsetbuild(1)

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLE

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

Reading from a file:

$ echo 10.x.x.x > ten.txt

$ rwsetbuild ten.txt ten.set

$ echo 10.0.0.0/8 > ten.txt

$ rwsetbuild ten.txt ten.set

$ echo 10.0.0.0-10.255.255.255 > ten.txt

$ rwsetbuild --ip-ranges ten.txt ten.set

$ echo ’167772160,184549375’ > ten.txt

$ rwsetbuild --ip-ranges=, ten.txt ten.set

Reading from the standard input:

$ echo 192.168.x.x | rwsetbuild stdin private.set

Example input to rwsetbuild:

A single address

10.1.2.4

Two addresses in the same subnet

10.1.2.4,5

The same two addresses

SiLK -3.23.1 355

rwsetbuild(1) The SiLK Reference Guide

10.1.2.4/31

The same two addresses

167838212/31

A whole subnet

10.1.2.0-255

The same whole subnet

10.1.2.x

The same whole subnet yet again

10.1.2.0/24

All RFC1918 space

10.0.0.0/8

172.16.0.0/12

192.168.0.0/16

All RFC1918 space

10.x.x.x

172.16-20,21,22-31.x.x

192.168.x.x

All RFC1918 space

167772160/8

2886729728/12

3232235520/16

Everything ending in 255

x.x.x.255

All addresses that end in 1-10

x.x.x.1-10

ENVIRONMENT

SILK IPSET RECORD VERSION

This environment variable is used as the value for the --record-version when that switch is not
provided. Since SiLK 3.7.0.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SEE ALSO

rwset(1), rwsetcat(1), rwsetmember(1), rwsettool(1), rwfileinfo(1), silk(7), zlib(3)

NOTES

Prior to SiLK 3.0, an IPset file could not contain IPv6 addresses and the record version was 2. The --record-
version switch was added in SiLK 3.0 and its default was 3. In SiLK 3.6, an argument of 0 was allowed and
made the default. Version 4 was added in SiLK 3.7 as was support for the SILK IPSET RECORD VERSION
environment variable. Version 5 was added in SiLK 3.14.

356 SiLK-3.23.1

The SiLK Reference Guide rwsetcat(1)

rwsetcat

Print the IP addresses in a binary IPset file

SYNOPSIS

rwsetcat [--count-ips] [--print-statistics] [--print-ips]

[{ --cidr-blocks | --cidr-blocks=0 | --cidr-blocks=1

| --network-structure | --network-structure=STRUCTURE

| --ip-ranges }]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--no-columns] [--column-separator=C] [--no-final-delimiter]

[{--delimited | --delimited=C}]

[--print-filenames | --print-filenames=0 | --print-filenames=1]

[--output-path=PATH] [--pager=PAGER_PROG] [SET_FILE...]

rwsetcat --help

rwsetcat --version

DESCRIPTION

When run with no switches, rwsetcat reads each IPset file given on the command line and prints its
constituent IP addresses to the standard output. If no file names are listed on the command line, rwsetcat
attempts to read an IPset from the standard input.

By default, an IPset containing only IPv4 addresses is printed with one IP address per line. For other
IPsets, rwsetcat uses CIDR blocks when printing. The --cidr-blocks switch may be used to choose which
representation is used.

When processing a mix of IPv4 and IPv6 addresses, the SiLK tools that build IPsets (e.g., rwset(1),
rwsetbuild(1)) map each IPv4 address into the ::ffff:0:0/96 IPv6 netblock. For example 192.0.2.1 becomes
::ffff:192.0.2.1 or ::ffff:c000:201. For releases prior to SiLK 3.17.0, rwsetcat always displayed these addresses
as IPv6 in the ::ffff:0:0/96 netblock. Starting in SiLK 3.17.0, rwsetcat shows these addresses as IPv4 unless
the map-v4 argument is given to the --ip-format switch.

rwsetcat can produce additional information about IPset files, such as the number of IPs they contain (use
--count), the number of IPs in netblocks of arbitrary size (--network-structure), and the minimum and
maximum IPs (--print-statistics).

To create an IPset file from SiLK Flow records, use rwset(1). rwsetbuild(1) creates an IPset from textual
input. An IPset may also be created by the --coverset switch on rwbagtool(1) and the --to-ipset switch
of rwaggbagtool(1). To determine whether an IPset file contains an IP address, use rwsetmember(1).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

SiLK-3.23.1 357

rwsetcat(1) The SiLK Reference Guide

--count-ips

Print a count of the number of IP addresses in the IPset file. This switch disables the printing of the IP
addresses in the IPset file. Use --print-ips to print the contents of the IPset in addition to the count.
When --count-ips is specified and more than one IPset file is provided, rwsetcat prepends the name
of the input file and a colon to the IP address count. See the description of the --print-filenames
switch for more information.

--print-statistics

Print a summary of the IPset. The summary includes the minimum IP address, the maximum IP
address, the number of IP addresses in the IPset, and the number of IPs in a specific set of netblocks.
For an IPset containing only IPv4 addresses, the netblocks are /8, /16, /24, and /27, and the output
includes what percentage of IPv4 address space is covered. For an IPv6 IPset, the netblock are /8,
/16, /24, /32, /40, /48, /56, /64, /72, /80, /88, /96, /112, and /120.

This switch disables the printing of the IP addresses in the IPset. Use --print-ips to print the contents
of the IPset in addition to the statistics. When --print-statistics is specified and more than one IPset
file is provided, rwsetcat prints the name of the input file, a colon, and a newline prior to printing
the statistics. See the description of the --print-filenames switch for more information.

--print-ips

Force printing of the IP addresses, even when the --count-ips or --print-statistics option is provided.

--cidr-blocks

--cidr-blocks=0

--cidr-blocks=1

When an argument is not provided to the switch or when the argument is 1, group sequential IPs into
the largest possible CIDR block and print CIDR blocks in the IPset file, If the argument is 0, print
the individual IPs in the IPset file. By default, rwsetcat prints individual IPs for IPv4 IPsets and
CIDR blocks for IPv6 IPsets. This switch may not be combined with the --ip-ranges or --network-
structure switches.

--ip-ranges

Print the IPset in three pipe-delimited (|) columns where each row represents a contiguous IP range:
the first column is the number of IPs in the range, the second is the start of the range, and the final
is the end of the range. This prints the IPset in the fewest number of lines. This switch may not be
combined with the --cidr-blocks or --network-structure switches.

--network-structure

--network-structure=STRUCTURE

For each numeric value in STRUCTURE, group the IPs in the IPset into a netblock of that size and
print the number of hosts and, optionally, print the number of smaller, occupied netblocks that each
larger netblock contains. When STRUCTURE begins with v6:, the IPs in the IPset are treated as
IPv6 addresses, and any IPv4 addresses are mapped into the ::ffff:0:0/96 netblock. Otherwise, the IPs
are treated as IPv4 addresses, and any IPv6 address outside the ::ffff:0:0/96 netblock is ignored. Aside
from the initial v6: (or v4:, for consistency), STRUCTURE has one of following forms:

1. NETBLOCK LIST/SUMMARY LIST. Group IPs into the sizes specified in either NET-
BLOCK LIST or SUMMARY LIST. rwsetcat prints a row for each occupied netblock specified in
NETBLOCK LIST, where the row lists the base IP of the netblock, the number of hosts, and the
number of smaller, occupied netblocks having a size that appears in either NETBLOCK LIST or
SUMMARY LIST. (The values in SUMMARY LIST are only summarized; they are not printed.)

358 SiLK-3.23.1

The SiLK Reference Guide rwsetcat(1)

2. NETBLOCK LIST/. Similar to the first form, except all occupied netblocks are printed, and
there are no netblocks that are only summarized.

3. NETBLOCK LISTS. When the character S appears anywhere in the NETBLOCK LIST, rwset-
cat provides a default value for the SUMMARY LIST. That default is 8,16,24,27 for IPv4, and
48,64 for IPv6. rwsetcat ignores S if / is present.

4. NETBLOCK LIST. When neither S nor / appear in STRUCTURE, the output does not include
the number of smaller, occupied netblocks.

5. Empty. When STRUCTURE is empty or only contains v6: or v4:, the NETBLOCK LIST prints
a single row for the total network (the /0 netblock) giving the number of hosts and the number
of smaller, occupied netblocks using the same default list specified in form 3.

NETBLOCK LIST and SUMMARY LIST contain a comma separated list of numbers between 0 (the
total network) and the size for an individual host (32 for IPv4 or 128 for IPv6). The characters T and H

may be used as aliases for 0 and the host netblock, respectively. In addition, when parsing the lists as
IPv4 netblocks, the characters A, B, C, and X are supported as aliases for 8, 16, 24, and 27, respectively.
A comma is not required between adjacent letters. The --network-structure switch disables printing
of the IPs in the IPset file; specify the H argument to the switch to print each individual IP address.
This switch may not be combined with the --cidr-blocks or --ip-ranges switches.

--ip-format=FORMAT

Specify how IP addresses are printed, where FORMAT is a comma-separated list of the arguments
described below. When this switch is not specified, the SILK IP FORMAT environment variable is
checked for a value and that format is used if it is valid. The default FORMAT is canonical,unmap-v6.
(The default presentation of IPv4 addresses in a mixed IPv4-IPv6 IPset changed in SiLK 3.17.0 as
described above in DESCRIPTION.) Since SiLK 3.7.0.

canonical

Print IP addresses in the canonical format. For an IPv4 address, use dot-separated decimal
(192.0.2.1). Also use dot-separated decimal for IPv4-mapped IPv6 addresses (addresses in
the ::ffff:0:0/96 netblock) unless FORMAT includes map-v4. For other IPv6 addresses, use ei-
ther colon-separated hexadecimal (2001:db8::1) or a mixed IPv4-IPv6 representation for IPv4-
compatible IPv6 addresses (the ::/96 netblock other than ::/127, e.g., ::192.0.2.1). When
map-v4 is part of the argument, use the mixed representation for IPv4-mapped IPv6 addresses
(the ::ffff:0:0/96 netblock, e.g., ::ffff:192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the
mixed IPv4-IPv6 representations. For example, use ::c000:201 instead of ::192.0.2.1. When
FORMAT includes map-v4, also use ::ffff:c000:201 instead of ::ffff:192.0.2.1. Since SiLK
3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively. Values in the
::ffff:0:0/96 netblock are not converted to IPv4 unless unmap-v6 is explicitly given.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively. Values in
the ::ffff:0:0/96 netblock are not converted to IPv4 unless unmap-v6 is explicitly given. Note:
This setting does not apply to CIDR prefix values which are printed as decimal.

SiLK-3.23.1 359

rwsetcat(1) The SiLK Reference Guide

zero-padded

Make all IP address strings contain the same number of characters by padding numbers with
leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as 192.000.002.001 and
2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For IPv6 addresses, this setting im-
plies no-mixed, so that ::192.0.2.1 is printed as 0000:0000:0000:0000:0000:0000:c000:0201.
As of SiLK 3.17.0, may be combined with any of the above, including decimal and hexadecimal.
IPv4-mapped IPv6 addresses are printed as IPv6 unless FORMAT also includes map-v4, decimal,
or hexadecimal. As of SiLK 3.18.0, the values of CIDR prefix are also zero-padded.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

When the IPset contains only IPv4 addresses, change all IPv4 addresses to IPv4-mapped IPv6
addresses (addresses in the ::ffff:0:0/96 netblock) prior to formatting. For an IPset containing
IPv6 addresses, do not map addresses in the ::ffff:0:0/96 netblock to IPv4. Since SiLK 3.17.0.

unmap-v6

When the IPset contains IPv6 addresses, change any IPv4-mapped IPv6 addresses (addresses in
the ::ffff:0:0/96 netblock) to IPv4 addresses prior to formatting. This argument is enabled by
default for the canonical and no-mixed formats. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release.

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in their canonical form. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release.

--no-columns

Disable fixed-width columnar output when printing the output from the --network-structure or
--ip-ranges switch.

--column-separator=C

Use specified character between columns produced by the --network-structure and --ip-ranges
switches. This character is also used after the final column when --ip-ranges is specified. When this
switch is not specified, the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column in the output produced by --ip-ranges.
Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

360 SiLK-3.23.1

The SiLK Reference Guide rwsetcat(1)

--print-filenames

--print-filenames=0

--print-filenames=1

If an argument is not provided to the switch or if the argument is 1, print the name of the IPset
file prior to printing information about the IPset file regardless of the number of IPset files specified
on the command line or the type of information to be printed. If the switch is provided and its
argument is 0, suppress printing the name of the IPset file regardless of the number of IPset files or
type of information. When the switch is not provided, rwsetcat’s behavior depends on the type of
information to be printed and on the number of input IPset files: If multiple IPset files are provided
and --count-ips or --print-statistics is given, rwsetcat prints the name of a file, a colon (:), a
newline (unless --count-ips was specified), and the requested information; otherwise, rwsetcat does
not print the file name.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwsetcat exits with an
error unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If
this switch is not given, the output is either sent to the pager or written to the standard output. Since
SiLK 3.15.0.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. Some input lines are split over
multiple lines in order to improve readability, and a backslash (\) is used to indicate such lines.

The file sample.set contains an IPset of IPv4 addresses, and the file set1-v6.set contains an IPset of IPv6
addresses.

Producing simple output with an IPv4 IPset

By default, rwsetcat prints the contents of an IPset.

$ rwsetcat sample.set

10.1.2.250

10.1.2.251

10.1.2.252

SiLK -3.23.1 361

rwsetcat(1) The SiLK Reference Guide

10.1.2.253

10.1.2.254

10.1.2.255

10.1.3.0

10.1.3.1

10.1.3.2

10.1.3.3

10.1.3.4

Use the --cidr-blocks switch to print the contents in CIDR notation.

$ rwsetcat --cidr-blocks sample.set

10.1.2.250/31

10.1.2.252/30

10.1.3.0/30

10.1.3.4

Add the --ip-format switch to change how the IPs are presented. For text-based sorting, use the --ip-
format=zero-padded switch to force three digits per octet.

$ rwsetcat --ip-format=zero-padded --cidr-blocks sample.set

010.001.002.250/31

010.001.002.252/30

010.001.003.000/30

010.001.003.004

For numerical sorting, print the IPs as integers.

$ rwsetcat --ip-format=decimal sample.set

167838458

167838459

167838460

167838461

167838462

167838463

167838464

167838465

167838466

167838467

167838468

Getting simple output for an IPv6 IPset

When printing an IPset containing IPv6 addresses, addresses are grouped into CIDR blocks by default.

$ rwsetcat set1-v6.set

2001:db8:0:5::/68

2001:db8:0:5:f000::/68

2001:db8:0:c::/67

362 SiLK -3.23.1

The SiLK Reference Guide rwsetcat(1)

2001:db8:0:c:4000::/66

2001:db8:0:f:8000::/65

2001:db8:0:11::/64

2001:db8:0:12::/63

2001:db8:0:14::/62

2001:db8:0:18::/61

2001:db8:0:20::/60

2001:db8:0:40::/59

Specify an argument of 0 to the --cidr-blocks switch to see the individual IPs.

$ rwsetcat --cidr-blocks=0 set1-v6.set | head -4

2001:db8:0:5::

2001:db8:0:5::1

2001:db8:0:5::2

2001:db8:0:5::3

Finding the number of IPs in an IPset

The --count-ips switch prints the number IPs in the IPset.

$ rwsetcat --count-ips sample.set

11

$ rwsetcat --count-ips set1-v6.set

1180591620717411303424

The number of IPs may also be produced using the --network-structure switch as described below.

Viewing IP ranges

To see contiguous IPs printed as ranges, use the --ip-ranges switch. The output has three columns that
contain the length of the range, its starting IP, and its ending IP.

$ rwsetcat --ip-ranges sample.set

11| 10.1.2.250| 10.1.3.4|

Since contiguous but different-sized CIDR blocks can be combined into a single range, the --ip-ranges switch
prints the IPset in the first number of rows.

Add the --ip-format=decimal switch to see contiguous IPs printed as ranges of integers.

$ rwsetcat --ip-ranges --ip-format=decimal sample.set

11| 167838458| 167838468|

Use the --delimited switch to produce the same output as a list of comma separated values.

$ rwsetcat --ip-ranges --ip-format=decimal --delimited=, sample.set

11,167838458,167838468

SiLK -3.23.1 363

rwsetcat(1) The SiLK Reference Guide

The UNIX cut(1) tool can be used to remove the number of IPs in the range, so that the output only
contains the starting and ending IPs.

$ rwsetcat --ip-ranges --ip-format=decimal --delimited=, sample.set \

| cut -d"," -f2,3

167838458,167838468

$ rwsetcat --ip-ranges set1-v6.set | cut -d’|’ -f2,3

2001:db8:0:5::| 2001:db8::5:fff:ffff:ffff:ffff

2001:db8:0:5:f000::| 2001:db8::5:ffff:ffff:ffff:ffff

2001:db8:0:c::| 2001:db8::c:1fff:ffff:ffff:ffff

2001:db8:0:c:4000::| 2001:db8::c:7fff:ffff:ffff:ffff

2001:db8:0:f:8000::| 2001:db8::f:ffff:ffff:ffff:ffff

2001:db8:0:11::| 2001:db8::2f:ffff:ffff:ffff:ffff

2001:db8:0:40::| 2001:db8::5f:ffff:ffff:ffff:ffff

Reading an IPset from the standard input

rwsetcat will read the IPset file from the standard input when no file name is given on the command line.
An IP address converter is created by having the input to rwsetcat be the output from rwsetbuild(1).

$ echo 10.10.10.10 | rwsetbuild | rwsetcat --ip-format=decimal

168430090

To see the unique source and destination IP addresses in the SiLK Flow file data.rw, use rwset(1) to generate
an IPset and send the output of rwset to the standard input of rwsetcat.

$ rwset --any-file=stdout data.rw | rwsetcat | head -4

10.4.52.235

10.5.231.251

10.9.77.117

10.11.88.88

Getting multiple types of output

To see the contents of the IPset and also get a count of IPs, use multiple options.

$ rwsetcat --count-ips --cidr-blocks sample.set

11

10.1.2.250/31

10.1.2.252/30

10.1.3.0/30

10.1.3.4

Working with multiple IPset files

When multiple IPset files are specified on the command line, rwsetcat prints the contents of each file one
after the other.

364 SiLK -3.23.1

The SiLK Reference Guide rwsetcat(1)

$ rwsetcat --cidr-blocks=1 sample.set set1-v6.set

10.1.2.250/31

10.1.2.252/30

10.1.3.0/30

10.1.3.4

2001:db8:0:5::/68

2001:db8:0:5:f000::/68

2001:db8:0:c::/67

2001:db8:0:c:4000::/66

2001:db8:0:f:8000::/65

2001:db8:0:11::/64

2001:db8:0:12::/63

2001:db8:0:14::/62

2001:db8:0:18::/61

2001:db8:0:20::/60

2001:db8:0:40::/59

To print the union of multiple the IPset files, use rwsettool(1) to join the files and have rwsetcat print
the result.

$ rwsettool --union set1-v6.set sample.set \

| rwsetcat --cidr-blocks=1

10.1.2.250/127

10.1.2.252/126

10.1.3.0/126

10.1.3.4

2001:db8:0:5::/68

2001:db8:0:5:f000::/68

2001:db8:0:c::/67

2001:db8:0:c:4000::/66

2001:db8:0:f:8000::/65

2001:db8:0:11::/64

2001:db8:0:12::/63

2001:db8:0:14::/62

2001:db8:0:18::/61

2001:db8:0:20::/60

2001:db8:0:40::/59

When counting the IPs in multiple IPset files, rwsetcat prepends the file name and a colon to the count.
(The - argument causes rwsetcat to read the standard input in addition to the named file.)

$ cat set1-v6.set | rwsetcat --count-ips sample.set -

sample.set:11

-:1180591620717411303424

Provide an argument of 0 to --print-filenames to suppress printing of the input IPset file name.

$ cat set1-v6.set \

| rwsetcat --count-ips --print-filenames=0 sample.set -

11

1180591620717411303424

SiLK-3.23.1 365

rwsetcat(1) The SiLK Reference Guide

Use the --print-filenames switch to force rwsetcat to print the file name when only one IPset is given.

$ rwsetcat --count-ips --print-filenames sample.set

sample.set:11

The --print-filenames switch also causes rwsetcat to print the file name when it normally would not.

$ rwsetcat --ip-ranges --ip-format=decimal --print-filenames sample.set

sample.set:

11| 167838458| 167838468|

Seeing which netblocks are occupied

The --network-structure switch counts and prints information about which netblocks are occupied. The
default output when no argument is given to the switch is a single line.

$ rwsetcat --network sample.set

TOTAL| 11 hosts in 1 /8, 1 /16, 2 /24s, and 2 /27s

The default is equivalent to an argument of TS.

$ rwsetcat --network=TS sample.set

TOTAL| 11 hosts in 1 /8, 1 /16, 2 /24s, and 2 /27s

An argument of T suppresses the subnet counts, and the output is the number of IPs in the IPset.

$ rwsetcat --network=T sample.set

TOTAL| 11

The argument T is equivalent to the 0 netblock.

$ rwsetcat --network=0 sample.set

TOTAL| 11

The subnets represented by S are 8, 16, 24, and 27. A different set of subnets to summarize may be specified
by giving those subnets after a slash:

$ rwsetcat --network=T/12,18,30 sample.set

TOTAL| 11 hosts in 1 /12, 1 /18, and 4 /30s

The presence of a slash causes rwsetcat to ignore S.

$ rwsetcat --network=TS/12,18 sample.set

TOTAL| 11 hosts in 1 /12 and 1 /18

Putting a number in front of the slash adds a row the output for each netblock of that size that is occupied.

366 SiLK -3.23.1

The SiLK Reference Guide rwsetcat(1)

$ rwsetcat --network=30T/12,18 sample.set

10.1.2.248/30 | 2 hosts

10.1.2.252/30 | 4 hosts

10.1.3.0/30 | 4 hosts

10.1.3.4/30 | 1 host

TOTAL | 11 hosts in 1 /12, 1 /18, and 4 /30s

For each row, the number of smaller, occupied netblocks is printed.

$ rwsetcat --network=12,18/30 sample.set

10.1.0.0/18 | 11 hosts in 4 /30s

10.0.0.0/12 | 11 hosts in 1 /18 and 4 /30s

TOTAL | 11 hosts in 1 /12, 1 /18, and 4 /30s

Although no numbers are required to follow the slash, the argument must include the slash for rwsetcat to
produce the counts for each subnet.

$ rwsetcat --network=16,24/ sample.set

10.1.2.0/24 | 6 hosts

10.1.3.0/24 | 5 hosts

10.1.0.0/16 | 11 hosts in 2 /24s

$ rwsetcat --network=16,24 sample.set

10.1.2.0/24 | 6

10.1.3.0/24 | 5

10.1.0.0/16 | 11

For historical reasons, A, B, C, and X are equivalent to the 8, 16, 24, and 27 netblocks.

$ rwsetcat --network=B,C sample.set

10.1.2.0/24 | 6

10.1.3.0/24 | 5

10.1.0.0/16 | 11

Adding an argument of H tells rwsetcat to print the hosts.

$ rwsetcat --network=ABCXHST sample.set

10.1.2.250 |

10.1.2.251 |

10.1.2.252 |

10.1.2.253 |

10.1.2.254 |

10.1.2.255 |

10.1.2.224/27 | 6 hosts

10.1.2.0/24 | 6 hosts in 1 /27

10.1.3.0 |

10.1.3.1 |

10.1.3.2 |

10.1.3.3 |

SiLK -3.23.1 367

rwsetcat(1) The SiLK Reference Guide

10.1.3.4 |

10.1.3.0/27 | 5 hosts

10.1.3.0/24 | 5 hosts in 1 /27

10.1.0.0/16 | 11 hosts in 2 /24s and 2 /27s

10.0.0.0/8 | 11 hosts in 1 /16, 2 /24s, and 2 /27s

TOTAL | 11 hosts in 1 /8, 1 /16, 2 /24s, and 2 /27s

The --network-structure switch defaults to treating the input as an IPset containing only IPv4 addresses.
The results when running it on the IPv6 IPset file set1-v6.set are odd.

$ rwsetcat --network=TS set1-v6.set

TOTAL| 0 hosts in 0 /8s, 0 /16s, 0 /24s, and 0 /27s

The v6: prefix is required for rwsetcat to treat the input as IPv6.

$ rwsetcat --network=v6:TS set1-v6.set

TOTAL| 1180591620717411303424 hosts in 1 /48 and 66 /64s

As shown in that example, when the v6: prefix is given, the S character represents the 48 and 64 netblocks.
The characters A, B, C, and X are not allowed when treating the input as IPv6.

$ rwsetcat --network=v6:A set1-v6.set

rwsetcat: Invalid network-structure character ’A’

The H character still represents the hosts.

$ rwsetcat --network=v6:H set1-v6.set | head -4 2001:db8:0:5::| 2001:db8:0:5::1| 2001:db8:0:5::2|
2001:db8:0:5::3|

When processing an IPv4 IPset as though it is IPv6, the IPv4 hosts are mapped into the ::ffff:0:0/96 netblock.
(This is similar to passing a value of force to the --ipv6-policy switch on tools such as rwcut(1).)

$ rwsetcat --network=v6:96TS sample.set

::ffff:0.0.0.0/96 | 11 hosts

TOTAL | 11 hosts in 1 /48, 1 /64, and 1 /96

When the v6: prefix is not present and --network-structure is used on an IPset containing IPv6 addresses,
only those addresses in the ::ffff:0:0/96 netblock are visible to rwsetcat. This is similar to giving the --
ipv6-policy switch an argument of asv4.

$ rwsettool --union set1-v6.set sample.set | rwsetcat --network=v6:TS

TOTAL| 1180591620717411303435 hosts in 2 /48s and 67 /64s

$ rwsettool --union set1-v6.set sample.set | rwsetcat --network=TS

TOTAL| 11 hosts in 1 /8, 1 /16, 2 /24s, and 2 /27s

368 SiLK -3.23.1

The SiLK Reference Guide rwsetcat(1)

Seeing a summary of an IPset

Use --print-statistics to get a summary of the IPset file.

$ rwsetcat --print-statistics --print-filenames sample.set

sample.set:

Network Summary

minimumIP = 10.1.2.250

maximumIP = 10.1.3.4

11 hosts (/32s), 0.000000% of 2^32

1 occupied /8, 0.390625% of 2^8

1 occupied /16, 0.001526% of 2^16

2 occupied /24s, 0.000012% of 2^24

2 occupied /27s, 0.000001% of 2^27

$ rwsetcat --print-statistics set1-v6.set

Network Summary

minimumIP = 2001:db8:0:5::

maximumIP = 2001:db8::5f:ffff:ffff:ffff:ffff

1 occupied /8

1 occupied /16

1 occupied /24

1 occupied /32

1 occupied /40

1 occupied /48

1 occupied /56

66 occupied /64s

16384 occupied /72s

4194304 occupied /80s

1073741824 occupied /88s

274877906944 occupied /96s

70368744177664 occupied /104s

18014398509481984 occupied /112s

4611686018427387904 occupied /120s

1180591620717411303424 hosts (/128s)

ENVIRONMENT

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwsetcat automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwsetcat does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwsetcat automatically invokes this program to display its
output a screen at a time.

SiLK-3.23.1 369

rwsetcat(1) The SiLK Reference Guide

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SEE ALSO

rwset(1), rwsetbuild(1), rwsettool(1), rwsetmember(1), rwbagtool(1), rwcut(1), silk(7), cut(1)

370 SiLK-3.23.1

The SiLK Reference Guide rwsetmember(1)

rwsetmember

Determine whether IP address(es) are members of an IPset

SYNOPSIS

rwsetmember [--count] [--quiet] PATTERN [INPUT_SET [INPUT_SET...]]

rwsetmember --help

rwsetmember --version

DESCRIPTION

rwsetmember determines whether an IP address or pattern exists in one or more IPset files, printing the
name of the IPset files that contain the IP and optionally counting the number of matches in each file.
PATTERN can be a single IP address, a CIDR block, or an IP Wildcard expressed in the same form as
accepted by rwsetbuild(1).

If an INPUT SET is not given on the command line, rwsetmember will attempt to read an IPset from the
standard input. To read the standard input in addition to the named files, use - or stdin as a file name. If
an input file name ends in .gz, the file will be uncompressed as it is read.

When rwsetmember encounters an INPUT SET file that it cannot read as an IPset, it prints an error
message and moves to the next INPUT SET file.

To create an IPset file from SiLK Flow records, use rwset(1), and to create one from text, use rwset-
build(1). rwsetcat(1) prints an IPset file as text.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--count

Follow each set filename by a colon character and the number of pattern matches in the IPset. Files
that do not match will still be printed, but with a zero match count. The --count switch is ignored
when --quiet is also specified.

--quiet

Produce no standard output. The exit status of the program (see below) should be checked to determine
whether any files matched.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 371

rwsetmember(1) The SiLK Reference Guide

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

To quickly check whether a single set file contains an address (check the exit status):

$ rwsetmember --quiet 192.168.1.1 file.set

To display which of several set files (if any) match a given IP address:

$ rwsetmember 192.168.1.1 *.set

To display the same, but with counts from each file:

$ rwsetmember --count 192.168.1.1 *.set

To find all sets that contain addresses in the 10.0.0.0/8 subnet:

$ rwsetmember 10.0.0.0/8 *.set

To find files containing any IP address that ends with a number between 1 and 10 (this will use a lot of
memory):

$ rwsetmember x.x.x.1-10 *.set

EXIT STATUS

rwsetmember exits with status code 0 if any file matched the pattern or 1 if there were no matches across
any files or if there was a fatal error with the input.

SEE ALSO

rwset(1), rwsetbuild(1), rwsetcat(1), silk(7)

372 SiLK-3.23.1

The SiLK Reference Guide rwsettool(1)

rwsettool

Operate on IPset files to produce a new IPset

SYNOPSIS

rwsettool { --union | --intersect | --difference

| --symmetric-difference

| --sample {--size=SIZE | --ratio=RATIO} [--seed=SEED]

| --mask=NET_BLOCK_SIZE | --fill-blocks=NET_BLOCK_SIZE }

[--output-path=PATH [--modify-inplace [--backup-path=BACKUP]]]

[--record-version=VERSION] [--invocation-strip]

[--note-strip] [--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD] [INPUT_SET ...]

rwsettool --help

rwsettool --version

DESCRIPTION

rwsettool performs a single operation on one or more IPset file(s) to produce a new IPset file.

The operations that rwsettool provides are

union

The union (or addition) of two IPsets is the set of IP addresses that are members in either set.

intersection

The intersection of two IPsets is the set of IP addresses that are members of both sets.

difference

The difference (or relative complement) of two IPsets is the set of IP addresses that are members of
the first set but not members of the second.

symmetric-difference

The symmetric difference (or disjunctive union) of two IPsets is the set of IP addresses that are
members of either set but not members of both. This is the equivalent to the intersection of the IPsets
subtracted from the union of the IPsets. It is also equivalent to computing the union of both relative
complements (the first set from the second and the second set from the first).

sample

The set of IP addresses in an IPset is randomly selected to produce a subset.

mask

For each CIDR-block (or net-block) of a user-specified size in the IPset, the IP addresses that are
members of that net-block are replaced by a single IP address at the start of the net-block. Empty
net-blocks are not changed.

SiLK-3.23.1 373

rwsettool(1) The SiLK Reference Guide

fill-blocks

For each CIDR-block (or net-block) of a user-specified size in the IPset, the IP addresses that are
members of that net-block are extended so that every IP address in that net-block is a member of the
set. Empty net-blocks are not changed.

More details are provided in the OPTIONS section.

rwsettool reads the IPsets specified on the command line; when no IPsets are listed, rwsettool attempts
to read an IPset from the standard input. The strings stdin or - can be used as the name of an input file
to force rwsettool to read from the standard input. The resulting IPset is written to the location specified
by the --output-path switch or to the standard output if that switch is not provided. Using the strings
stdout or - as the argument to --output-path causes rwsettool to write the IPset to the standard output.
rwsettool exits with an error if an attempt is made to read an IPset from the terminal or write an IPset to
the terminal.

In SiLK 3.21.0, rwsettool added the --modify-inplace switch which correctly handles the case when an
input file is also used as the output file. That switch causes rwsettool to write the new IPset to a temporary
file first and then replace the original output file. The --backup-path switch may be used in conjunction
with --modify-inplace to set the pathname where the original output file is copied.

To create an IPset file from SiLK Flow records, use rwset(1), and to create one from text, use rwset-
build(1). rwsetcat(1) prints an IPset file as text. To determine whether an IPset file contains an IP
address, use rwsetmember(1).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Operation Switches

Exactly one of the following operation switches must be provided:

--union

Perform the set union operation: The resulting IPset contains each IP address that is a member of any
of the input IPsets.

--intersect

Perform the set intersection operation: The resulting IPset contains each IP address that is a member
of all of the input IPsets.

--difference

Perform the set difference operation: The resulting IPset contains each IP address that is a member
of the first IPset and not a member of any subsequent IPsets.

--symmetric-difference

Perform the symmetric difference operation: For two input sets, the resulting IPset contains each IP
address that is a member of one of the input IPsets but not both. For each additional IPset, rwsettool
computes the symmetric difference of the current result with the additional IPset. For three input sets,
the output IPset contains each IP address that is a member of either one of the IPsets or of all three
IPsets. Since SiLK 3.13.0.

374 SiLK-3.23.1

The SiLK Reference Guide rwsettool(1)

--sample

Select a random sample of IPs from the input IPsets. The size of the subset must be specified by
either the --size or --ratio switches described next. In the case of multiple input IPsets, the resulting
IPset is the union of all IP addresses sampled from each of the input IPsets. That is, each IPset is
individually sampled, and the results are merged.

--size=SIZE

Create an IPset containing the union of randomly selecting exactly SIZE IP addresses from each
input IPset. If the number of IP addresses in an input IPset is less than or equal to SIZE, all
members of that IPset are included in the result. When the input sets are completely disjoint
and each set has at least SIZE members, the number of IP addresses in the result is the product
of SIZE and the number of inputs.

--ratio=RATIO

Create an IPset where the probability of including each IP address of each input IPset in the
result is RATIO, specified as a floating point number between 0.0 and 1.0. For each input IP
address, rwsettool computes a pseudo-random number between 0 and 1 and adds the IP address
to the result when the number is less than RATIO. The exact size of the subset may vary with
each invocation.

--seed=SEED

Seed the pseudo-random number generator with value SEED. By default, the seed varies for each
invocation. Seeding with a specific value produces repeatable results given the same input sets.

--mask=NET BLOCK SIZE

Perform a (sparse) masking operation: The resulting IPset contains one IP address for each
/NET BLOCK SIZE CIDR block in the input IPset(s) that contains one or more IP addresses in
that CIDR block. That is, rwsettool visits each /NET BLOCK SIZE CIDR block in the IPset. If
the block is empty, no change is made; otherwise the block is cleared (all IPs removed) and the lowest
IP address in that block is made a member of the set. NET BLOCK SIZE should be value between 1
and 32 for IPv4 sets and between 1 and 128 for IPv6 sets. Contrast with --fill-blocks.

--fill-blocks=NET BLOCK SIZE

Perform a (non-sparse) masking operation: The resulting IPset contains a completely full
/NET BLOCK SIZE block for each /NET BLOCK SIZE CIDR block in the input IPset(s) that con-
tain one or more IP addresses in that CIDR block. That is, rwsettool visits each /NET BLOCK SIZE
CIDR block in the IPset; if the block is empty, no change is made, otherwise all IP addresses in the
block are made members of the set. NET BLOCK SIZE should be value between 1 and 32 for IPv4
sets and between 1 and 128 for IPv6 sets. Contrast with --mask.

Output Switches

These switches control the output:

--output-path=PATH

Write the resulting IPset to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output. If PATH names an existing file, rwsettool exits with an error unless the --modify-inplace
switch is given or the SILK CLOBBER environment variable is set, in which case PATH is overwritten.
If --output-path is not given, the output is written to the standard output. Attempting to write the
binary output to a terminal causes rwsettool to exit with an error.

SiLK-3.23.1 375

rwsettool(1) The SiLK Reference Guide

--modify-inplace

Allow rwsettool to overwrite an existing file and properly account for the output file (PATH) also
being an input file. When this switch is given, rwsettool writes the output to a temporary location
first, then overwrites PATH. rwsettool attempts to copy the permission, owner, and group from the
original file to the new file. The switch is ignored when PATH does not exist or the output is the
standard output or standard error. rwsettool exits with an error when this switch is given and PATH
is not a regular file. If rwsettool encounters an error or is interrupted prior to closing the temporary
file, the temporary file is removed. See also --backup-path. Since SiLK 3.21.0.

--backup-path=BACKUP

Move the file named by --output-path (PATH) to the path BACKUP immediately prior to moving
the temporary file created by --modify-inplace over PATH. If BACKUP names a directory, the file
is moved into that directory. This switch will overwrite an existing file. If PATH and BACKUP point
to the same location, the output is written to PATH and no backup is created. If BACKUP cannot
be created, the new IPset file is left in the temporary file and rwsettool exits with a message and an
error. rwsettool exits with an error if this switch is given without --modify-inplace. Since SiLK
3.21.0.

--record-version=VERSION

Specify the format of the IPset records that are written to the output. VERSION may be 2, 3, 4,
5 or the special value 0. When the switch is not provided, the SILK IPSET RECORD VERSION
environment variable is checked for a version. The default version is 0.

0

Use the default version for an IPv4 IPset and an IPv6 IPset. Use the --help switch to see the
versions used for your SiLK installation.

2

Create a file that may hold only IPv4 addresses and is readable by all versions of SiLK.

3

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.0 and later.

4

Create a file that may hold IPv4 or IPv6 addresses and is readable by SiLK 3.7 and later. These
files are more compact that version 3 and often more compact than version 2.

5

Create a file that may hold only IPv6 addresses and is readable by SiLK 3.14 and later. When
this version is specified, IPsets containing only IPv4 addresses are written in version 4. These
files are usually more compact that version 4.

--invocation-strip

Do not record any command line history; that is, do not record the current command line invocation
in the output. The invocation history of the input IPset files is always stripped.

--note-strip

Do not copy the notes (annotations) from the input files to the output file. Normally notes from the
input files are copied to the output.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

376 SiLK-3.23.1

The SiLK Reference Guide rwsettool(1)

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

Additional Switches

rwsettool supports these additional switches:

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Assume the following IPsets:

SiLK -3.23.1 377

rwsettool(1) The SiLK Reference Guide

A.set = { 1, 2, 4, 6 }

B.set = { 1, 3, 5, 7 }

C.set = { 1, 3, 6, 8 }

D.set = { } (empty set)

Set Union Examples

The union of two IPsets contains the IP addresses that are members of either IPset. The union of multiple
IPsets contains the IP addresses that are members of any of the sets. The resulting IPset does not depend
on the order of the input IPsets. The union of a single IPset, of an IPset with itself, and of an IPset with
an empty IPset is the original IPset.

+---------------------------------+----------------------------+

| OPTIONS | RESULT |

+---------------------------------+----------------------------+

| --union A.set B.set | { 1, 2, 3, 4, 5, 6, 7 } |

| --union A.set C.set | { 1, 2, 3, 4, 6, 8 } |

| --union A.set B.set C.set | { 1, 2, 3, 4, 5, 6, 7, 8 } |

| --union C.set D.set | { 1, 3, 6, 8 } |

| --union A.set | { 1, 2, 4, 6 } |

| --union A.set A.set | { 1, 2, 4, 6 } |

+---------------------------------+----------------------------+

Set Intersection Examples

The intersection of two IPsets contains the IP addresses that are members of both IPsets (that is, the IP
addresses they have in common). The intersection of multiple IPsets contains the IP addresses that are
members of all of the sets. The resulting IPset does not depend on the order of the input IPsets. The
intersection of a single IPset is the original IPset. The intersection of an IPset with itself is the original
IPset. The intersection of an IPset with an empty IPset is an empty IPset.

+---------------------------------+----------------------------+

| OPTIONS | RESULT |

+---------------------------------+----------------------------+

| --intersect A.set B.set | { 1 } |

| --intersect A.set C.set | { 1, 6 } |

| --intersect B.set C.set | { 1, 3 } |

| --intersect A.set B.set C.set | { 1 } |

| --intersect A.set D.set | { } |

| --intersect A.set | { 1, 2, 4, 6 } |

| --intersect A.set A.set | { 1, 2, 4, 6 } |

+---------------------------------+----------------------------+

Set Difference Examples

The difference of two IPsets contains the IP addresses that are members of the first set but not members of
the second. The difference of multiple IPsets contains the IP addresses in the first set that are not members
of any other IPset. The resulting IPset is dependent on the order of the input IPsets. Using the difference
operation on a single IPset gives that IPset. The difference of an IPset with an empty IPset is the first IPset.
The difference of an IPset with itself is the empty IPset.

378 SiLK -3.23.1

The SiLK Reference Guide rwsettool(1)

+---------------------------------+----------------------------+

| OPTIONS | RESULT |

+---------------------------------+----------------------------+

| --difference A.set B.set | { 2, 4, 6 } |

| --difference B.set A.set | { 3, 5, 7 } |

| --difference A.set B.set C.set | { 2, 4 } |

| --difference C.set B.set A.set | { 8 } |

| --difference C.set D.set | { 1, 3, 6, 8 } |

| --difference D.set C.set | { } |

| --difference A.set | { 1, 2, 4, 6 } |

| --difference A.set A.set | { } |

+---------------------------------+----------------------------+

Set Symmetric Difference Examples

The symmetric difference (or relative complement) of two IPsets contains the IP addresses that are members
of either set but not members of both sets. For each additional input IPset, rwsettool computes the
symmetric difference of the current result with the that IPset. The resulting IPset contains the IP addresses
that are members of an odd number of the input sets. The resulting IPset does not depend on the order of
the input IPsets. Using the symmetric difference operation on a single IPset gives that IPset. The symmetric
difference of an IPset with an empty IPset is the first IPset. The symmetric difference of an IPset with itself
is the empty IPset.

+---------------------------------+----------------------------+

| OPTIONS | RESULT |

+---------------------------------+----------------------------+

| --symmetric A.set B.set | { 2, 3, 4, 5, 6, 7 } |

| --symmetric A.set C.set | { 2, 3, 4, 8 } |

| --symmetric A.set D.set | { 1, 2, 4, 6 } |

| --symmetric C.set B.set | { 5, 6, 7, 8 } |

| --symmetric A.set B.set C.set | { 1, 2, 4, 5, 7, 8 } |

| --symmetric A.set | { 1, 2, 4, 6 } |

| --symmetric A.set A.set | { } |

+---------------------------------+----------------------------+

Finding IP Addresses Unique to an Input Set

Using the symmetric difference on three or more IPsets does not result in an IPset containing the IP
addresses that are members of a single input set. To compute that, use the Bag tools as follows.

1. First, use rwbagbuild(1) to create an empty bag file /tmp/b.bag.

$ echo "" | rwbagbuild --bag-input=stdin --output-path=/tmp/b.bag

2. For each input IPset, i.set, use rwbagbuild to create a bag from the IPset, and use rwbagtool(1) to
add that bag to b.bag.

$ rwbagbuild --set-input=i.set \

| rwbagtool --add - /tmp/b.bag --output-path=/tmp/b2.bag

$ mv /tmp/b2.bag /tmp/b.bag

SiLK -3.23.1 379

rwsettool(1) The SiLK Reference Guide

To do that in a loop, run

$ for i in *.set ; do \

rwbagbuild --set-input=$i \

| rwbagtool --add - /tmp/b.bag --output-path=/tmp/b2.bag ; \

mv /tmp/b2.bag /tmp/b.bag ; \

done

3. Use rwbagtool to create a coverset named unique.set that contains the IP addresses in b.bag whose
counter is 1.

$ rwbagtool --maxcounter=1 --coverset --output-path=unique.set \

/tmp/b.bag

A different approach may be used which does not require temporary files. Use rwsetcat(1) to convert the
IPset files to text and feed that data to rwbagbuild. (When rwsetcat is invoked on multiple IPset files,
it prints the contents of each individual IPset file, and as rwbagbuild processes the text, it increments an
IP address’s counter each time the IP appears in the input.) Use rwbagtool to create the IPset as shown
in Step 3 above.

$ rwsetcat --cidr-blocks=1 *.set \

| rwbagbuild --bag-input=- \

| rwbagtool --maxcounter=1 --coverset --output=unique.set

Set Sampling Examples

The --sample switch creates a subset that contains IP addresses that have been randomly selected from the
input IPset(s).

The --size switch selects exactly SIZE IP addresses from each input set, but the number of IP addresses in
the result may be less than the product of SIZE and the number of inputs when the input sets have IPs in
common or when an IPset has fewer than SIZE members.

When using the --size switch, the probability of selecting an individual IP address varies with the number
of IPs to be selected and the number of IPs remaining in the set. If N is the number of IPs in a set, the
probability of selecting the first IP is SIZE/N. If that IP is selected, the probability of selecting the second
is (SIZE -1)/(N -1), but if the first IP is not selected, the probability of selecting the second is SIZE/(N -1).

+----------------------------------+----------------------------+

| COMMAND | RESULT |

+----------------------------------+----------------------------+

| --sample --size 2 A.set | { 1, 4 } |

| --sample --size 2 A.set | { 1, 6 } |

| --sample --size 3 A.set | { 2, 4, 6 } |

| --sample --size 2 A.set B.set | { 1, 2, 5, 7 } |

| --sample --size 2 A.set B.set | { 3, 4, 5, 6 } |

| --sample --size 2 A.set B.set | { 1, 4, 5 } |

+----------------------------------+----------------------------+

The argument to the --ratio switch is the probability of choosing an individual IP address. For each IP
address in the input, the IP is added to the output when a pseudo-random number between 0 and 1 is less
then the argument to --ratio. The number of IP addresses in the result varies with each invocation.

380 SiLK -3.23.1

The SiLK Reference Guide rwsettool(1)

+----------------------------------+----------------------------+

| COMMAND | RESULT |

+----------------------------------+----------------------------+

| --sample --ratio 0.5 A.set | { 2, 6 } |

| --sample --ratio 0.5 A.set | { 4 } |

| --sample --ratio 0.5 A.set B.set | { 1, 3 } |

| --sample --ratio 0.5 A.set B.set | { 2, 3, 5, 6, 7 } |

+----------------------------------+----------------------------+

Set Masking and Block-Filling Examples

The goal of the --mask and --fill-blocks switches is to produce an IPset whose members are on user-defined
CIDR-block (or net-block) boundaries. (In some ways, these switches produce output that is similar to the
--network-structure switch on rwsetcat(1).)

The --mask and --fill-blocks switches require a decimal argument that is a CIDR-block network mask size.
For example, the argument 24 represents 256 IPv4 addresses. rwsettool visits each block of that size in the
input IPset. If no IP addresses appear in that block, the result also has no IPs in the block. If one or more
IP addresses appear in that block, the output IPset has either the lowest address in that block as a member
(for --mask) or all IP addresses in that block as members (for --fill-blocks.

For example, consider the IPset s.set containing the three IP addresses.

$ rwsetcat --cidr-blocks=1 s.set

10.1.1.1

10.1.1.2

10.1.3.1

Specifying --mask=24 produces an IPset containing two IP addresses.

$ rwsettool --mask=24 s.set | rwsetcat --cidr-blocks=1

10.1.1.0

10.1.3.0

Specifying --fill-blocks=24 produces an IPset containing 512 IP addresses.

$ rwsettool --fill-block=24 s.set | rwsetcat --cidr-blocks=1

10.1.1.0/24

10.1.3.0/24

Consider t.set that contains four IP addresses.

$ rwsetcat --cidr-blocks=1 t.set

10.1.1.1

10.1.1.2

10.1.2.5

10.1.3.1

Running --mask=24 and --fill-blocks=24 on that file produces the following.

SiLK -3.23.1 381

rwsettool(1) The SiLK Reference Guide

$ rwsettool --mask=24 t.set | rwsetcat --cidr-blocks=1

10.1.1.0

10.1.2.0

10.1.3.0

$ rwsettool --fill-block=24 t.set | rwsetcat --cidr-blocks=1

10.1.1.0/24

10.1.2.0/23

rwsetcat merges 10.1.2.0/24 and 10.1.3.0.24 into a single /23.

When multiple IPsets are specified on the command line, the union of the IPsets is computed prior to
performing the mask or fill-blocks operation. The result is not dependent on the order of the IPsets.

Mixed IPv4 and IPv6 Examples

Suppose the IPset file mixed.set contains IPv4 and IPv6 addresses. To create an IPset file that contains only
the IPv4 addresses, intersect mixed.set with the IPset all-v4.set, which is an IPset that contains all of IPv4
space (::ffff:0:0/96).

$ echo ’::ffff:0:0/96’ | rwsetbuild - all-v4.set

$ rwsettool --intersect mixed.set all-v4.set > subset-v4.set

To create an IPset file that contains only the IPv6 addresses, subtract all-v4.set from mixed.set :

$ rwsettool --difference mixed.set all-v4.set > subset-v6.set

The previous two commands may also be performed without having to write create the all-v4.set IPset file.

$ echo ’::ffff:0:0/96’ \

| rwsettool --intersect mixed.set - > subset-v4.set

$ echo ’::ffff:0:0/96’ \

| rwsettool --difference mixed.set - > subset-v6.set

Comparing Two IPsets Example

To determine if two IPset files contain the same set of IP addresses, use the --symmetric-difference switch
and then count the number of IP addresses of the result with rwsetcat. If the count is 0, the files contain
the same IP addresses.

$ cp A.set A2.set

$ rwsettool --symmetric-difference A.set A2.set \

| rwsetcat --count

0

382 SiLK-3.23.1

The SiLK Reference Guide rwsettool(1)

Changing a File’s Format

To share an IPset file with a user who has an older version of SiLK that includes different compression
libraries, it may be necessary to change the the record-version or the compression-method of an IPset file.

It is not possible to change those aspects of the file directly. A new file must be created first, and then you
may then replace the old file with the new file.

To create a new file that uses a different record-version or compression-method of the IPset file A.set, use
rwsettool with the --union switch and specify the desired arguments:

$ rwsettool --union --record-version=5 --output-path=A2.set A.set

$ rwsettool --union --compression=none --output-path=A3.set A.set

$ rwsettool --union --record-version=2 --compression=best \

--output-path=A4.set A.set

ENVIRONMENT

SILK IPSET RECORD VERSION

This environment variable is used as the value for the --record-version when that switch is not
provided. Since SiLK 3.7.0.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SEE ALSO

rwset(1), rwsetbuild(1), rwsetcat(1), rwsetmember(1), rwbagbuild(1), rwbagtool(1), rwfile-
info(1), silk(7), zlib(3)

NOTES

Prior to SiLK 3.0, an IPset file could not contain IPv6 addresses and the record version was 2. The --record-
version switch was added in SiLK 3.0 and its default was 3. In SiLK 3.6, an argument of 0 was allowed and
made the default. Version 4 was added in SiLK 3.7 as was support for the SILK IPSET RECORD VERSION
environment variable. Version 5 was added in SiLK 3.14.

The --modify-inplace switch was added in SiLK 3.21. When --backup-path is also given, there is a small
time window when the original file does not exist: the time between moving the original file to the backup
location and moving the temporary file into place.

SiLK-3.23.1 383

rwsilk2ipfix(1) The SiLK Reference Guide

rwsilk2ipfix

Convert SiLK Flow records to IPFIX records

SYNOPSIS

rwsilk2ipfix [--ipfix-output=PATH] [--no-site-name-elements]

[--print-statistics] [--single-template]

[--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwsilk2ipfix --help

rwsilk2ipfix --version

DESCRIPTION

rwsilk2ipfix reads SiLK Flow records, converts the records to an IPFIX (Internet Protocol Flow Information
eXport) format, and writes the IPFIX records to the path specified by --ipfix-output or to the standard
output when the --ipfix-output switch is not provided and standard output is not the terminal.

rwsilk2ipfix reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as it
is read. When the --xargs switch is provided, rwsilk2ipfix reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

The IPFIX records generated by rwsilk2ipfix will contain ten information elements that are in the Private
Enterprise space for CERT (the IPFIX Private Enterprise Number of CERT is 6871). These ten information
elements fall into three groups:

• Elements 30 and 31 contain the packing information that was determined by rwflowpack(8), specifi-
cally the flowtype and the sensor. These values correspond to numbers specified in the site configuration
file, silk.conf(5).

• Elements 938, 939, 940, and 941 contain the names that correspond to the values in elements 30
and 31. These elements are not exported if rwsilk2ipfix is unable to find the silk.conf file or if the
--no-site-name-elements switch is provided. Since SiLK 3.20.0.

• Elements 14, 15, 32, and 33 contain information elements generated by the yaf(1) flow meter (http:
//tools.netsa.cert.org/yaf/). The information elements may be present even if yaf was not used to
generate the flow records, but their value will be empty or 0.

For each of the ten information elements that rwsilk2ipfix produces, the following table lists its numeric
ID, its length in octets (or v for variable length), its name, the field name it corresponds to on rwcut(1),
and a brief description.

30 1 silkFlowtypeId class & type How rwflowpack categorized

the flow record

384 SiLK -3.23.1

http://tools.netsa.cert.org/yaf/
http://tools.netsa.cert.org/yaf/

The SiLK Reference Guide rwsilk2ipfix(1)

31 2 silkSensorId sensor Sensor where the flow was

collected

938 v silkFlowtypeName - Name of the silkFlowtypeId

as read from F<silk.conf>

939 v silkClassName class Class name derived from

the silkFlowtypeId

940 v silkTypeName type Type name derived from the

silkFlowtypeId

941 v silkSensorName sensor Name of the silkSensorId

as read from F<silk.conf>

14 1 initialTCPFlags initialFlags TCP flags on first packet in

the flow record

15 1 unionTCPFlags sessionFlags TCP flags on all packets in

the flow except the first

32 1 silkTCPState attributes Flow continuation attributes

set by generator

33 2 silkAppLabel application Guess by flow generator as

to the content of traffic

Note: Elements 30 and 31, silkFlowtypeId and silkSensorId, may appear as silkFlowType and silkFlowSensor
in some documentation.

Templates

Since SiLK 3.12.0, rwsilk2ipfix has used ten different IPFIX templates for writing SiLK Flow records. The
--single-template switch causes rwsilk2ipfix to revert to its previous behavior and use a single template
for all records.

In SiLK 3.20.0, four additional elements (Elements 938--941) providing the names of the SiLK class, type,
and sensor were added to templates used for multi-template output. These elements are variable length and
they are not included if the site configuration file (silk.conf(5)) is not available or if the --no-site-name-
elements option is given.

SiLK 3.23.0 changed the elements used for exporting the timestamps to flowStartMicroseconds and flowEnd-
Microseconds. Previously the templates used millisecond timestamps. This change does not apply to the
--single-template output.

1. Template ID 0x9DD0 (40400), for IPv4 records whose protocol is not ICMP, ICMPv6, UDP, SCTP,
or TCP:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

SiLK -3.23.1 385

rwsilk2ipfix(1) The SiLK Reference Guide

34 protocolIdentifier (4) 11 protocol

35- 38 sourceIPv4Address (8) 12 sIP

39- 42 destinationIPv4Address (12) 13 dIP

43- 46 ipNextHopIPv4Address (15) 14 nhIP

47- v silkFlowtypeName (6871, 938) 15 class & type

v- v silkClassName (6871, 939) 16 class

v- v silkTypeName (6871, 940) 17 type

v- v silkSensorName (6871, 941) 18 sensor

2. Template ID 0x9DD1 (40401), for ICMP IPv4 records:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35- 36 icmpTypeCodeIPv4 12 dPort

37- 40 sourceIPv4Address (8) 13 sIP

41- 44 destinationIPv4Address (12) 14 dIP

45- 48 ipNextHopIPv4Address (15) 15 nhIP

49- v silkFlowtypeName (6871, 938) 16 class & type

v- v silkClassName (6871, 939) 17 class

v- v silkTypeName (6871, 940) 18 type

v- v silkSensorName (6871, 941) 19 sensor

3. Template ID 0x9DD2 (40402), for IPv4 records whose protocol is UDP or SCTP:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35- 36 sourceTransportPort (7) 12 sPort

37- 38 destinationTransportPort (11) 13 dPort

39- 42 sourceIPv4Address (8) 14 sIP

43- 46 destinationIPv4Address (12) 15 sIP

386 SiLK -3.23.1

The SiLK Reference Guide rwsilk2ipfix(1)

47- 50 ipNextHopIPv4Address (15) 16 nhIP

51- v silkFlowtypeName (6871, 938) 17 class & type

v- v silkClassName (6871, 939) 18 class

v- v silkTypeName (6871, 940) 19 type

v- v silkSensorName (6871, 941) 20 sensor

4. Template ID 0x9DD3 (40403), for IPv4 records whose protocol is TCP and that do not have the
expanded TCP flags fields (initial flags and session flags):

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35 tcpControlBits (6) 12 flags

36- 37 sourceTransportPort (7) 13 sPort

38- 39 destinationTransportPort (11) 14 dPort

40- 43 sourceIPv4Address (8) 15 sIP

44- 47 destinationIPv4Address (12) 16 dIP

48- 51 ipNextHopIPv4Address (15) 17 nhIP

52- v silkFlowtypeName (6871, 938) 18 class & type

v- v silkClassName (6871, 939) 19 class

v- v silkTypeName (6871, 940) 20 type

v- v silkSensorName (6871, 941) 21 sensor

5. Template ID 0x9DD4 (40404), for IPv4 records whose protocol is TCP and that have have the initial
flags and session flags fields:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35 initialTCPFlags (6871, 14) 12 initialFlags

36 unionTCPFlags (6871, 15) 13 sessionFlags

37 tcpControlBits (6) 14 flags

SiLK -3.23.1 387

rwsilk2ipfix(1) The SiLK Reference Guide

38- 39 sourceTransportPort (7) 15 sPort

40- 41 destinationTransportPort (11) 16 dPort

42- 45 sourceIPv4Address (8) 17 sIP

46- 49 destinationIPv4Address (12) 18 dIP

50- 53 ipNextHopIPv4Address (15) 19 nhIP

54- v silkFlowtypeName (6871, 938) 20 class & type

v- v silkClassName (6871, 939) 21 class

v- v silkTypeName (6871, 940) 22 type

v- v silkSensorName (6871, 941) 23 sensor

6. Template ID 0x9ED0 (40656), for IPv6 records whose protocol is not ICMP, ICMPv6, UDP, SCTP, or
TCP:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35- 50 sourceIPv6Address (27) 12 sIP

51- 66 destinationIPv6Address (28) 13 dIP

67- 82 ipNextHopIPv6Address (62) 14 nhIP

83- v silkFlowtypeName (6871, 938) 15 class & type

v- v silkClassName (6871, 939) 16 class

v- v silkTypeName (6871, 940) 17 type

v- v silkSensorName (6871, 941) 18 sensor

7. Template ID 0x9ED1 (40657), for ICMPv6 IPv6 records:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35- 36 icmpTypeCodeIPv6 12 dPort

37- 52 sourceIPv6Address (27) 13 sIP

53- 68 destinationIPv6Address (28) 14 dIP

388 SiLK -3.23.1

The SiLK Reference Guide rwsilk2ipfix(1)

69- 84 ipNextHopIPv6Address (62) 15 nhIP

85- v silkFlowtypeName (6871, 938) 16 class & type

v- v silkClassName (6871, 939) 17 class

v- v silkTypeName (6871, 940) 18 type

v- v silkSensorName (6871, 941) 19 sensor

8. Template ID 0x9ED2 (40658), for IPv6 records whose protocol is UDP or SCTP:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35- 36 sourceTransportPort (7) 12 sPort

37- 38 destinationTransportPort (11) 13 dPort

39- 54 sourceIPv6Address (27) 14 sIP

55- 70 destinationIPv6Address (28) 15 dIP

71- 86 ipNextHopIPv6Address (62) 16 nhIP

87- v silkFlowtypeName (6871, 938) 17 class & type

v- v silkClassName (6871, 939) 18 class

v- v silkTypeName (6871, 940) 19 type

v- v silkSensorName (6871, 941) 20 sensor

9. Template ID 0x9ED3 (40659), for IPv6 records whose protocol is TCP and that do not have the
expanded TCP flags fields (initial flags and session flags):

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35 tcpControlBits (6) 12 flags

36- 37 sourceTransportPort (7) 13 sPort

38- 39 destinationTransportPort (11) 14 dPort

40- 55 sourceIPv6Address (27) 15 sIP

56- 71 destinationIPv6Address (28) 16 dIP

SiLK -3.23.1 389

rwsilk2ipfix(1) The SiLK Reference Guide

72- 87 ipNextHopIPv6Address (62) 17 nhIP

88- v silkFlowtypeName (6871, 938) 18 class & type

v- v silkClassName (6871, 939) 19 class

v- v silkTypeName (6871, 940) 20 type

v- v silkSensorName (6871, 941) 21 sensor

10. Template ID 0x9ED4 (40660), for IPv6 records whose protocol is TCP and that have have the initial
flags and session flags fields:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMicroseconds (152) 1 sTime

8- 15 flowEndMicroseconds (153) 2 eTime

16- 19 packetDeltaCount (2) 3 packets

20- 23 octetDeltaCount (1) 4 bytes

24- 25 ingressInterface (10) 5 in

26- 27 egressInterface (14) 6 out

28- 29 silkAppLabel (6871, 33) 7 application

30- 31 silkSensorId (6871, 31) 8 sensor

32 silkFlowtypeId (6871, 30) 9 class & type

33 silkTCPState (6871, 32) 10 attributes

34 protocolIdentifier (4) 11 protocol

35 initialTCPFlags (6871, 14) 12 initialFlags

36 unionTCPFlags (6871, 15) 13 sessionFlags

37 tcpControlBits (6) 14 flags

38- 39 sourceTransportPort (7) 15 sPort

40- 41 destinationTransportPort (11) 16 dPort

42- 57 sourceIPv6Address (27) 17 sIP

58- 73 destinationIPv6Address (28) 18 dIP

74- 89 ipNextHopIPv6Address (62) 19 nhIP

90- v silkFlowtypeName (6871, 938) 20 class & type

v- v silkClassName (6871, 939) 21 class

v- v silkTypeName (6871, 940) 22 type

v- v silkSensorName (6871, 941) 23 sensor

When the --single-template switch is provided, rwipfix2silk uses a single IPFIX template for all records.
That template has ID 0xAFEA (45034) and contains the following information elements:

OCTETS INFORMATION ELEMENT (PEN, ID) POS SILK FIELD

======= ============================= === =============

0- 7 flowStartMilliseconds (152) 1 sTime

8- 15 flowEndMilliseconds (153) 2 eTime

16- 31 sourceIPv6Address (27) 3 sIP

32- 47 destinationIPv6Address (28) 4 dIP

48- 51 sourceIPv4Address (8) 5 sIP

52- 55 destinationIPv4Address (12) 6 dIP

56- 57 sourceTransportPort (7) 7 sPort

58- 59 destinationTransportPort (11) 8 dPort

60- 63 ipNextHopIPv4Address (15) 9 nhIP

64- 79 ipNextHopIPv6Address (62) 10 nhIP

80- 83 ingressInterface (10) 11 in

390 SiLK -3.23.1

The SiLK Reference Guide rwsilk2ipfix(1)

84- 87 egressInterface (14) 12 out

88- 95 packetDeltaCount (2) 13 packets

96-103 octetDeltaCount (1) 14 bytes

104 protocolIdentifier (4) 15 protocol

105 silkFlowtypeId (6871, 30) 16 class & type

106-107 silkSensorId (6871, 31) 17 sensor

108 tcpControlBits (6) 18 flags

109 initialTCPFlags (6871, 14) 19 initialFlags

110 unionTCPFlags (6871, 15) 20 sessionFlags

111 silkTCPState (6871, 32) 21 attributes

112-113 silkAppLabel (6871, 33) 22 application

114-119 paddingOctets (210) 23 -

Note that the template contains both IPv4 and IPv6 addresses. One set of those addresses contains the IP
addresses and the other set contains only zeros. The template never includes elements 938--941.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--ipfix-output=PATH

Write the IPFIX records to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output. If PATH names an existing file, rwsilk2ipfix exits with an error unless the SILK CLOBBER
environment variable is set, in which case PATH is overwritten. If this switch is not given, the
output is written to the standard output. Attempting to write the binary output to a terminal causes
rwipfix2silk to exit with an error.

--no-site-name-elements

Do not export the elements that use the site configuration file (silk.conf(5)) to get the names of
the flowtype, class, type, and sensor. That is, do not include silkFlowtypeName, silkClassName,
silkTypeName, and silkSensorName in the exported templates and records. Since SiLK 3.20.0.

--print-statistics

Print, to the standard error, the number of records that were written to the IPFIX output file.

--single-template

Use a single IPFIX template for all records. Using this switch produces output identical to that
produced by rwsilk2ipfix from SiLK 3.11.0 and earlier. Since SiLK 3.12.0.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwsilk2ipfix searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwsilk2ipfix opens each named file in
turn and reads records from it as if the filenames had been listed on the command line.

SiLK-3.23.1 391

rwsilk2ipfix(1) The SiLK Reference Guide

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

To convert the SiLK file silk.rw into an IPFIX format and store the results in ipfix.dat :

$ rwsilk2ipfix --ipfix-output=ipfix.dat silk.rw

To view the contents of ipfix.dat using the yafscii(1) tool (see http://tools.netsa.cert.org/yaf/):

$ yafscii --in=ipfix.dat --out=-

To view the contents of ipfix.dat using the ipfixDump(1) tool (see http://tools.netsa.cert.org/yaf/):

$ ipfixDump --yaf --in=ipfix.dat --out=-

Use the rwipfix2silk(1) tool to convert the IPFIX file back into SiLK Flow format:

$ rwipfix2silk --silk-output=silk2.rw ipfix.dat

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwsilk2ipfix may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwsilk2ipfix may use this environment variable. See the FILES section for details.

392 SiLK-3.23.1

http://tools.netsa.cert.org/yaf/
http://tools.netsa.cert.org/yaf/

The SiLK Reference Guide rwsilk2ipfix(1)

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwipfix2silk(1), rwcut(1), rwflowpack(8), silk.conf(5), silk(7), yaf(1), yafscii(1), ipfixDump(1),
applabel(1)

SiLK-3.23.1 393

rwsiteinfo(1) The SiLK Reference Guide

rwsiteinfo

Print information from the silk.conf site configuration file

SYNOPSIS

rwsiteinfo --fields=FIELD[,FIELD...]

{ [--classes=CLASS[,CLASS...]] [--types=TYPE[,TYPE...]]

| [--flowtypes=CLASS/TYPE[,CLASS/TYPE...]] }

[--sensors=SENSOR[,SENSOR...]] [--groups=GROUP[,GROUP...]]

[--data-rootdir=ROOT_DIRECTORY] [--site-config-file=FILENAME]

[--timestamp-format=FORMAT] [--no-titles]

[--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--list-delimiter=CHAR] [--output-path=PATH]

[--pager=PAGER_PROG]

rwsiteinfo --help

rwsiteinfo --help-fields

rwsiteinfo --version

DESCRIPTION

rwsiteinfo is a utility to print selected information about the classes, types, flowtypes, sensors, and groups
(collections of sensors) that are defined in the silk.conf(5) site configuration file. The --fields switch is
required, and its argument is a comma-separated list of field names selecting the fields to be printed. The
output from rwsiteinfo consists of multiple columns and rows, where each column contains one of the
FIELDs and where each row has a unique value for one of the FIELDs. rwsiteinfo prints rows until all
possible combinations of fields is exhausted. By default, the information is printed in a columnar, bar-
delimited (|-delimited) format.

As of SiLK 3.11.0, rwsiteinfo can visit the files in the data repository to report the date of the earliest
(oldest) file in the repository, the date of the latest (most recent) file in the repository, and the number of
files in the repository. These values are reported individually for each row in the output. Note: If your data
repository is large, scanning it may take a long time.

The --classes, --types, --flowtypes, --sensors, and --groups switches allow the user to limit the amount of
information printed. (These switches operate similarly to their namesakes on rwfilter(1) and rwfglob(1).)
If none of these switches are given, rwsiteinfo prints information for all values defined in the silk.conf file.
If one or more of these switches is specified, rwsiteinfo limits its output to the specified values. The limit
is applied even if that field is not listed in --fields. For example, specifying --sensors=S1 --fields=class
tells rwsiteinfo to limit the output to classes that have sensor S1 as a member. To print information about
the default class or the default types within a class, use the at-sign (@) as the name of the class or type,
respectively. The --flowtypes switch must be used independently of the --classes and --types switches.

SiLK 3.21.0 added support for sensor groups to rwsiteinfo. Sensor groups are defined in the silk.conf(5)
file within a group block. The --sensors switch accepts sensor group names to limit the output to sensors
defined with the named groups. The --groups switch may be used to limit the output to specified sensor

394 SiLK-3.23.1

The SiLK Reference Guide rwsiteinfo(1)

groups. Using the same argument to --groups or --sensors produces the same result unless --fields includes
group and the silk.conf file has sensors as members of multiple groups.

As of SiLK 3.20, the --classes, --types, --flowtypes, --sensors, and --groups switches accept a value in
the form @PATH, where PATH names a file (that is, an @ character followed by a file or path name). The
format of this file is described in the Read Argument Values from a File section below.

As stated above, rwsiteinfo prints unique rows given a list of FIELDs. As an example, suppose the user
entered the command rwsiteinfo --fields=class,type,sensor. rwsiteinfo will print a row containing
the first class defined in the silk.conf file, the first type defined for that class, and the first sensor name
defined for that class/type pair. On the next row, the class and type will be the same and the second sensor
name will be printed. Once all sensors have been printed, rwsiteinfo repeats the process for the second type
defined for the first class, and so on. Once all information for the first class has been printed, the process
would repeat for the next class, until all classes have been printed.

The order of the FIELDs determines how rwsiteinfo iterates through the possible values. The last FIELD
will change most rapidly, and the first field will change most slowly. Two invocations of rwsiteinfo where
the first specifies --fields=class,sensor and the second specifies --fields=sensor,class produce the
same number of rows, and each invocation has an outer and inner iterator. In the first invocation, the outer
iterator is over the classes, and the inner iterator is over each sensor defined in that class. In the second
invocation, the outer iterator is over the sensors, and the inner is over the classes to which that sensor
belongs.

In general, the output will contain some combination of class, type, flowtype, and sensor. For flowtype and
sensor, the numeric ID may be printed instead of the name. For class and type, the default values may be
printed or they may be identified by a symbol. Most field names support a FIELD:list variant that puts
all possible values for that field into a single column. See the description of the --fields switch below for
details.

Read Argument Values from a File

As of SiLK 3.20, the --classes, --types, --flowtypes, --sensors, and --group switches accept a value in
the form @PATH, where @ is the ”at” character (ASCII 0x40) and PATH names a file or a path to a file.
For example, the following reads the name of types from the file t.txt and uses the sensors S3, S7, and the
names and/or IDs read from /tmp/sensor.txt :

rwsiteinfo --type=@t.txt --sensors=S3,@/tmp/sensor.txt,S7

Multiple @PATH values are allowed within a single argument. If the name of the file is -, the names are
read from the standard input.

The file must be a text file. Blank lines are ignored as are comments, which begin with the # character and
continue to the end of the line. Whitespace at the beginning and end of a line is ignored as is whitespace
that surrounds commas; all other whitespace within a line is significant.

A file may contain a value on each line and/or multiple values on a line separated by commas and optional
whitespace. For example:

Sensor 4

S4

The first sensors

S0, S1,S2

S3 # Sensor 3

SiLK-3.23.1 395

rwsiteinfo(1) The SiLK Reference Guide

An attempt to use an @PATH directive in a file is an error.

When rwsiteinfo is parsing the name of a file, it converts the sequences @, and @@ to , and @, respectively.
For example, --class=@cl@@ss.txt@,v reads the class from the file cl@ss.txt,v. It is an error if any other
character follows an embedded @ (--flowtypes=@f@il contains @i) or if a single @ occurs at the end of the
name (--sensor=@errat@).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--fields=FIELD[,FIELD...]

Specify the fields to print as a comma-separated list of names. The names are case-insensitive. The
fields will be displayed in the order the names are specified. The --fields switch is required, and
rwsiteinfo will fail when it is not provided.

The list of possible field names is:

class

the class name, e.g., all

type

the type name, e.g., inweb

flowtype

the flowtype name, e.g., iw. The flowtype name is a combination of the class name and type
name, and it is used to name files in the SiLK data repository.

id-flowtype

the integer identifier for the flowtype, e.g., 2

sensor

the sensor name, e.g., S3

id-sensor

the integer identifier for the sensor, e.g., 3

describe-sensor

the sensor description, when present

group

the sensor group name Since SiLK 3.21.0.

default-class

the default class name

default-type

the default type name

mark-defaults

a two-character wide column that contains a plus ’+’ on a row that contains the default class and
an asterisk ’*’ on a row that contains a default type

repo-start-date

the earliest date for a file in the repository that matches the values in this row or empty when no
files match Since SiLK 3.11.0

396 SiLK-3.23.1

The SiLK Reference Guide rwsiteinfo(1)

repo-end-date

the latest date for a file in the repository that matches the values in this row or empty when no
files match Since SiLK 3.11.0

repo-file-count

the number of files in the repository that match the values in this row or zero when no files match
Since SiLK 3.11.0

class:list

instead of printing class names on separate rows, join all the classes in a single row separated
using the list-delimiter

type:list

instead of printing type names on separate rows, join all the types in a single row separated using
the list-delimiter

flowtype:list

instead of printing flowtype names on separate rows, join all the flowtypes in a single row separated
using the list-delimiter

id-flowtype:list

instead of printing flowtype identifiers on separate rows, join all the flowtype identifiers in a single
row separated using the list-delimiter

sensor:list

instead of printing sensor names on separate rows, join all the sensors in a single row separated
using the list-delimiter

id-sensor:list

instead of printing sensor identifiers on separate rows, join all the sensor identifiers in a single row
separated using the list-delimiter

group:list

instead of printing sensor group names on separate rows, join all the group names in a single row
separated using the list-delimiter Since SiLK 3.21.0.

default-class:list

equivalent to default-class, but provided for consistency

default-type:list

instead of printing the default type names on separate rows, join all the default type names in a
single row separated using the list-delimiter

--classes=CLASS [,CLASS,@PATH...]

Restrict the output using the class(es) named in the comma-separated list. The default class may be
specified by using an at-sign (@) as the name of a class. As of SiLK 3.20.0, if an argument is ”@PATH ”,
rwsiteinfo attempts to open the file PATH and read the names of classes from it; see Read Argument
Values from a File for details.

--types=TYPE [,TYPE,@PATH...]

Restrict the output using the type(s) named in the comma-separated list. The default types for a class
may be specified by using an at-sign (@) as the name of a type. An argument of ”@PATH ” causes
rwsiteinfo to read type names from the file PATH ; see Read Argument Values from a File.

--flowtypes=CLASS/TYPE [,CLASS/TYPE,@PATH...]

Restrict the output using the class/type pairs named in the comma-separated list, where the class
name and type name are separated by a slash (/). The keyword all may be used for the CLASS

SiLK-3.23.1 397

rwsiteinfo(1) The SiLK Reference Guide

and/or TYPE to select all classes and/or types. As of SiLK 3.20.0, the arguments may also include
”@PATH ” which causes rwsiteinfo to open the file PATH and read the class/type pairs from it; see
Read Argument Values from a File.

--sensors=SENSOR[,SENSOR,SENSOR-GROUP,@PATH...]

Restrict the output to the sensors(s) identified in the comma-separated list of sensor names, sensor IDs
(integers), ranges of sensor IDs, sensors added to the specified sensor group names, and names and/or
IDs of sensors and sensor groups read from the file PATH. Using a sensor group name adds all sensors
defined within that group. The ability to use sensor group names was added in SiLK 3.21.0.

--groups=SENSOR-GROUP [,SENSOR-GROUP,@PATH...]

Restrict the output using the sensor groups named in the comma-separated list. Naming a group in
either --groups or --sensors produces the same result unless --fields includes group and the silk.conf
puts sensors in multiple groups. If an argument is ”@PATH ”, rwsiteinfo attempts to open the file
PATH and read the names of sensor groups from it; see Read Argument Values from a File for details.
Since SiLK-3.21.0.

--data-rootdir=ROOT DIRECTORY

Use ROOT DIRECTORY as the root of the data repository, which overrides the location given in the
SILK DATA ROOTDIR environment variable, which in turn overrides the location that was compiled
into rwsiteinfo (/data). This directory is one of the locations where rwsiteinfo attempts to find
the silk.conf file, and it is the repository that is scanned when the repo-start-date, repo-end-date, or
repo-file-count field is specified.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwsiteinfo searches for the site configuration file in the locations specified in the FILES section.

--timestamp-format=FORMAT

Specify the format and/or timezone to use when printing timestamps. When this switch is not spec-
ified, the SILK TIMESTAMP FORMAT environment variable is checked for a default format and/or
timezone. If it is empty or contains invalid values, timestamps are printed in the default format,
and the timezone is UTC unless SiLK was compiled with local timezone support. FORMAT is a
comma-separated list of a format and/or a timezone. The format is one of:

default

Print the timestamps as YYYY /MM /DD Thh :mm :ss .

iso

Print the timestamps as YYYY -MM -DD hh :mm :ss .

m/d/y

Print the timestamps as MM /DD /YYYY hh :mm :ss .

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

398 SiLK-3.23.1

The SiLK Reference Guide rwsiteinfo(1)

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of | is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default |.

--list-delimiter=C

Specify the character to use between items that comprise a FIELD:list column. The default list
delimiter is comma ,.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwsiteinfo exits with an
error unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If
this switch is not given, the output is either sent to the pager or written to the standard output. Since
SiLK 3.15.0.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--help

Print the available options and exit. Options that add fields can be specified before --help so that the
new options appear in the output.

--help-fields

Print a description for each field and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 399

rwsiteinfo(1) The SiLK Reference Guide

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The output from these examples is based on the sample silk.conf as distributed for the twoway site (c.f.
packlogic-twoway(3)).

Displaying the sensors with various options

This displays all known sensors using the default display options:

$ rwsiteinfo --fields=sensor

Sensor|

S0|

S1|

S2|

S3|

S4|

S5|

S6|

S7|

S8|

S9|

S10|

S11|

S12|

S13|

S14|

The following prints all known sensor names, one name per line:

$ rwsiteinfo --fields=sensor --no-titles --delimited

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

The following prints all known sensor names on a single line with the names separated by comma:

400 SiLK -3.23.1

The SiLK Reference Guide rwsiteinfo(1)

$ rwsiteinfo --fields=sensor:list --no-titles --delimited

S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14

This changes the output from the previous example to use a space as the separator:

$ rwsiteinfo --fields=sensor:list --no-titles --delimited \

--list-delimiter=’ ’

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

The following prints the sensor names for the default class on a single line (since there is a single class, the
output is the same as that shown above):

$ rwsiteinfo --fields=sensor:list --class=@ --no-titles --delimited

S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14

This shows the numeric sensor IDs:

$ rwsiteinfo --fields=id-sensor:list

Sensor-ID:list|

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14|

The following prints four columns: (1) the sensor identifier, (2) the sensor name, (3) the list of classes for
that sensor, and (4) a description of the sensor. This output mimics the output of the deprecated mapsid(1)
tool.

$ rwsiteinfo --fields=id-sensor,sensor,class:list,describe-sensor

Sensor-ID|Sensor|Class:list| Sensor-Description|

0| S0| all| Description for sensor S0|

1| S1| all| |

2| S2| all|Optional description for sensor S2|

3| S3| all| |

4| S4| all| |

5| S5| all| |

6| S6| all| |

7| S7| all| |

8| S8| all| |

9| S9| all| |

10| S10| all| |

11| S11| all| |

12| S12| all| |

13| S13| all| |

14| S14| all| |

Displaying classes and types

This prints three columns: the first contains the class, the second contains the type, and the third uses a +

to mark rows for the default class and a * to mark rows for a default type.

SiLK -3.23.1 401

rwsiteinfo(1) The SiLK Reference Guide

$ rwsiteinfo --fields=class,type,mark-default

Class| Type|Defaults|

all| in| +*|

all| out| + |

all| inweb| +*|

all| outweb| + |

all| innull| + |

all|outnull| + |

all|int2int| + |

all|ext2ext| + |

all| inicmp| +*|

all|outicmp| + |

all| other| + |

The following prints two columns, the first containing a class name and the second the list of default types
for that class:

$ rwsiteinfo --fields=class,default-type:list

Class|Default-Type:list|

all| in,inweb,inicmp|

The following prints the default types. (The output contains the default type for each class, but twoway site
has a single class.)

$ rwsiteinfo --fields=default-type --no-titles --delimited

in

inweb

inicmp

This does the same (by limiting the output the default types).

$ rwsiteinfo --fields=type --types=@ --no-titles --delimited

in

inweb

inicmp

The following prints the class, the sensor, and the type. The number of rows of output (excluding the title)
is the product of the number of classes, number of types, and number of sensors.

$ rwsiteinfo --fields=class,sensor,type

Class|Sensor| Type|

all| S0| in|

all| S0| out|

all| S0| inweb|

all| S0| outweb|

all| S0| innull|

all| S0|outnull|

all| S0|int2int|

all| S0|ext2ext|

all| S0| inicmp|

402 SiLK -3.23.1

The SiLK Reference Guide rwsiteinfo(1)

all| S0|outicmp|

all| S0| other|

all| S1| in|

all| S1| out|

...

all| S14|outicmp|

all| S14| other|

Displaying sensor groups

The --group switch was added in SiLK 3.21.0 and limits the output to particular sensor groups. In addition,
the --sensors switch accepts sensor group names. Given this silk.conf file:

sensor 1 S1

sensor 2 S2

sensor 3 S3

group G12

sensors S1 S2

end group

group G13

sensors S1 S3

end group

...

Using --group=G12 limits the output to that group:

$ rwsiteinfo --fields=group,sensor --group=G12

Group|Sensor|

G12| S1|

G12| S2|

If --sensors=G12 is used, rwsiteinfo limits the output to the sensors that group contains (S1 and S2).
The result includes group G13 since that group contains sensor S1:

$ rwsiteinfo --fields=group,sensor --sensor=G12

Group|Sensor|

G12| S1|

G12| S2|

G13| S1|

This occurs when sensors appear in multiple groups and group is one of the output --fields.

Displaying information about the flow data repository

The repo-start-date, repo-end-date, and repo-file-count fields print the range of available dates for the files
in the repository. The following shows information about files in the repository for the repository as a whole:

$ rwsiteinfo --fields=repo-start-date,repo-end-date,repo-file-count

Start-Date| End-Date|File-Count|

2009/02/12T00:00:00|2009/02/14T23:00:00| 2880|

SiLK-3.23.1 403

rwsiteinfo(1) The SiLK Reference Guide

This breaks down the file information per type:

$ rwsiteinfo --fields=type,repo-start-date,repo-end-date,repo-file-count

Type| Start-Date| End-Date|File-Count|

in|2009/02/12T00:00:00|2009/02/14T23:00:00| 720|

out|2009/02/12T00:00:00|2009/02/14T23:00:00| 720|

inweb|2009/02/12T00:00:00|2009/02/14T23:00:00| 720|

outweb|2009/02/12T00:00:00|2009/02/14T23:00:00| 720|

innull| | | 0|

outnull| | | 0|

int2int| | | 0|

ext2ext| | | 0|

inicmp| | | 0|

outicmp| | | 0|

other| | | 0|

This shows the information for each sensor:

$ rwsiteinfo --fields=type,repo-start-date,repo-end-date,repo-file-count

Sensor| Start-Date| End-Date|File-Count|

S0|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S1|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S2|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S3|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S4|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S5|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S6|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S7|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S8|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S9|2009/02/12T00:00:00|2009/02/14T23:00:00| 288|

S10| | | 0|

S11| | | 0|

S12| | | 0|

S13| | | 0|

S14| | | 0|

Restricting the output by reading names from a file

Suppose the file sensors.txt exits in the current directory and has the content shown here:

$ cat sensors.txt

Sensor 4

S4

The first sensors

S0,S1,S2

S3 # Sensor 3

When using SiLK 3.20.0 or later, the file can be used to restrict which sensors rwsiteinfo displays:

$ rwsiteinfo --fields=class,sensor --sensor=@/tmp/foobart

404 SiLK -3.23.1

The SiLK Reference Guide rwsiteinfo(1)

Class|Sensor|

all| S0|

all| S1|

all| S2|

all| S3|

all| S4|

An example that shows use of the @ escapes when parsing the name of a file (file weird,n@me becomes
weird@,n@@me), and the error generated when attempting to use @PATH within a file:

$ cat weird,n@me

S1

@another-file

$ rwsiteinfo --fields=sensor --sensor=@weird@,n@@me

rwsiteinfo: Error parsing sensors ’@weird@,n@@me’: Bad

token ’@another-file’ found in file ’weird,n@me’: May not

recursively use @FILE construct within a file

ENVIRONMENT

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwsiteinfo automatically invokes this program to display its output
a screen at a time. If set to an empty string, rwsiteinfo does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwsiteinfo automatically invokes this program to display its
output a screen at a time.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwsiteinfo may use this environment variable when searching for the SiLK site configuration
file. In addition, rwsiteinfo visits all the files in this directory when the repo-start-date, repo-end-date,
or repo-file-count fields are specified in the --fields switch.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwsiteinfo may use this environment variable. See the FILES section for details.

SiLK-3.23.1 405

rwsiteinfo(1) The SiLK Reference Guide

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwsiteinfo displays timestamps. (If both of those are false, the TZ environment variable is
ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwsiteinfo --version.)

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided. The location of the SILK DATA ROOTDIR may be specified using the --root-
directory switch.

${SILK DATA ROOTDIR}/

/data/

Locations for the root directory of the data repository when the --data-rootdir switch is not specified.

NOTES

rwsiteinfo added support for sensor groups in SiLK 3.21.0. For information on sensor groups, see the
documentation for the group block command in the silk.conf(5) manual page.

The ability to read classes, types, sensors, and flowtypes from files via the @PATH directive was added in
SiLK 3.20.0.

The --output-path switch was added in SiLK 3.15.0.

The repo-start-date, repo-end-date, and repo-file-count fields were added in SiLK 3.11.0.

rwsiteinfo was added in SiLK 3.0.

rwsiteinfo duplicates the functionality found in mapsid(1). mapsid is deprecated, and it will be removed
in the SiLK 4.0 release. Examples of using rwsiteinfo in place of mapsid are provided in the latter’s
manual page.

SEE ALSO

silk.conf(5), mapsid(1), rwfilter(1), rwfglob(1), packlogic-twoway(3), silk(7), tzset(3), envi-
ron(7)

406 SiLK-3.23.1

The SiLK Reference Guide rwsort(1)

rwsort

Sort SiLK Flow records on one or more fields

SYNOPSIS

rwsort --fields=KEY [--presorted-input] [--reverse]

[--temp-directory=DIR_PATH] [--sort-buffer-size=SIZE]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD] [--print-filenames]

[--output-path=PATH] [--site-config-file=FILENAME]

[--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--python-file=PATH [--python-file=PATH ...]]

[--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

{[--input-pipe=PATH] | [--xargs]|[--xargs=FILE] | [FILES...]}

rwsort [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help

rwsort [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help-fields

rwsort --version

DESCRIPTION

rwsort reads SiLK Flow records, sorts the records by the field(s) listed in the --fields switch, and writes
the records to the --output-path or to the standard output if it is not connected to a terminal. The output
from rwsort is binary SiLK Flow records; the output must be passed into another tool for human-readable
output.

Sorting records is an expensive operation, and it should only be used when necessary. The tools that bin
flow records (rwcount(1), rwuniq(1), rwstats(1), etc) do not require sorted data.

rwsort reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and neither --xargs nor --input-pipe is present. To read the standard
input in addition to the named files, use - or stdin as a file name. If an input file name ends in .gz, the
file is uncompressed as it is read. When the --xargs switch is provided, rwsort reads the names of the files
to process from the named text file or from the standard input if no file name argument is provided to the
switch. The input to --xargs must contain one file name per line. The --input-pipe switch is deprecated
and it is provided for legacy reasons; its use is not required since rwsort will automatically read form the
standard input. The --input-pipe switch will be removed in the SiLK 4.0 release.

The amount of fast memory used by rwsort will increase until it reaches a maximum near 2GB. (Use the
--sort-buffer-size switch to change this upper limit on the buffer size.) If more records are read than will
fit into memory, the in-core records are sorted and temporarily stored on disk as described by the --temp-
directory switch. When all records have been read, the on-disk files are merged and the sorted records
written to the output.

By default, the temporary files are stored in the /tmp directory. Because these temporary files will be
large, it is strongly recommended that /tmp not be used as the temporary directory. To modify the tempo-

SiLK-3.23.1 407

rwsort(1) The SiLK Reference Guide

rary directory used by rwsort, provide the --temp-directory switch, set the SILK TMPDIR environment
variable, or set the TMPDIR environment variable.

To merge previously sorted SiLK data files into a sorted stream, run rwsort with the --presorted-input
switch. rwsort will merge-sort all the input files, reducing it’s memory requirements considerably. It is the
user’s responsibility to ensure that all the input files have been sorted with the same --fields value (and
--reverse if applicable). rwsort may still require use of a temporary directory while merging the files (for
example, if rwsort does not have enough available file handles to open all the input files at once).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

The --fields switch is required. rwsort will fail when it is not provided.

--fields=KEY

KEY contains the list of flow attributes (a.k.a. fields or columns) that make up the key by which
flows are sorted. The fields are in listed in order from primary sort key, secondary key, etc. Each field
may be specified once only. KEY is a comma separated list of field-names, field-integers, and ranges
of field-integers; a range is specified by separating the start and end of the range with a hyphen (-).
Field-names are case insensitive. Example:

--fields=stime,10,1-5

There is no default value for the --fields switch; the switch must be specified.

The complete list of built-in fields that the SiLK tool suite supports follows, though note that not all
fields are present in all SiLK file formats; when a field is not present, its value is 0.

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

dPort,4

destination port for TCP and UDP, or equivalent. See note at iType.

protocol,5

IP protocol

packets,pkts,6

packet count

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sTime,9

starting time of flow (nanoseconds resolution)

408 SiLK-3.23.1

The SiLK Reference Guide rwsort(1)

duration,10

duration of flow (nanoseconds resolution)

eTime,11

end time of flow (nanoseconds resolution)

sensor,12

name or ID of sensor where flow was collected

class,20,type,21

integer value of the class/type pair assigned to the flow by rwflowpack(8)

iType

the ICMP type value for ICMP or ICMPv6 flows and zero for non-ICMP flows. Internally, SiLK
stores the ICMP type and code in the dPort field, so there is no need have both dPort and iType

or iCode in the sort key. This field was introduced in SiLK 3.8.1.

iCode

the ICMP code value for ICMP or ICMPv6 flows and zero for non-ICMP flows. See note at iType.

icmpTypeCode,25

equivalent to iType,iCode. This field may not be mixed with iType or iCode, and this field is
deprecated as of SiLK 3.8.1. Prior to SiLK 3.8.1, specifying the icmpTypeCode field was equivalent
to specifying the dPort field.

Many SiLK file formats do not store the following fields and their values will always be 0; they are
listed here for completeness:

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

nhIP,15

router next hop IP

SiLK can store flows generated by enhanced collection software that provides more information than
NetFlow v5. These flows may support some or all of these additional fields; for flows without this
additional information, the field’s value is always 0.

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags over all packets except the first in the flow

attributes,28

flow attributes set by the flow generator:

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

SiLK-3.23.1 409

rwsort(1) The SiLK Reference Guide

T

flow generator prematurely created a record for a long-running connection due to a timeout.
(When the flow generator yaf(1) is run with the --silk switch, it will prematurely create a
flow and mark it with T if the byte count of the flow cannot be stored in a 32-bit value.)

C

flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout (or a byte threshold in the case of yaf).

Consider a long-running ssh session that exceeds the flow generator’s active timeout. (This is the
active timeout since the flow generator creates a flow for a connection that still has activity). The
flow generator will create multiple flow records for this ssh session, each spanning some portion of
the total session. The first flow record will be marked with a T indicating that it hit the timeout.
The second through next-to-last records will be marked with TC indicating that this flow both
timed out and is a continuation of a flow that timed out. The final flow will be marked with a C,
indicating that it was created as a continuation of an active flow.

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf, will inspect the contents of the packets that make up a flow and use traffic signatures
to label the content of the flow. SiLK calls this label the application; yaf refers to it as the
appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

The following fields provide a way to label the IPs or ports on a record. These fields require external
files to provide the mapping from the IP or port to the label:

sType,16

categorize the source IP address as non-routable, internal, or external and sort based on the
category. Uses the mapping file specified by the SILK ADDRESS TYPES environment variable,
or the address types.pmap mapping file, as described in addrtype(3).

dType,17

as sType for the destination IP address

scc,18

the country code of the source IP address. Uses the mapping file specified by the
SILK COUNTRY CODES environment variable, or the country codes.pmap mapping file, as de-
scribed in ccfilter(3).

dcc,19

as scc for the destination IP

src-map-name

label contained in the prefix map file associated with map-name. If the prefix map is for IP
addresses, the label is that associated with the source IP address. If the prefix map is for pro-
tocol/port pairs, the label is that associated with the protocol and source port. See also the
description of the --pmap-file switch below and the pmapfilter(3) manual page.

dst-map-name

as src-map-name for the destination IP address or the protocol and destination port.

sval

as src-map-name when no map-name is associated with the prefix map file

dval

as dst-map-name when no map-name is associated with the prefix map file

410 SiLK-3.23.1

The SiLK Reference Guide rwsort(1)

Finally, the list of built-in fields may be augmented by the run-time loading of PySiLK code or plug-ins
written in C (also called shared object files or dynamic libraries), as described by the --python-file
and --plugin switches.

--presorted-input

Instruct rwsort to merge-sort the input files; that is, rwsort assumes the input files have been
previously sorted using the same values for the --fields and --reverse switches as was given for
this invocation. This switch can greatly reduce rwsort’s memory requirements as a large buffer is not
required for sorting the records. If the input files were created with rwsort, you can run rwfileinfo(1)
on the files to see the rwsort invocation that created them.

--reverse

Cause rwsort to reverse the sort order, causing larger values to occur in the output before smaller
values. Normally smaller values appear before larger values.

--plugin=PLUGIN

Augment the list of fields by using run-time loading of the plug-in (shared object) whose path is
PLUGIN. The switch may be repeated to load multiple plug-ins. The creation of plug-ins is described
in the silk-plugin(3) manual page. When PLUGIN does not contain a slash (/), rwsort will attempt
to find a file named PLUGIN in the directories listed in the FILES section. If rwsort finds the file, it
uses that path. If PLUGIN contains a slash or if rwsort does not find the file, rwsort relies on your
operating system’s dlopen(3) call to find the file. When the SILK PLUGIN DEBUG environment
variable is non-empty, rwsort prints status messages to the standard error as it attempts to find and
open each of its plug-ins.

--temp-directory=DIR PATH

Specify the name of the directory in which to store data files temporarily when more records have
been read that will fit into RAM. This switch overrides the directory specified in the SILK TMPDIR
environment variable, which overrides the directory specified in the TMPDIR variable, which overrides
the default, /tmp.

--sort-buffer-size=SIZE

Set the maximum size of the buffer used for sorting the records, in bytes. A larger buffer means fewer
temporary files need to be created, reducing the I/O wait times. When this switch is not specified, the
default maximum for this buffer is near 2GB. The SIZE may be given as an ordinary integer, or as a
real number followed by a suffix K, M or G, which represents the numerical value multiplied by 1,024
(kilo), 1,048,576 (mega), and 1,073,741,824 (giga), respectively. For example, 1.5K represents 1,536
bytes, or one and one-half kilobytes. (This value does not represent the absolute maximum amount
of RAM that rwsort will allocate, since additional buffers will be allocated for reading the input and
writing the output.) The sort buffer is not used when the --presorted-input switch is specified.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

SiLK-3.23.1 411

rwsort(1) The SiLK Reference Guide

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,
use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--print-filenames

Print to the standard error the names of input files as they are opened.

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the keyword
stderr to write the output to the standard error, or the keyword stdout or - to write the output
to the standard output. If PATH names an existing file, rwsort exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this switch is
not given, the output is written to the standard output. Attempting to write the binary output to a
terminal causes rwsort to exit with an error.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwsort searches for the site configuration file in the locations specified in the FILES section.

--input-pipe=PATH

Read the SiLK Flow records to be sorted from the named pipe at PATH. If PATH is stdin or -, records
are read from the standard input. Use of this switch is not required, since rwsort will automatically
read data from the standard input when no file names are specified on the command line. This switch
is deprecated and will be removed in the SiLK 4.0 release.

--xargs

412 SiLK-3.23.1

The SiLK Reference Guide rwsort(1)

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwsort opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit. Specifying switches that add new fields or additional switches
before --help will allow the output to include descriptions of those fields or switches.

--help-fields

Print the description and alias(es) of each field and exit. Specifying switches that add new fields before
--help-fields will allow the output to include descriptions of those fields.

--version

Print the version number and information about how SiLK was configured, then exit the application.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the prefix map file located at PATH and create fields named src-map-name and dst-map-name
where map-name is either the MAPNAME part of the argument or the map-name specified when the
file was created (see rwpmapbuild(1)). If no map-name is available, rwsort names the fields sval
and dval. Specify PATH as - or stdin to read from the standard input. The switch may be repeated
to load multiple prefix map files, but each prefix map must use a unique map-name. The --pmap-file
switch(es) must precede the --fields switch. See also pmapfilter(3).

--python-file=PATH

When the SiLK Python plug-in is used, rwsort reads the Python code from the file PATH to define
additional fields that can be used as part of the sort key. This file should call register field() for
each field it wishes to define. For details and examples, see the silkpython(3) and pysilk(3) manual
pages.

LIMITATIONS

When the temporary files and the final output are stored on the same file volume, rwsort will require
approximately twice as much free disk space as the size of data to be sorted.

When the temporary files and the final output are on different volumes, rwsort will require between 1 and
1.5 times as much free space on the temporary volume as the size of the data to be sorted.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line.

To sort the records in infile.rw based primarily on destination port and secondarily on source IP and write
the binary output to outfile.rw, run:

$ rwsort --fields=dport,sip --output-path=outfile.rw infile.rw

The silkpython(3) manual page provides examples that use PySiLK to create arbitrary fields to use as part
of the key for rwsort.

SiLK-3.23.1 413

rwsort(1) The SiLK Reference Guide

ENVIRONMENT

SILK TMPDIR

When set and --temp-directory is not specified, rwsort writes the temporary files it creates to this
directory. SILK TMPDIR overrides the value of TMPDIR.

TMPDIR

When set and SILK TMPDIR is not set, rwsort writes the temporary files it creates to this directory.

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file is specified,
rwsort must load the Python files that comprise the PySiLK package, such as silk/ init .py. If this
silk/ directory is located outside Python’s normal search path (for example, in the SiLK installation
tree), it may be necessary to set or modify the PYTHONPATH environment variable to include the
parent directory of silk/ so that Python can find the PySiLK module.

SILK PYTHON TRACEBACK

When set, Python plug-ins will output traceback information on Python errors to the standard error.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwsort uses
when computing the scc and dcc fields. The value may be a complete path or a file relative to the
SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file that rwsort uses
when computing the sType and dType fields. The value may be a complete path or a file relative to
the SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwsort may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwsort may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, rwsort prints status messages to the standard error as it attempts to find and open each
of its plug-ins. In addition, when an attempt to register a field fails, the application prints a message
specifying the additional function(s) that must be defined to register the field in the application. Be
aware that the output can be rather verbose.

414 SiLK-3.23.1

The SiLK Reference Guide rwsort(1)

SILK TEMPFILE DEBUG

When set to 1, rwsort prints debugging messages to the standard error as it creates, re-opens, and
removes temporary files.

FILES

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file required by the sType and dType fields.

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the scc and dcc fields.

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

SiLK-3.23.1 415

rwsort(1) The SiLK Reference Guide

/usr/local/lib/

Directories that rwsort checks when attempting to load a plug-in.

${SILK TMPDIR}/

${TMPDIR}/

/tmp/

Directory in which to create temporary files.

SEE ALSO

rwcount(1), rwcut(1), rwfileinfo(1), rwstats(1), rwuniq(1), rwpmapbuild(1), addrtype(3), cc-
filter(3), pmapfilter(3), pysilk(3), silkpython(3), silk-plugin(3), sensor.conf(5), rwflowpack(8),
silk(7), yaf(1), dlopen(3), zlib(3)

NOTES

Fields sTime+msec, eTime+msec, dur+msec, and their aliases (22, 23, 24) were removed in SiLK 3.23.0.
Use fields sTime, eTime, and duration instead.

If an output path is not specified, rwsort will write to the standard output unless it is connected to a
terminal, in which case an error is printed and rwsort exits.

If an input pipe or a set of input files are not specified, rwsort will read records from the standard input
unless it is connected to a terminal, in which case an error is printed and rwsort exits.

Note that rwsort produces binary output. Use rwcut(1) to view the records.

Do not spend the resources to sort the data if you are going to be passing it to an aggregation tool like
rwtotal or rwaddrcount, which have their own internal data structures that will ignore the sorted data.

Both rwuniq(1) and rwstats(1) can take advantage of previously sorted data, but you must explicitly
inform them that the input is sorted by providing the --presorted-input switch.

416 SiLK-3.23.1

The SiLK Reference Guide rwsplit(1)

rwsplit

Divide a SiLK file into a (sampled) collection of subfiles

SYNOPSIS

rwsplit --basename=BASENAME

{ --ip-limit=LIMIT | --flow-limit=LIMIT

| --packet-limit=LIMIT | --byte-limit=LIMIT }

[--seed=NUMBER] [--sample-ratio=SAMPLE_RATIO]

[--file-ratio=FILE_RATIO] [--max-outputs=MAX_OUTPUTS]

[--note-add=TEXT] [--note-file-add=FILE]

[--compression-method=COMP_METHOD]

[--print-filenames] [--site-config-file=FILENAME]

[--xargs[=FILE] | FILE [FILES...]]

rwsplit --help

rwsplit --version

DESCRIPTION

rwsplit reads SiLK Flow records from the standard input or from files named on the command line and
writes the flows into a set of subfiles based on the splitting criterion. In its simplest form, rwsplit partitions
the file, meaning that each input flow will appear in one (and only one) of the subfiles.

In addition to splitting the file, rwsplit can generate files containing sample flows. Sampling is specified by
using the --sample-ratio and --file-ratio switches.

rwsplit reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as
it is read. When the --xargs switch is provided, rwsplit reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

If you wish to use the size of the output files as the splitting criterion, use the --flow-limit switch. The
paramater to this switch should be the size of the desired output files divided by the record size. The record
size can be determined by rwfileinfo(1). When the output files are compressed (see the description of
--compression-method below), you should assume about a 50% compression ratio.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

The splitting criterion is defined using one of the limit specifiers; one and only one must be specified. They
are:

SiLK-3.23.1 417

rwsplit(1) The SiLK Reference Guide

--ip-limit=LIMIT

Close the current subfile and begin a new subfile when the count of unique source and destination IPs
in the current subfile meets or exceeds LIMIT. The next-hop-IP does not count toward LIMIT.

--flow-limit=LIMIT

Close the current subfile and begin a new subfile when the number of SiLK Flow records in the current
subfile meets LIMIT.

--packet-limit=LIMIT

Close the current subfile and begin a new subfile when the sum of the packet counts across all SiLK
Flow records in the current subfile meets or exceeds LIMIT.

--byte-limit=LIMIT

Close the current subfile and begin a new subfile when the sum of the byte counts across all SiLK
Flow records in the current subfile meets or exceeds LIMIT. This switch does not specify the size of
the subfiles.

The other switches are:

--basename=BASENAME

Specifies the basename of the output files; this switch is required. The flows are written sequentially
to a set of subfiles whose names follow the format BASENAME.ORDER.rwf, where ORDER is an
8-digit zero-formatted sequence number (i.e., 00000000, 00000001, and so on). The sequence number
will begin at zero and increase by one for every file written, unless --file-ratio is specified,

--seed=NUMBER

Use NUMBER to seed the pseudo-random number generator for the --sample-ratio or --file-ratio
switch. This can be used to put the random number generator into a known state, which is useful for
testing.

--sample-ratio=SAMPLE RATIO

Writes one flow record, chosen at random, from every SAMPLE RATIO flows that are read.

--file-ratio=FILE RATIO

Picks one subfile, chosen from random, out of every FILE RATIO names generated, for writing to
disk.

--max-outputs=NUMBER

Limits the number of files that are written to disk to NUMBER.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

418 SiLK-3.23.1

The SiLK Reference Guide rwsplit(1)

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, the output files are compressed using
the default chosen when SiLK was compiled. The valid values for COMP METHOD are determined
by which external libraries were found when SiLK was compiled. To see the available compression
methods and the default method, use the --help or --version switch. SiLK can support the following
COMP METHOD values when the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output. Using zlib produces the smallest output files
at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression. This
compression provides good compression with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available.

--print-filenames

Print to the standard error the names of input files as they are opened.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwsplit searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwsplit opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Assume a source file source.rwf ; to split that file into files that each contain about 100 unique IP addresses:

SiLK -3.23.1 419

rwsplit(1) The SiLK Reference Guide

$ rwsplit --basename=result --ip-limit=100 source.rwf

To split source.rwf into files that each contain 100 flows:

$ rwsplit --basename=result --flow-limit=100 source.rwf

The following causes rwsplit to sample 1 out of every 10 records from source.rwf ; i.e., rwsplit will read
1000 flow records to produce each subfile:

$ rwsplit --basename=result --flow-limit=100 --sample-ratio=10 source.rwf

When --file-ratio is specified, the file names are generated as usual (e.g., base-00000000, base-00000001,
...); however, one of these names will be chosen randomly from each set of --file-ratio candidates, and only
that file will be written to disk.

$ rwsplit --basename=result --flow-limit=100 --file-ratio=5 source.rwf

$ ls

result-00000002.rwf

result-00000008.rwf

result-00000013.rwf

result-00000016.rwf

LIMITATIONS

rwsplit can take exactly 1 partitioning switch per invocation.

Partitioning is not exact, rwsplit keeps appending flow records a file until it meets or exceeds the specified
LIMIT. For example, if you specify --ip-limit=100, then rwsplit will fill up the file until it has 100 IP
addresses in it; if the file has 99 addresses and a new record with 2 previously unseen addresses is received,
rwsplit will put this in the current file, resulting in a 101-address file. Similarly, if you specify --byte-
limit=2000, and rwsplit receives a 10kb flow record, that flow record will be placed in the current subfile.

The switches --sample-ratio, --file-ratio, and --max-outputs are processed in that order. So, when you
specify

$ rwsplit --sample-ratio=10 --ip-limit=100 \

--file-ratio=10 --max-outputs=20

rwsplit will pick 1 out of every 10 flow records, write that to a file until it has 100 IP’s per file, pick 1 out
of every 10 files to write, and write up to 20 files. If there are 1000 records, each with 2 unique IPs in them,
then rwsplit will write at most 1 file (it will write 200 unique IP addresses, but it may not pick one of the
files from the set to write).

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

420 SiLK-3.23.1

The SiLK Reference Guide rwsplit(1)

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwsplit may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwsplit may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SEE ALSO

rwfileinfo(1), silk(7), zlib(3)

SiLK-3.23.1 421

rwstats(1) The SiLK Reference Guide

rwstats

Print top-N or bottom-N lists or summarize data by protocol

SYNOPSIS

rwstats --fields=KEY [--values=VALUES]

{--count=N | --threshold=N | --percentage=N}

[{--top | --bottom}] [--presorted-input] [--no-percents]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[{--bin-time=SECONDS | --bin-time}]

[--timestamp-format=FORMAT] [--epoch-time]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--integer-sensors] [--integer-tcp-flags]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG] [--temp-directory=DIR_PATH]

[{--legacy-timestamps | --legacy-timestamps={1,0}}]

[--site-config-file=FILENAME]

[--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--python-file=PATH [--python-file=PATH ...]]

[--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--pmap-column-width=NUM]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwstats {--overall-stats | --detail-proto-stats=PROTO[,PROTO]}

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwstats [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help

rwstats [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help-fields

rwstats --legacy-help

rwstats --version

DESCRIPTION

rwstats has two modes of operation: it can compute a Top-N or Bottom-N list, or it can summarize data
for a list of protocols.

In either mode, rwstats reads SiLK Flow records from the files named on the command line or from the
standard input when no file names are specified and --xargs is not present. To read the standard input

422 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

in addition to the named files, use - or stdin as a file name. If an input file name ends in .gz, the file
is uncompressed as it is read. When the --xargs switch is provided, rwstats reads the names of the files
to process from the named text file or from the standard input if no file name argument is provided to the
switch. The input to --xargs must contain one file name per line.

Top-N Description

rwstats, similar to rwuniq(1), reads SiLK Flow records and groups them by a key composed of user-
specified attributes of the flows. For each group (or bin), a collection of aggregate values is computed; these
values are typically related to the volume of the bin, such as the sum of the bytes fields for all records that
match the key. The first aggregate value is called the primary aggregate value.

Where rwstats and rwuniq differ is that rwstats sorts by the primary aggregate value. Specifically, once all
the SiLK Flow records are read, rwstats sorts the bins by the primary aggregate value in either decreasing
order (for a top-N list) or increasing order (for a bottom-N list). The ordering of bins that have the same
primary aggregate value is arbitrary. The bins are printed as text, and the number of bins to print may be
specified as a fixed value (e.g., print 10 bins), as a threshold (print bins whose byte count is greater than
400), or as a percentage of the total volume across all bins (print bins that contain at least 10% of all the
packets).

The user must provide the --fields switch to select the flow attribute(s) (or field(s)) that comprise the key for
each bin. The available fields are similar to those supported by rwcut(1); see the description of the --fields
switch in the OPTIONS section below for the details or run rwstats with the --help-fields switch. The list
of fields may be extended by loading PySiLK files (see silkpython(3)) or plug-ins (silk-plugin(3)). The
fields are printed in the order in which they occur in the --fields switch. The size of the key is limited to
256 octets. A larger key more quickly uses the available the memory and results in slower performance.

The aggregate value(s) to compute for each bin are also chosen by the user. As with the key fields, the
user may extend the list of aggregate fields by using PySiLK or plug-ins. The preferred way to specify
the aggregate fields is to use the --values switch; the aggregate fields are printed in the order they occur
in the --values switch. If the user does not select any aggregate value(s), rwstats defaults to computing
the number of flow records for each bin. As with the key fields, requesting more aggregate values slows
performance.

In addition to computing the primary aggregate value for the flows in each bin, rwstats computes that
aggregate value across all flow records. When printing the results, the output for each bin includes the
ratio of the bin’s aggregate value to the total aggregate value (displayed as a percentage). In addition,
a cumulative percentage column is printed. When the primary aggregate value is a distinct count, the
cumulative percentage may be greater than 100. The percentage columns contain a question mark when the
primary aggregate value comes from a plug-in since rwstats does not know whether summing the aggregate
values is reasonable. The display of the percentage columns may be suppressed by specifying --no-percents.

rwstats attempts to keep all key and aggregate value data in the computer’s memory. If rwstats runs
out of memory, the current key and aggregate value data is written to a temporary file. Once all input has
been processed, the data from the temporary files is merged to produce the final output. By default, these
temporary files are stored in the /tmp directory. Because these files can be large, it is strongly recommended
that /tmp not be used as the temporary directory. To modify the temporary directory used by rwstats,
provide the --temp-directory switch, set the SILK TMPDIR environment variable, or set the TMPDIR
environment variable.

rwstats may also run out of memory if the requested Top-N is too large.

The --presorted-input switch may allow rwstats to process data more efficiently by causing rwstats to
assume the input has been previously sorted with the rwsort(1) command. With this switch, rwstats
does not need large amounts of memory during the binning stage because it does not bin each flow; instead,

SiLK-3.23.1 423

rwstats(1) The SiLK Reference Guide

it keeps a running summation for the bin. When the key changes, the bin’s primary aggregate value is
compared with those of the current Top-N (or Bottom-N) to see if the new bin is a closer to the top (or
bottom). For the output to be meaningful, rwsort and rwstats must be invoked with the same --fields
value. When multiple input files are specified and --presorted-input is given, rwstats merge-sorts the
flow records from the input files. rwstats usually runs faster if you do not include the --presorted-input
switch when counting distinct IP addresses, even when reading sorted input. Finally, you may get unusual
results with --presorted-input when the --fields switch contains multiple time-related key fields (sTime,
duration, eTime), or when the time-related key is not the final key listed in --fields; see the NOTES section
for details.

Protocol Statistics Description

Alternatively, rwstats can provide statistics for each of bytes, packets, and bytes-per-packet giving minima,
maxima, quartile, and interval flow-counts across all flows or across a list of protocols specified by the user.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Top-N Invocation

To compute a Top-N or Bottom-N list, the key field(s) must be specified. Normally the --fields switch is
used to specify the key field(s), but for backward compatibility older switches may be specified (see the
Legacy Switches section below).

--fields=KEY

KEY contains the list of flow attributes (a.k.a. fields or columns) that make up the key into which flows
are binned. The columns are displayed in the order the fields are specified. Each field may be specified
once only. KEY is a comma separated list of field-names, field-integers, and ranges of field-integers;
a range is specified by separating the start and end of the range with a hyphen (-). Field-names are
case insensitive. Example:

--fields=stime,10,1-5

There is no default value for the --fields switch.

The complete list of built-in fields that the SiLK tool suite supports follows, though note that not all
fields are present in all SiLK file formats; when a field is not present, its value is 0.

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

dPort,4

destination port for TCP and UDP, or equivalent. See note at iType.

424 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

protocol,5

IP protocol

packets,pkts,6

packet count

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sTime,9

starting time of the flow, in seconds resolution by default or millisecond resolution when --bin-
time is given and includes fractional seconds. When all time-related fields (sTime, duration,
eTime) are in use, rwstats ignores the final time field when binning the records.

duration,10

duration of the flow, in seconds resolution by default. If --bin-time is given, duration is set to
the difference of the binned sTime and eTime fields at the same resolution. When all time-related
fields (sTime, duration, eTime) are in use, rwstats ignores the final time field when binning the
records.

eTime,11

end time of the flow in seconds resolution by default or millisecond resolution when --bin-time
is given and includes fractional seconds. When all time-related fields (sTime, duration, eTime)
are in use, rwstats ignores the final time field when binning the records.

sensor,12

name or ID of the sensor where the flow was collected

class,20

class assigned to the flow by rwflowpack(8). Binning by class and/or type equates to binning
by the integer value used internally to represent the class/type pair. When --fields contains
class but not type, rwstats’s output may have multiple rows with the same value(s) for the key
field(s).

type,21

type assigned to the flow by rwflowpack(8). See note on previous entry.

iType

the ICMP type value for ICMP or ICMPv6 flows and empty (numerically zero) for non-ICMP
flows. Internally, SiLK stores the ICMP type and code in the dPort field. To avoid getting very
odd results, either do not use the dPort field when your key includes ICMP field(s) or be certain
to include the protocol field as part of your key. This field was added in SiLK 3.8.1.

iCode

the ICMP code value for ICMP or ICMPv6 flows and empty for non-ICMP flows. See note at
iType.

icmpTypeCode,25

equivalent to iType,iCode when used in --fields. This field may not be mixed with iType or
iCode, and this field is deprecated as of SiLK 3.8.1. As of SiLK 3.8.1, icmpTypeCode may no
longer be used as the argument to the Distinct: value field; the dPort field provides an equivalent
result as long as the input is limited to ICMP flow records.

Many SiLK file formats do not store the following fields and their values are always 0; they are listed
here for completeness:

SiLK-3.23.1 425

rwstats(1) The SiLK Reference Guide

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

nhIP,15

router next hop IP

SiLK can store flows generated by enhanced collection software that provides more information than
NetFlow v5. These flows may support some or all of these additional fields; for flows without this
additional information, the field’s value is always 0.

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags over all packets except the first in the flow

attributes,28

flow attributes set by the flow generator:

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

T

flow generator prematurely created a record for a long-running connection due to a timeout.
(When the flow generator yaf(1) is run with the --silk switch, it will prematurely create a
flow and mark it with T if the byte count of the flow cannot be stored in a 32-bit value.)

C

flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout (or a byte threshold in the case of yaf).

Consider a long-running ssh session that exceeds the flow generator’s active timeout. (This is the
active timeout since the flow generator creates a flow for a connection that still has activity). The
flow generator will create multiple flow records for this ssh session, each spanning some portion of
the total session. The first flow record will be marked with a T indicating that it hit the timeout.
The second through next-to-last records will be marked with TC indicating that this flow both
timed out and is a continuation of a flow that timed out. The final flow will be marked with a C,
indicating that it was created as a continuation of an active flow.

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf, will inspect the contents of the packets that make up a flow and use traffic signatures
to label the content of the flow. SiLK calls this label the application; yaf refers to it as the
appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

The following fields provide a way to label the IPs or ports on a record. These fields require external
files to provide the mapping from the IP or port to the label:

426 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

sType,16

for the source IP address, the value 0 if the address is non-routable, 1 if it is internal, or 2
if it is routable and external. Uses the mapping file specified by the SILK ADDRESS TYPES
environment variable, or the address types.pmap mapping file, as described in addrtype(3).

dType,17

as sType for the destination IP address

scc,18

for the source IP address, a two-letter country code abbreviation denoting the country where
that IP address is located. Uses the mapping file specified by the SILK COUNTRY CODES
environment variable, or the country codes.pmap mapping file, as described in ccfilter(3).
The abbreviations are those defined by ISO 3166-1 (see for example https://www.iso.org/
iso-3166-country-codes.html or https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2) or the follow-
ing special codes: -- N/A (e.g. private and experimental reserved addresses); a1 anonymous
proxy; a2 satellite provider; o1 other

dcc,19

as scc for the destination IP

src-map-name

label contained in the prefix map file associated with map-name. If the prefix map is for IP
addresses, the label is that associated with the source IP address. If the prefix map is for pro-
tocol/port pairs, the label is that associated with the protocol and source port. See also the
description of the --pmap-file switch below and the pmapfilter(3) manual page.

dst-map-name

as src-map-name for the destination IP address or the protocol and destination port.

sval

as src-map-name when no map-name is associated with the prefix map file

dval

as dst-map-name when no map-name is associated with the prefix map file

Finally, the list of built-in fields may be augmented by the run-time loading of PySiLK code or plug-ins
written in C (also called shared object files or dynamic libraries), as described by the --python-file
and --plugin switches.

--values=VALUES

When computing a Top-N or Bottom-N, all flows that have the same key field(s) are binned together.
For each bin, one or more aggregate values are computed as specified by VALUES, a comma separated
list of names. Names are case insensitive. The first entry in VALUES is the primary value, and it is
used as the basis to compute the Top-N or Bottom-N. If the --values switch is not specified (and no
legacy switch that sets values is specified), rwstats counts the number of flow records for each bin.
The aggregate fields are printed in the order they occur in VALUES. The names of the built-in value
fields follow. This list can be augmented through the use of PySiLK and plug-ins.

Records

Count the number of flow records that mapped to each bin.

Packets

Sum the number of packets across all records that mapped to each bin.

Bytes

Sum the number of bytes across all records that mapped to each bin.

SiLK-3.23.1 427

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

rwstats(1) The SiLK Reference Guide

Duration

Sum the durations of all records that mapped to each bin, in floating-point seconds with millisec-
onds resolution. Since SiLK 3.23.0.

sIP-Distinct

Count the number of distinct source IP addresses that were seen for each bin.

dIP-Distinct

Count the number of distinct destination IP addresses that were seen for each bin.

Distinct:KEY FIELD

Count the number of distinct values for KEY FIELD, where KEY FIELD is any field that can be
used as an argument to --fields except for icmpTypeCode. For example, Distinct:sPort counts
the number of distinct source ports for each bin. When this aggregate value field is used, the
specified KEY FIELD may not be present in the argument to --fields (since the distinct count
in that case is one).

--plugin=PLUGIN

Augment the list of key fields and/or aggregate value fields by using run-time loading of the plug-in
(shared object) whose path is PLUGIN. The switch may be repeated to load multiple plug-ins. The
creation of plug-ins is described in the silk-plugin(3) manual page. When PLUGIN does not contain
a slash (/), rwstats attempts to find a file named PLUGIN in the directories listed in the FILES
section. If rwstats finds the file, it uses that path. If PLUGIN contains a slash or if rwstats does
not find the file, rwstats relies on your operating system’s dlopen(3) call to find the file. When the
SILK PLUGIN DEBUG environment variable is non-empty, rwstats prints status messages to the
standard error as it attempts to find and open each of its plug-ins.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the prefix map file located at PATH and create fields named src-map-name and dst-map-name
where map-name is either the MAPNAME part of the argument or the map-name specified when the
file was created (see rwpmapbuild(1)). If no map-name is available, rwstats names the fields sval
and dval. Specify PATH as - or stdin to read from the standard input. The switch may be repeated
to load multiple prefix map files, but each prefix map must use a unique map-name. The --pmap-file
switch(es) must precede the --fields switch. See also pmapfilter(3).

--pmap-column-width=NUM

When printing a label associated with a prefix map, this switch gives the maximum number of char-
acters to use when displaying the textual value of the field.

--python-file=PATH

When the SiLK Python plug-in is used, rwstats reads the Python code from the file PATH to define
additional fields that can be used as part of the key or as an aggregate value. This file should call
register field() for each field it wishes to define. For details and examples, see the silkpython(3)
and pysilk(3) manual pages.

To determine the value of N for a Top-N (or Bottom-N) list, one of the following switches must be specified.
The primary value may limit which switch may be specified.

--count=COUNT

Print the COUNT bins with the largest (or smallest) primary values. When COUNT is 0, all bins are
printed. If COUNT is 0 and rwstats runs out of memory while attempting to sort all bins, rwstats
prints the Top-N or Bottom-N bins using the amount of memory it was able to allocate. rwstats did
not accept a value of 0 for COUNT prior to SiLK 3.12.0.

428 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

--threshold=THESHOLD

Print the bins where the primary value is greater-than (or less-than) the value THESHOLD. Using
this switch when the primary value comes from a plug-in causes rwstats to exit with an error. If
rwstats runs out of memory while locating all bins that meet the threshold, rwstats prints the Top-N
or Bottom-N bins using the amount of memory it was able to allocate. rwstats did not accept a value
of 0 for THESHOLD prior to SiLK 3.12.0.

--percentage=PERCENT

Print the bins where the primary value is greater-than (or less-than) PERCENT percent of the sum
of the primary values across all bins. PERCENT may be a floating point value between 0.0 and 100.0
inclusive. To use this switch, the --presorted-input switch must not be present and the primary
value must be Bytes, Packets, Records, or a distinct count. If rwstats runs out of memory while
locating all bins that meet the percentage, rwstats prints the Top-N or Bottom-N using the amount
of memory it was able to allocate. The value of PERCENT was required to be an integer prior to
SiLK 3.12.0. Support for computing the percentages of distinct counts was added in SiLK 3.16.0.

To determine whether to compute the Top-N or the Bottom-N, specify one of the following switches. If
neither switch is given, --top is assumed:

--top

Sort the bins in order of decreasing primary aggregate value. This is the default behavior.

--bottom

Sort the bins in order of increasing primary aggregate value.

Protocol Statistics Invocation

The following switches compute and print, for each of bytes, packets, and bytes per packet, the minimum
value, the maximum value, quartiles, and a count of the number of flows that fall into each of one of ten
intervals statistics. These switches may not be combined with the switches that produce Top-N or Bottom-N
lists.

--overall-stats

Print intervals and quartiles across all flows that were read by rwstats.

--detail-proto-stats=PROTO[,PROTO...]

Print intervals and quartiles for each individual protocol listed as an argument. The argument should
be a comma separated list of protocols or ranges of protocols: 1-6,17. Specifying this option implies
--overall-stats.

Miscellaneous Switches

The following switches are available when rwstats is running in either mode, though many only applicable
to the Top-N mode.

--presorted-input

Cause rwstats to assume that it is reading sorted input; i.e., that rwstats’s input file(s) were generated
by rwsort(1) using the exact same value for the --fields switch. When no distinct counts are being

SiLK-3.23.1 429

rwstats(1) The SiLK Reference Guide

computed, rwstats can process its input without needing to write temporary files. When multiple
input files are specified, rwstats merge-sorts the flow records from the input files. When using --
presorted-input and computing a Top-N or Bottom-N, the --percentage limit cannot be used. See
the NOTES section for issues that may occur when using --presorted-input.

--no-percents

For the Top-N invocation, do not print the percent-of-total and cumulative-percentage columns. These
columns contain a question mark when the primary aggregate value comes from a plug-in, and this
switch allows you to suppress them.

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains.

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flow records. When an IP address is used as
part of the key or value, this policy is equivalent to force.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Process only flow records that are marked as IPv6 and ignore IPv4 flow records in the input.

--bin-time=SECONDS

--bin-time

Adjust the times in the key fields sTime and eTime to appear on SECONDS -second boundaries (the
floor of the time is used), and adjust duration to be the difference of those values. As of SiLK 3.17.0,
SECONDS may be a floating-point value of 0.001 or greater. When the fractional part of SECONDS
is non-zero, rwstats uses millisecond resolution for the time-related key fields. If this switch is not
used, times appear on 1-second boundaries with fractional seconds truncated. When the switch is used
but no argument is given, rwstats uses 60-second time bins.

--timestamp-format=FORMAT

Specify the format and/or timezone to use when printing timestamps. When this switch is not spec-
ified, the SILK TIMESTAMP FORMAT environment variable is checked for a default format and/or
timezone. If it is empty or contains invalid values, timestamps are printed in the default format,
and the timezone is UTC unless SiLK was compiled with local timezone support. FORMAT is a
comma-separated list of a format and/or a timezone. The format is one of:

default

Print the timestamps as YYYY /MM /DD Thh :mm :ss .

430 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

iso

Print the timestamps as YYYY -MM -DD hh :mm :ss .

m/d/y

Print the timestamps as MM /DD /YYYY hh :mm :ss .

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

--epoch-time

Print timestamps as epoch time (number of seconds since midnight GMT on 1970-01-01). This switch
is equivalent to --timestamp-format=epoch, it is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

--ip-format=FORMAT

Specify how IP addresses are printed, where FORMAT is a comma-separated list of the arguments
described below. When this switch is not specified, the SILK IP FORMAT environment variable is
checked for a value and that format is used if it is valid. The default FORMAT is canonical. Since
SiLK 3.7.0.

canonical

Print IP addresses in the canonical format. If the key only contains IPv4 addresses, use dot-
separated decimal (192.0.2.1). Otherwise, use colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively.

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal.

SiLK-3.23.1 431

rwstats(1) The SiLK Reference Guide

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

Change IPv4 addresses to IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock)
prior to formatting. Since SiLK 3.17.0.

unmap-v6

When the key contains IPv6 addresses, change any IPv4-mapped IPv6 addresses (addresses in
the ::ffff:0:0/96 netblock) to IPv4 addresses prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release.

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in their canonical form. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release.

--integer-sensors

Print the integer ID of the sensor rather than its name.

--integer-tcp-flags

Print the TCP flag fields (flags, initialFlags, sessionFlags) as an integer value. Typically, the characters
F,S,R,P,A,U,E,C are used to represent the TCP flags.

--no-titles

Disable section and column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--print-filenames

Print to the standard error the names of input files as they are opened.

432 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwstats’ textual output to a different location.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwstats exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--temp-directory=DIR PATH

Specify the name of the directory in which to store data files temporarily when the memory is not large
enough to store all the bins and their aggregate values. This switch overrides the directory specified
in the SILK TMPDIR environment variable, which overrides the directory specified in the TMPDIR
variable, which overrides the default, /tmp.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwstats searches for the site configuration file in the locations specified in the FILES section.

--legacy-timestamps

--legacy-timestamps=NUM

When NUM is not specified or is 1, this switch is equivalent to --timestamp-format=m/d/y.
Otherwise, the switch has no effect. This switch is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwstats opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit. Specifying switches that add new fields, values, or additional
switches before --help allows the output to include descriptions of those fields or switches.

--help-fields

Print the description and alias(es) of each field and value and exit. Specifying switches that add new
fields before --help-fields allows the output to include descriptions of those fields.

--legacy-help

Print help, including legacy switches. See the Legacy Switches section below for these switches.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 433

rwstats(1) The SiLK Reference Guide

Legacy Switches

Use of the following switches has been discouraged since SiLK 2.0.0. As of SiLK 3.8.1, the switches are
deprecated and they will be removed in SiLK 4.0. For each switch, use the replacement indicated.

--sip

Use: --fields=sip

--sip=CIDR

Use the most significant CIDR bits of the source address as the key. Using this switch with IPv6 data
causes an error. The user should use rwnetmask(1) to mask the data prior to processing it with
rwstats.

--dip

Use: --fields=dip

--dip=CIDR

Use the most significant CIDR bits of the destination address as the key. Using this switch with IPv6
data causes an error. The user should use rwnetmask to mask the data prior to processing it with
rwstats.

--sport

Use: --fields=sport

--dport

Use: --fields=dport

--protocol

Use: --fields=protocol

--icmp

Use: --fields=iType,iCode

--flows

Use: --values=records

--packets

Use: --values=packets

--bytes

Use: --values=bytes

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

434 SiLK -3.23.1

The SiLK Reference Guide rwstats(1)

Top-N Examples

Print the top talkers (based on number of flow records, limit to the top four):

$ rwstats --fields=sip --count=4 data.rw

INPUT: 549092 Records for 12990 Bins and 549092 Total Records

OUTPUT: Top 4 Bins by Records

sIP| Records| %Records| cumul_%|

10.1.1.1| 36604| 6.666278| 6.666278|

10.1.1.2| 13897| 2.530906| 9.197184|

10.1.1.3| 12739| 2.320012| 11.517196|

10.1.1.4| 11807| 2.150277| 13.667473|

Print the seven hosts that received the most packets:

$ rwstats --fields=dip --values=packets --count=7 data.rw

INPUT: 549092 Records for 44654 Bins and 6620587 Total Packets

OUTPUT: Top 7 Bins by Packets

dIP| Packets| %Packets| cumul_%|

10.1.1.1| 217574| 3.286325| 3.286325|

10.1.1.2| 138177| 2.087081| 5.373407|

10.1.1.3| 121892| 1.841106| 7.214512|

10.1.1.4| 97073| 1.466230| 8.680742|

10.1.1.5| 82284| 1.242851| 9.923593|

10.1.1.6| 80051| 1.209123| 11.132715|

10.1.1.7| 73602| 1.111714| 12.244430|

Print the IP pairs that shared 100,000,000 bytes or more:

$ rwstats --fields=sip,dip --values=byte --threshold=100000000 data.rw

INPUT: 549092 Records for 107136 Bins and 3410300252 Total Bytes

OUTPUT: Top 5 Bins by Bytes (threshold 100000000)

sIP| dIP| Bytes| %Bytes| cumul_%|

10.1.1.1| 10.1.1.2| 307478707| 9.016177| 9.016177|

10.1.1.3| 10.1.1.4| 172164463| 5.048367| 14.064544|

10.1.1.5| 10.1.1.6| 142059589| 4.165604| 18.230147|

10.1.1.7| 10.1.1.8| 119388394| 3.500818| 21.730965|

10.1.1.9| 10.1.1.10| 108268824| 3.174759| 24.905725|

Print the ports that were the source of at least 5% of all records:

$ rwstats --fields=sport --percentage=5 data.rw

INPUT: 549092 Records for 56799 Bins and 549092 Total Records

OUTPUT: Top 3 Bins by Records (5% == 27454)

sPort| Records| %Records| cumul_%|

80| 86677| 15.785515| 15.785515|

53| 64681| 11.779629| 27.565144|

0| 47760| 8.697996| 36.263140|

Print the destination ports that saw the least number of records (limit to the bottom eight):

SiLK -3.23.1 435

rwstats(1) The SiLK Reference Guide

$ rwstats --fields=dport --bottom --count=8 data.rw

INPUT: 549092 Records for 44772 Bins and 549092 Total Records

OUTPUT: Bottom 8 Bins by Records

dPort| Records| %Records| cumul_%|

19417| 1| 0.000182| 0.000182|

12110| 1| 0.000182| 0.000364|

34777| 1| 0.000182| 0.000546|

8999| 1| 0.000182| 0.000728|

36404| 1| 0.000182| 0.000911|

16682| 1| 0.000182| 0.001093|

27420| 1| 0.000182| 0.001275|

14162| 1| 0.000182| 0.001457|

Print the source-destination port pairs that shared more than 500,000 packets (there were none):

$ rwstats --fields=sport,dport --values=packets \

--top --threshold=500000 data.rw

INPUT: 366309 Records for 130307 Bins and 5597540 Total Packets

OUTPUT: No bins above threshold of 500000

Print the source-destination port pairs that shared more than 50,000 packets:

$ rwstats --fields=sport,dport --values=packets \

--top --threshold=50000 data.rw

INPUT: 366309 Records for 130307 Bins and 5597540 Total Packets

OUTPUT: Top 3 Bins by Packets (threshold 50000)

sPort|dPort| Packets| %Packets| cumul_%|

6699| 3607| 138177| 2.468531| 2.468531|

80| 1179| 59774| 1.067862| 3.536393|

80| 9659| 50319| 0.898949| 4.435342|

Print the protocols from least to most active (based on number of records):

$ rwstats --fields=protocol --bottom --count=10 data.rw

INPUT: 545262 Records for 3 Bins and 545262 Total Records

OUTPUT: Bottom 10 Bins by Records

protocol| Records| %Records| cumul_%|

1| 46319| 8.494815| 8.494815|

17| 132634| 24.324820| 32.819635|

6| 366309| 67.180365|100.000000|

Print the packet and byte counts for the pair of /16s that shared the most packets (use rwnetmask(1) on
the input to rwstats; limit result to top ten):

$ rwnetmask --4sip-prefix=16 --4dip-prefix=16 data.rw \

| rwstats --fields=sip,dip --values=packets,bytes \

--count=10 --no-percent

INPUT: 250928 Records for 230 Bins and 72279154 Total Packets

OUTPUT: Top 10 Bins by Packets

sIP| dIP| Packets| Bytes|

436 SiLK -3.23.1

The SiLK Reference Guide rwstats(1)

10.255.0.0| 192.168.0.0| 2711524| 2207297227|

10.253.0.0| 192.168.0.0| 2690120| 2288595669|

10.254.0.0| 192.168.0.0| 2593074| 2141263178|

10.252.0.0| 192.168.0.0| 2553388| 2117294828|

10.250.0.0| 192.168.0.0| 2312661| 1982654956|

10.251.0.0| 192.168.0.0| 2218194| 1785263601|

10.249.0.0| 192.168.0.0| 2196041| 1934938137|

10.248.0.0| 192.168.0.0| 2160037| 1804446929|

10.247.0.0| 192.168.0.0| 2000379| 1579214987|

10.246.0.0| 192.168.0.0| 1878143| 1578321728|

Print the number of distinct destination hosts seen for every destination port, limiting the result to the
ports that saw at least 3% of the hosts. The percentage for each bin is relative to the number of distinct
destination IP addresses seen in the input.

$ rwstats --fields=dport --values=distinct:dip --percent=3 data.rw

INPUT: 243127 Records for 4738 Bins and 122064 Total dIP-Distinct

OUTPUT: Top 5 bins by dIP-Distinct (3.0000% == 3661)

dPort|dIP-Distin|%dIP-Disti| cumul_%|

80| 26940| 22.070389| 22.0704|

25| 15538| 12.729388| 34.7998|

443| 7907| 6.477749| 41.2775|

22| 7733| 6.335201| 47.6127|

8080| 3942| 3.229453| 50.8422|

Print the number of distinct destination ports seen for each protocol. When the primary aggregate value is
counting the number of distinct values, the cumulative percentage may be larger than 100%.

$ rwstats --fields=proto --values=distinct:dport --count=0 data.rw

INPUT: 243127 Records for 2 Bins and 5335 Total dPort-Distinct

OUTPUT: Top 2 Bins by dPort-Distinct

pro|dPort-Dist|%dPort-Dis| cumul_%|

6| 4672| 87.572634| 87.5726|

17| 4669| 87.516401| 175.0890|

The following example uses PySiLK to create an aggregate value field that computes the average byte count
for each bin. The code for this field is shown in the silkpython(3) manual page. Note that the percentage
columns are empty.

$ rwstats --python-file=avg-bytes.py --fields=sport \

--values=avg-bytes,bytes,flow --count=6 data.rw

INPUT: 243127 Records for 4738 Bins

OUTPUT: Top 6 Bins by avg-bytes

sPort| avg-bytes| Bytes| Records|%avg-bytes| cumul_%|

22| 1010658.57| 28292376134| 27994| ?| ?|

8080| 739703.65| 2918870591| 3946| ?| ?|

80| 732930.03| 19821359790| 27044| ?| ?|

443| 731919.66| 5794607921| 7917| ?| ?|

25605| 86376.00| 86376| 1| ?| ?|

25349| 83556.00| 167112| 2| ?| ?|

SiLK -3.23.1 437

rwstats(1) The SiLK Reference Guide

The --threshold switch is not supported when the primary aggregate value is from PySiLK or a plug-in.

$ rwstats --python-file=avg-bytes.py --fields=sport \

--values=avg-bytes,bytes,flow --threshold=90000 data.rw

rwstats: Only the --count limit is supported when the primary \

values field is from a plug-in

rwstats: Cannot add value field ’avg-bytes’ from plugin

When using rwstats on input that contains both incoming and outgoing flow records, consider using the int-
ext-fields(3) plug-in which defines four additional fields representing the external IP address, the external
port, the internal IP address, and the internal port. The plug-in requires the user to specify which class/type
pairs are incoming and which are outgoing. See its manual page for additional information. As an example,
here we run rwstats on a file containing incoming and outgoing web traffic.

$ rwstats --fields=sip,sport,dip,dport --values=bytes \

--count=6 data.rw

INPUT: 155140 Records for 155140 Bins and 59036553615 Total Bytes

OUTPUT: Top 6 Bins by Bytes

sIP|sPort| dIP|dPort| Bytes| %Bytes| cumul_%|

10.242.96.200| 80|192.168.234.203|29868| 2681287| 0.004542| 0.004542|

192.168.211.200| 80| 10.253.27.160|25453| 2675740| 0.004532| 0.009074|

192.168.233.168| 80| 10.247.60.163|29777| 2672196| 0.004526| 0.013600|

192.168.229.229| 443| 10.250.19.210|27512| 2666647| 0.004517| 0.018117|

192.168.255.24| 8080| 10.240.75.236|29826| 2659828| 0.004505| 0.022623|

192.168.241.247| 80| 10.216.173.77|26654| 2658141| 0.004503| 0.027125|

Here the int-ext-fields plug-in is used:

$ export INCOMING_FLOWTYPES=all/in,all/inweb

$ export OUTGOING_FLOWTYPES=all/out,all/outweb

$ rwstats --plugin=int-ext-fields.so \

--fields=ext-ip,ext-port,int-ip,int-port --value=bytes \

--count=6 data.rw

INPUT: 155140 Records for 77570 Bins and 59036553615 Total Bytes

OUTPUT: Top 6 Bins by Bytes

ext-ip|ext-p| int-ip|int-p| Bytes| %Bytes| cumul_%|

10.253.27.160|25453|192.168.211.200| 80| 2736332| 0.004635| 0.004635|

10.242.96.200| 80|192.168.234.203|29868| 2722619| 0.004612| 0.009247|

10.247.60.163|29777|192.168.233.168| 80| 2716749| 0.004602| 0.013849|

10.250.19.210|27512|192.168.229.229| 443| 2714974| 0.004599| 0.018447|

10.254.241.55|24206| 192.168.207.45| 80| 2713597| 0.004596| 0.023044|

10.226.206.118|29557|192.168.247.227| 8080| 2707265| 0.004586| 0.027630|

Protocol Statistics Example

Print the interval breakdowns for flow records, packets, and bytes across all protocols, and for protocols 6
(TCP) and 17 (UDP):

$ rwstats --detail-proto-stats=6,17 data.rw

FLOW STATISTICS--ALL PROTOCOLS: 549092 records

438 SiLK -3.23.1

The SiLK Reference Guide rwstats(1)

*BYTES min 28; max 88906238

quartiles LQ 122.06478 Med 420.30930 UQ 876.21920 UQ-LQ 754.15442

interval_max|count<=max|%_of_input| cumul_%|

40| 35107| 6.393646| 6.393646|

60| 35008| 6.375616| 12.769263|

100| 49500| 9.014883| 21.784145|

150| 40014| 7.287303| 29.071449|

256| 65444| 11.918586| 40.990034|

1000| 224016| 40.797535| 81.787569|

10000| 75708| 13.787853| 95.575423|

100000| 21981| 4.003154| 99.578577|

1000000| 1901| 0.346208| 99.924785|

4294967295| 413| 0.075215|100.000000|

*PACKETS min 1; max 70023

quartiles LQ 1.76962 Med 3.68119 UQ 7.61567 UQ-LQ 5.84605

interval_max|count<=max|%_of_input| cumul_%|

3| 232716| 42.381969| 42.381969|

4| 61407| 11.183372| 53.565341|

10| 195310| 35.569631| 89.134972|

20| 33310| 6.066379| 95.201351|

50| 17686| 3.220954| 98.422304|

100| 4854| 0.884005| 99.306309|

500| 2760| 0.502648| 99.808957|

1000| 373| 0.067930| 99.876888|

10000| 637| 0.116010| 99.992897|

4294967295| 39| 0.007103|100.000000|

*BYTES/PACKET min 28; max 1500

quartiles LQ 57.98319 Med 90.71150 UQ 164.77250 UQ-LQ 106.78932

interval_max|count<=max|%_of_input| cumul_%|

40| 42568| 7.752435| 7.752435|

44| 15173| 2.763289| 10.515724|

60| 91003| 16.573361| 27.089085|

100| 163850| 29.840173| 56.929258|

200| 153190| 27.898786| 84.828043|

400| 39761| 7.241227| 92.069271|

600| 12810| 2.332942| 94.402213|

800| 7954| 1.448573| 95.850786|

1500| 22783| 4.149214|100.000000|

4294967295| 0| 0.000000|100.000000|

FLOW STATISTICS--PROTOCOL 6: 366309/549092 records

*BYTES min 40; max 88906238

quartiles LQ 310.47331 Med 656.53661 UQ 1089.75344 UQ-LQ 779.28013

interval_max|count<=max|%_of_proto| cumul_%|

40| 29774| 8.128110| 8.128110|

60| 11453| 3.126595| 11.254706|

100| 6915| 1.887751| 13.142456|

150| 16369| 4.468632| 17.611088|

256| 12651| 3.453642| 21.064730|

1000| 196881| 53.747246| 74.811976|

10000| 68989| 18.833553| 93.645529|

100000| 21099| 5.759891| 99.405420|

SiLK -3.23.1 439

rwstats(1) The SiLK Reference Guide

1000000| 1784| 0.487021| 99.892441|

4294967295| 394| 0.107559|100.000000|

*PACKETS min 1; max 70023

quartiles LQ 3.39682 Med 5.85903 UQ 8.80427 UQ-LQ 5.40745

interval_max|count<=max|%_of_proto| cumul_%|

3| 69358| 18.934288| 18.934288|

4| 55993| 15.285729| 34.220016|

10| 186559| 50.929407| 85.149423|

20| 30947| 8.448332| 93.597755|

50| 16186| 4.418674| 98.016429|

100| 4204| 1.147665| 99.164094|

500| 2178| 0.594580| 99.758674|

1000| 315| 0.085993| 99.844667|

10000| 537| 0.146598| 99.991264|

4294967295| 32| 0.008736|100.000000|

*BYTES/PACKET min 40; max 1500

quartiles LQ 60.19817 Med 96.78616 UQ 175.08044 UQ-LQ 114.88228

interval_max|count<=max|%_of_proto| cumul_%|

40| 36559| 9.980372| 9.980372|

44| 14929| 4.075521| 14.055893|

60| 39593| 10.808634| 24.864527|

100| 100117| 27.331297| 52.195824|

200| 111258| 30.372718| 82.568542|

400| 26020| 7.103293| 89.671834|

600| 8600| 2.347745| 92.019579|

800| 7726| 2.109148| 94.128727|

1500| 21507| 5.871273|100.000000|

4294967295| 0| 0.000000|100.000000|

FLOW STATISTICS--PROTOCOL 17: 132634/549092 records

*BYTES min 32; max 2115559

quartiles LQ 66.53665 Med 150.61551 UQ 242.44095 UQ-LQ 175.90430

interval_max|count<=max|%_of_proto| cumul_%|

20| 0| 0.000000| 0.000000|

40| 5195| 3.916794| 3.916794|

80| 42150| 31.779182| 35.695975|

130| 11528| 8.691587| 44.387563|

256| 45497| 34.302667| 78.690230|

1000| 23401| 17.643289| 96.333519|

10000| 4447| 3.352836| 99.686355|

100000| 389| 0.293288| 99.979643|

1000000| 23| 0.017341| 99.996984|

4294967295| 4| 0.003016|100.000000|

*PACKETS min 1; max 8839

quartiles LQ 0.84383 Med 1.68768 UQ 2.53149 UQ-LQ 1.68766

interval_max|count<=max|%_of_proto| cumul_%|

3| 117884| 88.879171| 88.879171|

4| 4452| 3.356605| 92.235777|

10| 6678| 5.034908| 97.270685|

20| 1766| 1.331484| 98.602168|

50| 1055| 0.795422| 99.397590|

100| 368| 0.277455| 99.675046|

440 SiLK -3.23.1

The SiLK Reference Guide rwstats(1)

500| 353| 0.266146| 99.941192|

1000| 33| 0.024880| 99.966072|

10000| 45| 0.033928|100.000000|

4294967295| 0| 0.000000|100.000000|

*BYTES/PACKET min 32; max 1415

quartiles LQ 63.23827 Med 91.27180 UQ 158.10219 UQ-LQ 94.86392

interval_max|count<=max|%_of_proto| cumul_%|

20| 0| 0.000000| 0.000000|

24| 0| 0.000000| 0.000000|

40| 5671| 4.275676| 4.275676|

100| 70970| 53.508150| 57.783826|

200| 39298| 29.628904| 87.412730|

400| 12175| 9.179396| 96.592126|

600| 4130| 3.113832| 99.705958|

800| 160| 0.120633| 99.826590|

1500| 230| 0.173410|100.000000|

4294967295| 0| 0.000000|100.000000|

The silkpython(3) manual page provides examples that use PySiLK to create arbitrary fields to use as part
of the key for rwstats.

ENVIRONMENT

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwstats automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwstats does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwstats automatically invokes this program to display its
output a screen at a time.

SILK TMPDIR

When set and --temp-directory is not specified, rwstats writes the temporary files it creates to this
directory. SILK TMPDIR overrides the value of TMPDIR.

TMPDIR

When set and SILK TMPDIR is not set, rwstats writes the temporary files it creates to this directory.

SiLK-3.23.1 441

rwstats(1) The SiLK Reference Guide

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file is specified,
rwstats must load the Python files that comprise the PySiLK package, such as silk/ init .py. If this
silk/ directory is located outside Python’s normal search path (for example, in the SiLK installation
tree), it may be necessary to set or modify the PYTHONPATH environment variable to include the
parent directory of silk/ so that Python can find the PySiLK module.

SILK PYTHON TRACEBACK

When set, Python plug-ins output traceback information on Python errors to the standard error.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwstats uses
when computing the scc and dcc fields. The value may be a complete path or a file relative to the
SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file that rwstats uses
when computing the sType and dType fields. The value may be a complete path or a file relative to
the SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwstats may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwstats may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwstats displays timestamps. (If both of those are false, the TZ environment variable is
ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwstats --version.)

SILK PLUGIN DEBUG

When set to 1, rwstats prints status messages to the standard error as it attempts to find and open
each of its plug-ins. In addition, when an attempt to register a field fails, rwstats prints a message
specifying the additional function(s) that must be defined to register the field in rwstats. Be aware
that the output can be rather verbose.

442 SiLK-3.23.1

The SiLK Reference Guide rwstats(1)

SILK TEMPFILE DEBUG

When set to 1, rwstats prints debugging messages to the standard error as it creates, re-opens, and
removes temporary files.

SILK UNIQUE DEBUG

When set to 1, the binning engine used by rwstats prints debugging messages to the standard error.

FILES

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file required by the sType and dType fields.

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the scc and dcc fields.

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

SiLK-3.23.1 443

rwstats(1) The SiLK Reference Guide

/usr/local/lib/silk/

/usr/local/lib/

Directories that rwstats checks when attempting to load a plug-in.

${SILK TMPDIR}/

${TMPDIR}/

/tmp/

Directory in which to create temporary files.

NOTES

rwstats functionally replaces the combination the following, where N is one more than the number of fields
passed to rwuniq(1):

rwuniq --fields=... | sort -r -t ’|’ -k N | head -10

When the --bin-time switch is given and the three time-related key fields (starting-time (sTime), ending-
time (eTime), and duration (duration)) are present, the duration field’s value is modified to be the difference
between the ending and starting times.

The time-related key fields use seconds resolution unless --bin-time is given and includes non-zero fractional
seconds. The --bin-time switch began accepting a floating-point value in SiLK 3.17.0.

When the three time-related key fields (sTime, duration, eTime) are all in use, rwstats ignores the final
time field when binning the records, but the field does appear in the output. Due to truncation of fractional
values, rwstats may generate different numbers of bins depending on the order in which those three values
appear in the --fields switch.

When computing distinct counts over a field, the field may not be part of the key; that is, you may not have
--fields=sip --values=sip-distinct. The distinct count in that case is always 1.

Using the --presorted-input switch sometimes introduces more issues than it solves, and --presorted-
input is less necessary now that rwstats can use temporary files while processing input.

When computing distinct IP counts, rwstats typically runs faster if you do not use the --presorted-input
switch, even if the data was previously sorted.

When using the --presorted-input switch, it is highly recommended that you use no more than one time-
related key field (sTime, duration, eTime) in the --fields switch and that the time-related key appear last
in --fields. The issue is caused by rwsort considering the complete timestamp when sorting while rwstats
typically uses less precision.

rwstats’s strength is its ability to build arbitrary keys and aggregate fields. For maps of a single key
to a single value, see also rwbag(1). To create a binary file that contains multiple keys and values, use
rwaggbag(1).

SEE ALSO

rwcut(1), rwnetmask(1), rwsort(1), rwuniq(1), rwbag(1), rwaggbag(1), rwpmapbuild(1), ad-
drtype(3), ccfilter(3), int-ext-fields(3), pmapfilter(3), pysilk(3), silkpython(3), silk-plugin(3),
sensor.conf(5), rwflowpack(8), silk(7), yaf(1), dlopen(3), tzset(3), environ(7)

444 SiLK-3.23.1

The SiLK Reference Guide rwswapbytes(1)

rwswapbytes

Change the byte order of a SiLK Flow file

SYNOPSIS

rwswapbytes

{ --big-endian | --little-endian

| --native-endian | --swap-endian }

[--note-add=TEXT] [--note-file-add=FILE]

[INPUT_FILE [OUTPUT_FILE]]

rwswapbytes --help

rwswapbytes --version

DESCRIPTION

Read the SiLK Flow records from INPUT FILE, change the byte order of each record as specified by
the --big-endian, --little-endian, --native-endian, or --swap-endian switch, and write the records to
OUTPUT FILE.

rwswapbytes reads the input from the standard input either when no non-switch arguments are given or
when INPUT FILE is the string stdin or -. rwswapbytes writes the output to the standard output either
when the number of non-switch arguments is less than two or when OUTPUT FILE is the string stdout or
-.

rwswapbytes exits with an error code if an attempt is made to read or write binary data from or to a
terminal.

rwswapbytes is able to read and write files that have been compressed with gzip(1) when the file’s name
ends with .gz.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

One of these switches must be provided:

--big-endian

Write the output file in big-endian (network byte-order) format.

--little-endian

Write the output file in little-endian (Intel) format.

--native-endian

Write the output file in this machine’s native format.

SiLK-3.23.1 445

rwswapbytes(1) The SiLK Reference Guide

--swap-endian

Unconditionally swap the byte-order of the input file.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

These switches are optional:

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable contains the location of the site configuration file, silk.conf(5). For addi-
tional locations where site configuration file may reside, see the FILES section.

SILK DATA ROOTDIR

This variable specifies the root of the directory tree where the data store of SiLK Flow files is main-
tained, overriding the location that is compiled into the tools (/data). rwswapbytes may search for
the site configuration file, silk.conf, in this directory. See the FILES section for details.

SILK PATH

This environment variable gives the root of the directory tree where the tools are installed. As part of
its search for the site configuration file, rwswapbytes may use this variable. See the FILES section
for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

446 SiLK-3.23.1

The SiLK Reference Guide rwswapbytes(1)

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file.

SEE ALSO

rwfileinfo(1), silk.conf(5), silk(7), gzip(1)

NOTES

Prior to SiLK 3.16.0, rwswapbytes required explicit arguments for the input file and the output file.

SiLK-3.23.1 447

rwtotal(1) The SiLK Reference Guide

rwtotal

Count how much traffic matched specific keys

SYNOPSIS

rwtotal {--sip-first-8 | --sip-first-16 | --sip-first-24 |

--sip-last-8 | --sip-last-16 | --dip-first-8 |

--dip-first-16 | --dip-first-24 | --dip-last-8 |

--dip-last-16 | --sport | --dport | --proto | --packets |

--bytes | --duration | --icmp-code}

[--summation] [--min-bytes=COUNT] [--max-bytes=COUNT]

[--min-packets=COUNT] [--max-packets=COUNT]

[--min-records=COUNT] [--max-records=COUNT] [--skip-zeroes]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG] [--site-config-file=FILENAME]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwtotal --help

rwtotal --version

DESCRIPTION

rwtotal reads SiLK Flow records, bins those records by the user-specified specified key, computes the volume
per bin (record count and sums of packets and bytes), and prints the bins and their volumes.

rwtotal reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as
it is read. When the --xargs switch is provided, rwtotal reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

By default, rwtotal prints a bin for every possible key, even when the volume for that bin is zero. Use the
--skip-zeroes switch to suppress the printing of these empty bins.

Use the --summation switch to include a row giving the volume for all flow records.

The maximum key value that rwtotal supports is 16,777,215. When the key field is --bytes or --packets,
rwtotal will create a bin for all unique values up to 16,777,214. The final bin (16,777,215) will consist of all
values greater than 16,777,214.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

One and only one of the following counting keys is required:

448 SiLK-3.23.1

The SiLK Reference Guide rwtotal(1)

--sip-first-8

Key on the first 8 bits of the source IP address

--sip-first-16

Key on the first 16 bits of the source IP address

--sip-first-24

Key on the first 24 bits of the source IP address

--sip-last-8

Key on the last 8 bits of the source IP address

--sip-last-16

Key on the last 16 bits of the source IP address

--dip-first-8

Key on the first 8 bits of the destination IP address

--dip-first-16

Key on the first 16 bits of the destination IP address

--dip-first-24

Key on the first 24 bits of the destination IP address

--dip-last-8

Key on the last 8 bits of the destination IP address

--dip-last-16

Key on the last 16 bits of the destination IP address

--sport

Key on the source port.

--dport

Key on the destination port.

--proto

Key on the protocol.

--packets

Key on the number of packets in the record

--bytes

Key on the number of bytes in the record

--duration

Key on the duration of the record.

--icmp-code

Key on the ICMP type and code. This switch will assume that all incoming records are ICMP.

The following options affect the output:

SiLK-3.23.1 449

rwtotal(1) The SiLK Reference Guide

--summation

Print as the final row a total of the values in each column.

--min-bytes=COUNT

Disable printing of bins with fewer than COUNT bytes. By default, all bins are printed.

--max-bytes=COUNT

Disable printing of bins with more than COUNT bytes. By default, all bins are printed.

--min-packets=COUNT

Disable printing of bins with fewer than COUNT packets. By default, all bins are printed.

--max-packets=COUNT

Disable printing of bins with more than COUNT packets. By default, all bins are printed.

--min-records=COUNT

Disable printing of bins with fewer than COUNT flow records. By default, all bins are printed.

--max-records=COUNT

Disable printing of bins with more than COUNT flow records. By default, all bins are printed.

--skip-zeroes

Disable printing of bins with no traffic. By default, all bins are printed.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwtotal’s textual output to a different location.

450 SiLK-3.23.1

The SiLK Reference Guide rwtotal(1)

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwtotal exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwtotal searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwtotal opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Group by the protocol

Group all incoming data for the first hour of March 1, 2003 by protocol.

$ rwfilter --start-date=2003/03/01:00 --end-date=2003/03/01:00 \

--all-destination=stdout \

| rwtotal --proto --skip-zero

protocol| Records| Bytes| Packets|

1| 15622| 10695328| 147084|

6| 330726| 120536195111| 144254362|

17| 155528| 24500079| 155528|

To get the same result with rwuniq(1), use:

SiLK -3.23.1 451

rwtotal(1) The SiLK Reference Guide

$ rwfilter ... --pass=stdout \

| rwuniq --fields=proto --values=records,bytes,packets \

--sort-output

pro| Records| Bytes| Packets|

1| 15622| 10695328| 147084|

6| 330726| 120536195111| 144254362|

17| 155528| 24500079| 155528|

Group by the source Class A addresses

$ rwfilter --start-date=2003/03/01:00 --end-date=2003/03/01:00 \

--all-destination=stdout \

| rwtotal --sip-first-8 --skip-zero

sIP_First8| Records| Bytes| Packets|

10| 173164| 59950837766| 72201390|

172| 77764| 17553593| 77764|

192| 250948| 60602999159| 72277820|

Use rwnetmask(1) and rwuniq(1) to get a similar result:

$ rwfilter ... --pass=stdout \

| rwnetmask --4sip-prefix=8 \

| rwuniq --fields=sip --values=records,bytes,packets \

--sort-output --ipv6-policy=ignore

sIP| Records| Bytes| Packets|

10.0.0.0| 173164| 59950837766| 72201390|

172.0.0.0| 77764| 17553593| 77764|

192.0.0.0| 250948| 60602999159| 72277820|

Group by the final IPv4 octet

$ rwfilter --start-date=2003/03/01:00 --end-date=2003/03/01:00 \

--proto=6 --pass=stdout --daddress=192.168.x.x \

| rwtotal --dip-last-16 --skip-zero | head -5

dIP_Last16| Records| Bytes| Packets|

0. 38| 6| 4862678| 4016|

1. 14| 1| 32844| 452|

18.146| 1| 4226| 12|

21. 4| 6| 5462032| 4521|

One way to accomplish this with rwuniq is to create a new field using PySiLK (see pysilk(3)) and the
PySiLK plug-in capability (see silkpython(3). The invocation is:

$ rwfilter ... --pass=stdout \

| rwuniq --python=/tmp/dip16.py --fields=dip-last-16 \

--values=flows,bytes,packets --sort-output | head -5

dip-last-16| Records| Bytes| Packets|

0.0.0.38| 6| 4862678| 4016|

0.0.1.14| 1| 32844| 452|

452 SiLK-3.23.1

The SiLK Reference Guide rwtotal(1)

0.0.18.146| 1| 4226| 12|

0.0.21.4| 6| 5462032| 4521|

where the definition of the dip-last-16 field is given in the file tmp/dip16.py :

import silk

mask = silk.IPAddr("0.0.255.255")

def mask_dip(r):

return r.dip.mask(mask)

register_ipv4_field("dip-last-16", mask_dip)

ENVIRONMENT

SILK PAGER

When set to a non-empty string, rwtotal automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwtotal does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwtotal automatically invokes this program to display its
output a screen at a time.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwtotal may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwtotal may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SiLK-3.23.1 453

rwtotal(1) The SiLK Reference Guide

SEE ALSO

rwaddrcount(1), rwnetmask(1), rwstats(1), rwuniq(1), pysilk(3), silkpython(3), silk(7)

BUGS

rwtotal replicates some functionality in rwuniq(1) (most notably when rwuniq checks by port or protocol),
but the implementations differ: rwtotal uses an array instead of a hash-table, so access is faster, the output
is always sorted, and the output includes keys with a value of zero. The use of an array prevents rwtotal
from using the complete IP address the way rwuniq does, but it also ensures that rwtotal will not run out
of memory.

When used in an IPv6 environment, rwtotal will process every record as long as the IP address is not part
of the key. When aggregating by the IP address, rwtotal converts IPv6 flow records that contain addresses
in the ::ffff:0:0/96 prefix to IPv4 and processes them. IPv6 records having addresses outside of that prefix
are silently ignored. rwtotal will not be modified to support IPv6 addresses; instead, users should use
rwuniq(1) (maybe combined with rwnetmask(1)).

rwtotal is also similar to rwaddrcount(1) and rwstats(1).

454 SiLK-3.23.1

The SiLK Reference Guide rwtuc(1)

rwtuc

Text Utility Converter - rwcut output to SiLK flows

SYNOPSIS

rwtuc [--fields=FIELDS] [--column-separator=CHAR]

[--output-path=PATH] [--bad-input-lines=FILEPATH]

[--verbose] [--stop-on-error] [--no-titles] [--note-add=TEXT]

[--note-file-add=FILE] [--compression-method=COMP_METHOD]

[--site-config-file=FILENAME] [--saddress=IPADDR]

[--daddress=IPADDR] [--sport=NUM] [--dport=NUM]

[--protocol=NUM] [--packets=NUM] [--bytes=NUM]

[--flags-all=TCPFLAGS] [--stime=TIME] [--duration=NUM]

[--etime=TIME] [--sensor=SID] [--input-index=NUM]

[--output-index=NUM] [--next-hop-ip=IPADDR]

[--flags-initial=TCPFLAGS] [--flags-session=TCPFLAGS]

[--attributes=ATTR] [--application=NUM] [--class=NAME]

[--type=NAME] [--icmp-type=NUM] [--icmp-code=NUM]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE...]]}

rwtuc --help

rwtuc --version

DESCRIPTION

rwtuc reads text files that have a format similar to that produced by rwcut(1) and attempts to create a
SiLK Flow record for each line of input.

The fields which make up a single record should be separated by the pipe character (’|’); use the --column-
separator switch to change this delimiter. Note that the space character does not work as delimiter since
several fields (e.g., time, TCP-flags) may contain embedded spaces.

The fields to be read from each line may be specified with the --fields switch; if the switch is not provided,
rwtuc treats the first line as a title and attempts to determine the fields from the title strings.

When --fields is specified, rwtuc still checks whether the first line contains title strings, and rwtuc skips
the line if it determines it does. Specify the --no-titles switch to force rwtuc to treat the first line as field
values to be parsed.

Command line switches exist which force a field to have a fixed value. These switches cause rwtuc to
override the value read from the input file (if any) for those fields. See the Fixed Values section below for
details.

rwtuc reads the textual input from the files named on the command line or from the standard input when
no file names are specified, when --xargs is not present, and when the standard input is not a terminal. To
read the standard input in addition to the named files or to force rwfileinfo to read input from a terminal,
use - or stdin as a file name. When the --xargs switch is provided, rwtuc reads the names of the files
to process from the named text file or from the standard input if no file name argument is provided to the
switch. The input to --xargs must contain one file name per line.

SiLK-3.23.1 455

rwtuc(1) The SiLK Reference Guide

When the --output-path switch is not provided, output is sent to the standard output when it is not
connected to a terminal.

By default, lines that cannot be parsed are silently ignored (unless rwtuc is attempting to determine the
fields from the title line). When the --verbose switch is specified, problems parsing an input line are
reported to the standard error, and rwtuc continues to process the input. The --stop-on-error switch is
similar to the --verbose switch, except processing stops after the first error. Input lines that cause parse
errors may be copied to another output stream with the --bad-input-lines switch. Each bad line has the
source file name and line number prepended to it, separated from each other and the source line by colons
(’:’).

Field Constraints

Due to the way SiLK Flow records are stored, certain field combinations cannot be supported, certain fields
must appear together, and some fields may only be used on certain occasions:

• Only two of the three time-related values (start time, duration, end time) may be specified. When all
three are specified, the end time is ignored. This affects the sTime,9, duration,10, and eTime,11

fields and the --stime, --duration, and --etime switches.

• Both ICMP type and ICMP code must be present when one is present. These may be set by a
combination of the iType and iCode fields and the --icmp-type and --icmp-code switches. These
values are ignored unless either the protocol is ICMP (1) or the record contains IPv6 addresses and the
protocol is ICMPv6 (58). The ICMP type and code are encoded in the destination port field (dPort,4
or --dport), and they overwrite the port value for ICMP and ICMPv6 flow records.

• Both initial TCP flags and session TCP flags must be present when one is present. These may be set
by a combination of the initialFlags,26 and sessionFlags,27 fields and the --flags-initial and
--flags-session switches. These fields are set to 0 for non-TCP flow records. When either field has a
non-zero value, any value in the (ALL) TCP flags field (flags,8 or --flags-all) is overwritten for TCP
flow records.

• If the silk.conf(5) file defines more than one class, both class and type must be present for the values
to have any affect on the SiLK flow record. These may be set by a combination of the class and
type fields and the --class and --type switches. If silk.conf defines a single class, that class is used
by default. The class and type must map to a valid pair; use rwsiteinfo --fields=class,type to see
the list of valid class/type pairs for your site (cf. rwsiteinfo(1)).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--fields=FIELDS

FIELDS contains the list of fields (columns) to parse. FIELDS is a comma separated list of field-
names, field-integers, and ranges of field-integers; a range is specified by separating the start and end
of the range with a hyphen (-). Field-names are case insensitive. A field name may not be specified
more than once. (As of SiLK 3.15.0, ignore may appear multiple times, allowing multiple input fields
to be ignored.)

456 SiLK-3.23.1

The SiLK Reference Guide rwtuc(1)

A field is ignored when its name corresponds to a fixed value switch (e.g. --protocol) given on the
command line (see Fixed Values).

The field names and their descriptions are:

ignore

a field that rwtuc is to skip

sIP,1

source IP address in the canonical form: dotted-quad for IPv4 or hex-encoded for IPv6 (when
SiLK has been compiled with IPv6 support). Integers from 0 to 4294967295 are treated as IPv4
addresses.

dIP,2

destination IP address in the same format as sIP,1

sPort,3

source port as a 16-bit integer from 0 to 65,535 inclusive

dPort,4

destination port as a 16-bit integer from 0 to 65,535 inclusive (cf. Field Constraints)

protocol,5

IP protocol as an 8-bit integer from 0 to 255 inclusive

packets,pkts,6

packet count as a 64-bit integer from 1 to 18,446,744,073,709,551,615 inclusive. Prior to SiLK
3.23, packets was a 32-bit integer from 1 to 4,294,967,295 inclusive.

bytes,7

byte count as a 64-bit integer from 1 to 18,446,744,073,709,551,615 inclusive. Prior to SiLK 3.23,
bytes was a 32-bit integer from 1 to 4,294,967,295 inclusive.

flags,8

bit-wise OR of TCP flags over all packets in the flow; the string may contain F, S, R, P, A, U, E, C
in upper- or lowercase (cf. Field Constraints)

sTime,9

starting time of the flow, in the form YYYY/MM/DD[:hh[:mm[:ss[.sss]]]]. The letter T may be
used in place of : to separate the day and hour fields. A floating point value between 536870912
and 4294967295 is also allowed and is treated as seconds since the UNIX epoch.

duration,10

duration of flow as a floating point value from 0.0 to 4294967.295

eTime,11

end time of flow in the same form as sTime,9 (cf. Field Constraints)

sensor,12

router sensor name or ID as given in silk.conf (cf. silk.conf(5))

class

class of router at collection point as given in silk.conf (cf. Field Constraints)

type

type of router at collection point as given in silk.conf (cf. Field Constraints)

in,13

router SNMP input (ingress) interface or vlanId; a 32-bit integer from 0 to 4,294,967,295 inclusive.
Prior to SiLK 3.23, in was a 16-bit integer from 0 to 65,535 inclusive.

SiLK-3.23.1 457

rwtuc(1) The SiLK Reference Guide

out,14

router SNMP output (egress) interface or postVlanId; a 32-bit integer from 0 to 4,294,967,295
inclusive. Prior to SiLK 3.23, out was a 16-bit integer from 0 to 65,535 inclusive.

nhIP,15

router next hop IP address in the same format as sIP,1

initialFlags,26

TCP flags on first packet in the flow; same form as the flags,8 field (cf. Field Constraints)

sessionFlags,27

bit-wise OR of TCP flags on the second through final packet in the flow; same form as the flags,8
field (cf. Field Constraints)

attribute,28

flow attributes set by the flow generator:

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

T

flow generator prematurely created a record for a long-running connection due to a timeout.
(When the flow generator yaf(1) is run with the --silk switch, it prematurely creates a flow
and mark it with T if the byte count of the flow cannot be stored in a 32-bit value.)

C

flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout (or a byte threshold in the case of yaf).

Consider a long-running ssh session that exceeds the flow generator’s active timeout. (This is the
active timeout since the flow generator creates a flow for a connection that still has activity). The
flow generator will create multiple flow records for this ssh session, each spanning some portion of
the total session. The first flow record will be marked with a T indicating that it hit the timeout.
The second through next-to-last records will be marked with TC indicating that this flow both
timed out and is a continuation of a flow that timed out. The final flow will be marked with a C,
indicating that it was created as a continuation of an active flow.

application,29

guess as to the content of the flow, as a 16-bit integer from 0 to 65,535. Some software that
generates flow records from packet data, such as yaf, will inspect the contents of the packets
that make up a flow and use traffic signatures to label the content of the flow. SiLK calls this
label the application; yaf refers to it as the appLabel. The application is the port number that is
traditionally used for that type of traffic (see the /etc/services file on most UNIX systems). For
example, traffic that the flow generator recognizes as FTP will have a value of 21, even if that
traffic is being routed through the standard HTTP/web port (80).

iType

ICMP type as an 8-bit integer from 0 to 255 inclusive (cf. Field Constraints)

iCode

ICMP code as an 8-bit integer from 0 to 255 inclusive (cf. Field Constraints)

--column-separator=CHAR

Use the character CHAR as the delimiter between columns (fields) in the input. The default column
separator is the vertical pipe (’|’). rwtuc normally ignores whitespace (space and tab) around the

458 SiLK-3.23.1

The SiLK Reference Guide rwtuc(1)

column separator; however, using space or tab as the separator causes each space or tab character to
be treated as a field delimiter. The newline character is not a valid delimiter character since it is used
to denote records.

--output-path=PATH

Write the binary SiLK Flow records to PATH, where PATH is a filename, a named pipe, the key-
word stderr to write the output to the standard error, or the keyword stdout or - to write the
output to the standard output. If PATH names an existing file, rwtuc exits with an error unless the
SILK CLOBBER environment variable is set, in which case PATH is overwritten. When PATH ends
in .gz, the output is compressed using the library associated with gzip(1). If this switch is not given,
the output is written to the standard output. Attempting to write the binary output to a terminal
causes rwtuc to exit with an error.

--bad-input-lines=FILEPATH

Copy any lines which could not be parsed to FILEPATH. The strings stdout and stderr may be used
for the standard output and standard error, respectively. Each bad line is prepended by the source
input file, a colon, the line number, and a colon. On exit, rwtuc removes FILEPATH if all input lines
were successfully parsed.

--verbose

When an input line fails to parse, print a message to the standard error describing the problem. When
this switch is not specified, parsing failures are not reported. rwtuc continues to process the input
after printing the message. To stop processing when a parsing error occurs, use --stop-on-error.

--stop-on-error

When an input line fails to parse, print a message to the standard error describing the problem and
exit the program. When this occurs, the output file contains any records successfully created prior
to reading the bad input line. The default behavior of rwtuc is to silently ignore parsing errors. To
report parsing errors and continue processing the input, use --verbose.

--no-titles

Parse the first line of the input as field values. Normally when the --fields switch is specified, rwtuc
examines the first line to determine if the line contains the names (titles) of fields and skips the line if
it does. rwtuc exits with an error when --no-titles is given but --fields is not.

--note-add=TEXT

Add the specified TEXT to the header of the output file as an annotation. This switch may be repeated
to add multiple annotations to a file. To view the annotations, use the rwfileinfo(1) tool.

--note-file-add=FILENAME

Open FILENAME and add the contents of that file to the header of the output file as an annotation.
This switch may be repeated to add multiple annotations. Currently the application makes no effort
to ensure that FILENAME contains text; be careful that you do not attempt to add a SiLK data file
as an annotation.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. If this switch is not given, the value
in the SILK COMPRESSION METHOD environment variable is used if the value names an available
compression method. When no compression method is specified, output to the standard output or to
named pipes is not compressed, and output to files is compressed using the default chosen when SiLK
was compiled. The valid values for COMP METHOD are determined by which external libraries were
found when SiLK was compiled. To see the available compression methods and the default method,

SiLK-3.23.1 459

rwtuc(1) The SiLK Reference Guide

use the --help or --version switch. SiLK can support the following COMP METHOD values when
the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output, and always compress the output regardless
of the destination. Using zlib produces the smallest output files at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression, and always
compress the output regardless of the destination. This compression provides good compression
with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available. Only
compress the output when writing to a file.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwtuc searches for the site configuration file in the locations specified in the FILES section.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwtuc opens each named file in turn
and reads text from it as if the filenames had been listed on the command line. Since SiLK 3.15.0.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

Fixed Values

The following switches may be used to set fields to fixed values. A value specified using one these switches
overrides the field when it appears in the input, causing that column of input to be completely ignored.

--saddress=IPADDR

Set the source address field to IPADDR for all records. IPADDR may be in canonical notation or an
unsigned integer.

--daddress=IPADDR

Set the destination address field to IPADDR for all records. IPADDR may be in canonical notation
or an unsigned integer.

460 SiLK-3.23.1

The SiLK Reference Guide rwtuc(1)

--sport=NUM

Set the source port field to NUM for all records; a value between 0 and 65535.

--dport=NUM

Set the destination port field to NUM for all records; a value between 0 and 65535. (cf. Field
Constraints)

--protocol=NUM

Set the protocol field to NUM for all records; a value between 0 and 255.

--packets=NUM

Set the packets field to NUM for all records; the value must be non-zero.

--bytes=NUM

Set the bytes field to NUM for all records; the value must be non-zero.

--flags-all=TCPFLAGS

Set the TCP flags field to TCPFLAGS for all records. (cf. Field Constraints)

--stime=TIME

Set the start time field to TIME for all records.

--duration=NUM

Set the duration field to NUM for all records.

--etime=TIME

Set the end time field to TIME for all records. (cf. Field Constraints)

--sensor=SID

Set the sensor field to SID for all records. This may either be a sensor name or sensor ID.

--input-index=NUM

Set the SNMP input index field to NUM for all records; a value between 0 and 4294967295.

--output-index=NUM

Set the SNMP output index field to NUM for all records; a value between 0 and 4294967295.

--next-hop-ip=IPADDR

Set the next-hop-ip field to IPADDR for all records. IPADDR may be in canonical notation or an
unsigned integer.

--flags-initial=TCPFLAGS

Set the initial TCP flags field to TCPFLAGS for all records. (cf. Field Constraints)

--flags-session=TCPFLAGS

Set the session TCP flags field to TCPFLAGS for all records. (cf. Field Constraints)

--attributes=ATTR

Set the attributes field to ATTR for all records.

--application=NUM

Set the application field to NUM for all records; a value between 0 and 65535.

SiLK-3.23.1 461

rwtuc(1) The SiLK Reference Guide

--class=NAME

Set the class field to NAME for all records. (cf. Field Constraints)

--type=NAME

Set the type field to NAME for all records. (cf. Field Constraints)

--icmp-type=NUM

Set the ICMP type field to NUM for all ICMP or ICMPv6 flow records; a value between 0 and 255.
(cf. Field Constraints)

--icmp-code=NUM

Set the ICMP code field to NUM for all ICMP or ICMPv6 flow records; a value between 0 and 255.
(cf. Field Constraints)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Using rwtuc to parse the output of rwcut(1) should produce the same output:

$ rwcut data.rw > cut.txt

$ md5 < cut.txt

7e3d693cd2cba2510803935274e1debd

$ rwtuc < cut.txt | rwcut | md5

7e3d693cd2cba2510803935274e1debd

To swap the source IP and port with the destination IP and port in flows.rw and save the result in reverse.rw :

$ rwcut --fields=dip,dport,sip,sport,5-15,20-29 flows.rw \

| rwtuc --fields=1-15,20-29 --output-path=reverse.rw

rwtuc may be used to obfuscate the flow data in myflows.rw to produce obflows.rw. Pipe the output from
rwcut into a script that manipulates the IP addresses, then pipe that into rwtuc. Using the sed(1) script
in priv.sed, the invocation is:

$ rwcut --fields=1-10,13-15,26-29 myflows.rw \

| sed -f priv.sed \

| rwtuc --sensor=1 > obflows.rw

If the first line of input appears to contain titles, rwtuc ignores it. In the first invocation below, rwtuc
treats SP as an abbreviation for sPort and ignores the line. Use the --no-titles switch to force rwtuc to
parse the line:

$ echo ’SP’ | rwtuc --fields=flags | rwcut --fields=flags

flags|

$

$ echo ’SP’ | rwtuc --fields=flags --no-titles | rwcut --fields=flags

flags|

S P |

$

462 SiLK-3.23.1

The SiLK Reference Guide rwtuc(1)

By default, rwtuc silently ignores lines that it cannot parse. Use the --verbose flag to see error messages:

$ echo sport | rwtuc --fields=flags --no-titles --verbose >/dev/null

rwtuc: stdin:1: Invalid flags ’sport’: Unexpected character ’o’

ENVIRONMENT

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK COMPRESSION METHOD

This environment variable is used as the value for --compression-method when that switch is not
provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwtuc may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwtuc may use this environment variable. See the FILES section for details.

TZ

When a SiLK installation is built to use the local timezone (to determine if this is the case, check
the Timezone support value in the output from rwtuc --version), the value of the TZ environment
variable determines the timezone in which rwtuc parses timestamps. If the TZ environment variable
is not set, the default timezone is used. Setting TZ to 0 or the empty string causes timestamps to be
parsed as UTC. The value of the TZ environment variable is ignored when the SiLK installation uses
utc. For system information on the TZ variable, see tzset(3) or environ(7).

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

SiLK-3.23.1 463

rwtuc(1) The SiLK Reference Guide

NOTES

Prior to SiLK 3.23.0, the pkts and bytes fields were limited to 32 bits (0 to 4294967295) and the in and out
fields were limited to 16 bits (0 to 65535).

Fields sTime+msec, eTime+msec, dur+msec, and their aliases (22, 23, 24) were removed in SiLK 3.23.0.
Use fields sTime, eTime, and duration instead.

SiLK 3.23.0 also removed the --stime+msec, --etime+msec, and --dur+msec options. Use --stime,
--etime, and --duration instead.

SEE ALSO

rwcut(1), rwfileinfo(1), rwsiteinfo(1), silk.conf(5), silk(7), yaf(1), gzip(1), sed(1), zlib(3),
tzset(3), environ(7)

464 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

rwuniq

Bin SiLK Flow records by a key and print each bin’s volume

SYNOPSIS

rwuniq --fields=KEY [--values=VALUES]

[{--threshold=MIN-MAX | --threshold=MIN}]

[--presorted-input] [--sort-output]

[{--bin-time=SECONDS | --bin-time}]

[--timestamp-format=FORMAT] [--epoch-time]

[--ip-format=FORMAT] [--integer-ips] [--zero-pad-ips]

[--integer-sensors] [--integer-tcp-flags]

[--no-titles] [--no-columns] [--column-separator=CHAR]

[--no-final-delimiter] [{--delimited | --delimited=CHAR}]

[--print-filenames] [--copy-input=PATH] [--output-path=PATH]

[--pager=PAGER_PROG] [--temp-directory=DIR_PATH]

[{--legacy-timestamps | --legacy-timestamps={1,0}}]

[--all-counts] [{--bytes | --bytes=MIN | --bytes=MIN-MAX}]

[{--packets | --packets=MIN | --packets=MIN-MAX}]

[{--flows | --flows=MIN | --flows=MIN-MAX}]

[--stime] [--etime]

[{--sip-distinct | --sip-distinct=MIN | --sip-distinct=MIN-MAX}]

[{--dip-distinct | --dip-distinct=MIN | --dip-distinct=MIN-MAX}]

[--ipv6-policy={ignore,asv4,mix,force,only}]

[--site-config-file=FILENAME]

[--plugin=PLUGIN [--plugin=PLUGIN ...]]

[--python-file=PATH [--python-file=PATH ...]]

[--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--pmap-column-width=NUM]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwuniq [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help

rwuniq [--pmap-file=MAPNAME:PATH [--pmap-file=MAPNAME:PATH ...]]

[--plugin=PLUGIN ...] [--python-file=PATH ...] --help-fields

rwuniq --version

DESCRIPTION

rwuniq reads SiLK Flow records and groups them by a key composed of user-specified attributes of the
flows. For each group (or bin), a collection of user-specified aggregate values is computed; these values are
typically related to the volume of the bin, such as the sum of the bytes fields for all records that match the
key. Once all the SiLK Flow records are read, the key fields and the aggregate values are printed. For some
of the built-in aggregate values, it is possible to limit the output to the bins where the aggregate value meets
a user-specified minimum and/or maximum.

SiLK-3.23.1 465

rwuniq(1) The SiLK Reference Guide

To have rwuniq sort its output by the key fields, use the --sort-output switch. If sorting the binned data
by an aggregate value field is desired, use rwstats(1) instead of rwuniq.

The user must provide the --fields switch to select the flow attribute(s) (or field(s)) that comprise the key
for each bin. The available fields are similar to those supported by rwcut(1); see the description of the
--fields switch in the OPTIONS section below for the details. The list of fields can be extended by loading
PySiLK files (see silkpython(3)) or plug-ins (silk-plugin(3)). The fields are printed in the order in which
they occur in the --fields switch. The size of the key is limited to 256 octets. A larger key more quickly
uses the available the memory leading to slower performance.

The aggregate value(s) to compute for each bin are also chosen by the user. As with the key fields, the
user can extend the list of aggregate fields by using PySiLK or plug-ins. Specify the aggregate fields with
the --values switch; the aggregate fields are printed in the order they occur in the --values switch. If the
user does not provide --values or a --threshold switch (described next), rwuniq defaults to computing
the number of flow records for each bin. As with the key fields, requesting more aggregate values slows
performance.

The --threshold switch (added in SiLK 3.17.0) allows the user to print only bins where a value field is
within a certain range. The switch’s argument contains the name of the value field, an equals sign, the
minimum value (start of the range), and optionally a hyphen and the maximum value (end of the range);
e.g., --threshold=bytes=1000-2000. The upper bound is unlimited when no maximum is specified. The
--threshold switch may be repeated to set multiple thresholds, and only those bins that meet all thresholds
are printed. Each field named by --threshold is appended to the set of aggregate value fields unless that
field was named in the --values switch.

rwuniq reads SiLK Flow records from the files named on the command line or from the standard input
when no file names are specified and --xargs is not present. To read the standard input in addition to the
named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed as
it is read. When the --xargs switch is provided, rwuniq reads the names of the files to process from the
named text file or from the standard input if no file name argument is provided to the switch. The input to
--xargs must contain one file name per line.

There is no need to sort the input to rwuniq since rwuniq normally rearranges the records as they are
read; however, the --presorted-input switch allows rwuniq to take advantage of sorted data.

The --presorted-input switch may allow rwuniq to process data more efficiently by causing rwuniq to
assume the input has been previously sorted with the rwsort(1) command. With this switch, rwuniq
typically does not need large amounts of memory because it does not bin each flow; instead, it keeps a
running summation and outputs the bin whenever the key changes. For the output to be meaningful,
rwsort and rwuniq must be invoked with the same --fields value. When multiple input files are specified
and --presorted-input is given, rwuniq merge-sorts the flow records from the input files. rwuniq typically
runs faster if you do not include the --presorted-input switch when counting distinct values, even when
reading sorted input. Finally, you may get unusual results with --presorted-input when the --fields switch
contains multiple time-related key fields (sTime, duration, eTime), or when the time-related key is not the
final key listed in --fields; see the NOTES section for details.

rwuniq attempts to keep all key and aggregate value data in the computer’s memory. If rwuniq runs out
of memory, the current key and aggregate value data is written to a temporary file. Once all input has
been processed, the data from the temporary files is merged to produce the final output. By default, these
temporary files are stored in the /tmp directory. Because these files can be large, it is strongly recommended
that /tmp not be used as the temporary directory. To modify the temporary directory used by rwuniq,
provide the --temp-directory switch, set the SILK TMPDIR environment variable, or set the TMPDIR
environment variable.

466 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

The --fields switch is required. rwuniq fails when it is not provided.

--fields=KEY

KEY contains the list of flow attributes (a.k.a. fields or columns) that make up the key into which flows
are binned. The columns are displayed in the order the fields are specified. Each field may be specified
once only. KEY is a comma separated list of field-names, field-integers, and ranges of field-integers;
a range is specified by separating the start and end of the range with a hyphen (-). Field-names are
case insensitive. Example:

--fields=stime,10,1-5

There is no default value for the --fields switch; the switch must be specified.

The complete list of built-in fields that the SiLK tool suite supports follows, though note that not all
fields are present in all SiLK file formats; when a field is not present, its value is 0.

sIP,1

source IP address

dIP,2

destination IP address

sPort,3

source port for TCP and UDP, or equivalent

dPort,4

destination port for TCP and UDP, or equivalent. See note at iType.

protocol,5

IP protocol

packets,pkts,6

packet count

bytes,7

byte count

flags,8

bit-wise OR of TCP flags over all packets

sTime,9

starting time of the flow, in seconds resolution by default or millisecond resolution when --bin-
time is given and includes fractional seconds. When all time-related fields (sTime, duration,
eTime) are in use, rwuniq ignores the final time field when binning the records.

duration,10

duration of the flow, in seconds resolution by default. If --bin-time is given, duration is set to
the difference of the binned sTime and eTime fields at the same resolution. When all time-related
fields (sTime, duration, eTime) are in use, rwuniq ignores the final time field when binning the
records.

SiLK-3.23.1 467

rwuniq(1) The SiLK Reference Guide

eTime,11

end time of the flow in seconds resolution by default or millisecond resolution when --bin-time
is given and includes fractional seconds. When all time-related fields (sTime, duration, eTime)
are in use, rwuniq ignores the final time field when binning the records.

sensor,12

name or ID of the sensor where the flow was collected

class,20

class assigned to the flow by rwflowpack(8). Binning by class and/or type equates to binning
by the integer value used internally to represent the class/type pair. When --fields contains
class but not type, rwuniq’s output contains multiple rows with the same value(s) for the key
field(s).

type,21

type assigned to the flow by rwflowpack(8). See note on previous entry.

iType

the ICMP type value for ICMP or ICMPv6 flows and empty (numerically zero) for non-ICMP
flows. Internally, SiLK stores the ICMP type and code in the dPort field. To avoid getting very
odd results, either do not use the dPort field when your key includes ICMP field(s) or be certain
to include the protocol field as part of your key. This field was introduced in SiLK 3.8.1.

iCode

the ICMP code value for ICMP or ICMPv6 flows and empty for non-ICMP flows. See note at
iType.

icmpTypeCode,25

equivalent to iType,iCode when used in --fields. This field may not be mixed with iType or
iCode, and this field is deprecated as of SiLK 3.8.1. As of SiLK 3.8.1, icmpTypeCode may no
longer be used as the argument to the Distinct: value field; the dPort field provides an equivalent
result as long as the input is limited to ICMP flow records.

Many SiLK file formats do not store the following fields and their values are always be 0; they are
listed here for completeness:

in,13

router SNMP input interface or vlanId if packing tools were configured to capture it (see sen-
sor.conf(5))

out,14

router SNMP output interface or postVlanId

nhIP,15

router next hop IP

SiLK can store flows generated by enhanced collection software that provides more information than
NetFlow v5. These flows may support some or all of these additional fields; for flows without this
additional information, the field’s value is always 0.

initialFlags,26

TCP flags on first packet in the flow

sessionFlags,27

bit-wise OR of TCP flags over all packets except the first in the flow

attributes,28

flow attributes set by the flow generator:

468 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

S

all the packets in this flow record are exactly the same size

F

flow generator saw additional packets in this flow following a packet with a FIN flag (excluding
ACK packets)

T

flow generator prematurely created a record for a long-running connection due to a timeout.
(When the flow generator yaf(1) is run with the --silk switch, it prematurely creates a flow
and mark it with T if the byte count of the flow cannot be stored in a 32-bit value.)

C

flow generator created this flow as a continuation of long-running connection, where the
previous flow for this connection met a timeout (or a byte threshold in the case of yaf).

Consider a long-running ssh session that exceeds the flow generator’s active timeout. (This is the
active timeout since the flow generator creates a flow for a connection that still has activity). The
flow generator will create multiple flow records for this ssh session, each spanning some portion of
the total session. The first flow record will be marked with a T indicating that it hit the timeout.
The second through next-to-last records will be marked with TC indicating that this flow both
timed out and is a continuation of a flow that timed out. The final flow will be marked with a C,
indicating that it was created as a continuation of an active flow.

application,29

guess as to the content of the flow. Some software that generates flow records from packet data,
such as yaf, will inspect the contents of the packets that make up a flow and use traffic signatures
to label the content of the flow. SiLK calls this label the application; yaf refers to it as the
appLabel. The application is the port number that is traditionally used for that type of traffic
(see the /etc/services file on most UNIX systems). For example, traffic that the flow generator
recognizes as FTP will have a value of 21, even if that traffic is being routed through the standard
HTTP/web port (80).

The following fields provide a way to label the IPs or ports on a record. These fields require external
files to provide the mapping from the IP or port to the label:

sType,16

for the source IP address, the value 0 if the address is non-routable, 1 if it is internal, or 2
if it is routable and external. Uses the mapping file specified by the SILK ADDRESS TYPES
environment variable, or the address types.pmap mapping file, as described in addrtype(3).

dType,17

as sType for the destination IP address

scc,18

for the source IP address, a two-letter country code abbreviation denoting the country where
that IP address is located. Uses the mapping file specified by the SILK COUNTRY CODES
environment variable, or the country codes.pmap mapping file, as described in ccfilter(3).
The abbreviations are those defined by ISO 3166-1 (see for example https://www.iso.org/
iso-3166-country-codes.html or https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2) or the follow-
ing special codes: -- N/A (e.g. private and experimental reserved addresses); a1 anonymous
proxy; a2 satellite provider; o1 other

dcc,19

as scc for the destination IP

src-map-name

SiLK-3.23.1 469

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

rwuniq(1) The SiLK Reference Guide

label contained in the prefix map file associated with map-name. If the prefix map is for IP
addresses, the label is that associated with the source IP address. If the prefix map is for pro-
tocol/port pairs, the label is that associated with the protocol and source port. See also the
description of the --pmap-file switch below and the pmapfilter(3) manual page.

dst-map-name

as src-map-name for the destination IP address or the protocol and destination port.

sval

as src-map-name when no map-name is associated with the prefix map file

dval

as dst-map-name when no map-name is associated with the prefix map file

Finally, the list of built-in fields may be augmented by the run-time loading of PySiLK code or plug-ins
written in C (also called shared object files or dynamic libraries), as described by the --python-file
and --plugin switches.

--values=VALUES

Specify the aggregate values to compute for each bin as a comma separated list of names. Names are
case insensitive. When the --threshold switch specifies an aggregate value field that does appear in
VALUES, that field is appended to VALUES. When neither the --values switch nor any --threshold
switch is specified, rwuniq counts the number of flow records for each bin. The aggregate fields are
printed in the order they occur in VALUES. The names of the built-in value fields follow. This list can
be augmented through the use of PySiLK and plug-ins.

Records, Flows

Count the number of flow records that mapped to each bin.

Packets

Sum the number of packets across all records that mapped to each bin.

Bytes

Sum the number of bytes across all records that mapped to each bin.

Duration

Sum the durations of all records that mapped to each bin, in floating-point seconds with millisec-
onds resolution. Since SiLK 3.23.0.

sTime-Earliest

Keep track of the earliest start time (minimum time) seen across all records that mapped to each
bin, in seconds resolution by default. The --bin-time switch does not apply this value, but if
--bin-time includes fractional seconds, sTime-Earliest uses nanosecond resolution internally and
its display is controlled by the precision setting of --timestamp-format.

eTime-Latest

Keep track of the latest end time (maximum time) seen across all records that mapped to each
bin, in seconds resolution by default. The --bin-time switch has the same effect on this value as
on sTime-Earliest.

sIP-Distinct

Count the number of distinct source IP addresses that were seen for each bin, an alias for Dis-
tinct:sIP.

dIP-Distinct

Count the number of distinct destination IP addresses that were seen for each bin, an alias for
Distinct:dIP.

470 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

Distinct:KEY FIELD

Count the number of distinct values for KEY FIELD, where KEY FIELD is any field that can
be used as an argument to --fields except icmpTypeCode. For example, Distinct:sPort counts
the number of distinct source ports for each bin. When this aggregate value field is used, the
specified KEY FIELD cannot be present in the argument to --fields.

--plugin=PLUGIN

Augment the list of key fields and/or aggregate value fields by using run-time loading of the plug-in
(shared object) whose path is PLUGIN. The switch may be repeated to load multiple plug-ins. The
creation of plug-ins is described in the silk-plugin(3) manual page. When PLUGIN does not contain
a slash (/), rwuniq attempts to find a file named PLUGIN in the directories listed in the FILES
section. If rwuniq finds the file, it uses that path. If PLUGIN contains a slash or if rwuniq does
not find the file, rwuniq relies on your operating system’s dlopen(3) call to find the file. When
the SILK PLUGIN DEBUG environment variable is non-empty, rwuniq prints status messages to the
standard error as it attempts to find and open each of its plug-ins.

--threshold=VALUE FIELD=MIN -MAX

--threshold=VALUE FIELD=MIN

Limit the output of rwuniq to the bins where the value of the aggregate value field VALUE FIELD
is not less than MIN and not more than MAX. If MAX is not given, limit the output to the bins
where the value of VALUE FIELD is at least MIN. The VALUE FIELD argument is case insensitive
and may be abbreviated to the shortest unique prefix. This switch may be repeated to set thresholds
for multiple fields, and rwuniq only prints bins that meet all thresholds. A MIN of 0 is treated as
1. If VALUE FIELD is not present in the argument to the --values switch, it is appended to those
aggregate values. VALUE FIELD may beRecords (or Flows), Packets, Bytes, sIP-Distinct, dIP-
Distinct, or Distinct:KEY FIELD. Setting thresholds for aggregate value fields defined by plug-ins
is not supported. Since SiLK 3.17.0.

Miscellaneous options:

--presorted-input

Cause rwuniq to assume that it is reading sorted input; i.e., that rwuniq’s input file(s) were generated
by rwsort(1) using the exact same value for the --fields switch. When no distinct counts are being
computed, rwuniq can process its input without needing to write temporary files. When multiple
input files are specified, rwuniq merge-sorts the flow records from the input files. See the NOTES
section for issues that may occur when using --presorted-input.

--sort-output

Cause rwuniq to present the output in sorted numerical order. The key rwuniq uses for sorting is
the same key it uses to index each bin.

--bin-time=SECONDS

--bin-time

Adjust the times in the key fields sTime and eTime to appear on SECONDS -second boundaries (the
floor of the time is used), and adjust duration to be the difference of those values. As of SiLK 3.17.0,
SECONDS may be a floating-point value of 0.001 or greater. When the fractional part of SECONDS is
non-zero, rwuniq uses millisecond resolution for the time-related key fields and nanosecond resolution
for the sTime-Earliest and eTime-Latest value fields. If this switch is not used, times appear on
1-second boundaries with fractional seconds truncated. When the switch is used but no argument is
given, rwuniq uses 60-second time bins. (When the start-time or end-time is the only key field and
time binning is desired, consider using rwcount(1) instead.)

SiLK-3.23.1 471

rwuniq(1) The SiLK Reference Guide

--timestamp-format=FORMAT

Specify the format and/or timezone to use when printing timestamps. When this switch is not spec-
ified, the SILK TIMESTAMP FORMAT environment variable is checked for a default format and/or
timezone. If it is empty or contains invalid values, timestamps are printed in the default format,
and the timezone is UTC unless SiLK was compiled with local timezone support. FORMAT is a
comma-separated list of a format and/or a timezone. The format is one of:

default

Print the timestamps as YYYY /MM /DD Thh :mm :ss .

iso

Print the timestamps as YYYY -MM -DD hh :mm :ss .

m/d/y

Print the timestamps as MM /DD /YYYY hh :mm :ss .

epoch

Print the timestamps as the number of seconds since 00:00:00 UTC on 1970-01-01.

When a timezone is specified, it is used regardless of the default timezone support compiled into SiLK.
The timezone is one of:

utc

Use Coordinated Universal Time to print timestamps.

local

Use the TZ environment variable or the local timezone.

When the --bin-time switch is specified and its argument includes non-zero fractional seconds, the
sTime-Earliest and eTime-Latest value fields use nanosecond resolution internally and default to
displaying microseconds. The --timestamp-format switch may change this precision. The available
precisions are:

no-frac

Truncate the fractional seconds value on the timestamps and on the duration field. Previously
this was called no-msec. Since SiLK 3.23.0.

milli

Print the fractional seconds to 3 decimal places. Since SiLK 3.23.0.

micro

Print the fractional seconds to 6 decimal places. Since SiLK 3.23.0.

nano

Print the fractional seconds to 9 decimal places. Since SiLK 3.23.0.

no-msec

Truncate the fractional seconds value on the timestamps and on the duration field. This is an
alias for no-frac and is deprecated as of SiLK 3.23.0.

--epoch-time

Print timestamps as epoch time (number of seconds since midnight GMT on 1970-01-01). This switch
is equivalent to --timestamp-format=epoch, it is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

472 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

--ip-format=FORMAT

Specify how IP addresses are printed, where FORMAT is a comma-separated list of the arguments
described below. When this switch is not specified, the SILK IP FORMAT environment variable is
checked for a value and that format is used if it is valid. The default FORMAT is canonical. Since
SiLK 3.7.0.

canonical

Print IP addresses in the canonical format. If the key only contains IPv4 addresses, use dot-
separated decimal (192.0.2.1). Otherwise, use colon-separated hexadecimal (2001:db8::1) or a
mixed IPv4-IPv6 representation for IPv4-mapped IPv6 addresses (the ::ffff:0:0/96 netblock, e.g.,
::ffff:192.0.2.1) and IPv4-compatible IPv6 addresses (the ::/96 netblock other than ::/127,
e.g., ::192.0.2.1).

no-mixed

Print IP addresses in the canonical format (192.0.2.1 or 2001:db8::1) but do not used the mixed
IPv4-IPv6 representations. For example, use ::ffff:c000:201 instead of ::ffff:192.0.2.1.
Since SiLK 3.17.0.

decimal

Print IP addresses as integers in decimal format. For example, print 192.0.2.1 and 2001:db8::1

as 3221225985 and 42540766411282592856903984951653826561, respectively.

hexadecimal

Print IP addresses as integers in hexadecimal format. For example, print 192.0.2.1 and
2001:db8::1 as c00000201 and 20010db8000000000000000000000001, respectively.

zero-padded

Make all IP address strings contain the same number of characters by padding
numbers with leading zeros. For example, print 192.0.2.1 and 2001:db8::1 as
192.000.002.001 and 2001:0db8:0000:0000:0000:0000:0000:0001, respectively. For
IPv6 addresses, this setting implies no-mixed, so that ::ffff:192.0.2.1 is printed as
0000:0000:0000:0000:0000:ffff:c000:0201. As of SiLK 3.17.0, may be combined with any of
the above, including decimal and hexadecimal.

The following arguments modify certain IP addresses prior to printing. These arguments may be
combined with the above formats.

map-v4

Change IPv4 addresses to IPv4-mapped IPv6 addresses (addresses in the ::ffff:0:0/96 netblock)
prior to formatting. Since SiLK 3.17.0.

unmap-v6

When the key contains IPv6 addresses, change any IPv4-mapped IPv6 addresses (addresses in
the ::ffff:0:0/96 netblock) to IPv4 addresses prior to formatting. Since SiLK 3.17.0.

The following argument is also available:

force-ipv6

Set FORMAT to map-v4,no-mixed.

--integer-ips

Print IP addresses as integers. This switch is equivalent to --ip-format=decimal, it is deprecated as
of SiLK 3.7.0, and it will be removed in the SiLK 4.0 release.

SiLK-3.23.1 473

rwuniq(1) The SiLK Reference Guide

--zero-pad-ips

Print IP addresses as fully-expanded, zero-padded values in their canonical form. This switch is
equivalent to --ip-format=zero-padded, it is deprecated as of SiLK 3.7.0, and it will be removed in
the SiLK 4.0 release.

--integer-sensors

Print the integer ID of the sensor rather than its name.

--integer-tcp-flags

Print the TCP flag fields (flags, initialFlags, sessionFlags) as an integer value. Typically, the characters
F,S,R,P,A,U,E,C are used to represent the TCP flags.

--no-titles

Turn off column titles. By default, titles are printed.

--no-columns

Disable fixed-width columnar output.

--column-separator=C

Use specified character between columns and after the final column. When this switch is not specified,
the default of ’|’ is used.

--no-final-delimiter

Do not print the column separator after the final column. Normally a delimiter is printed.

--delimited

--delimited=C

Run as if --no-columns --no-final-delimiter --column-sep=C had been specified. That is, disable
fixed-width columnar output; if character C is provided, it is used as the delimiter between columns
instead of the default ’|’.

--print-filenames

Print to the standard error the names of input files as they are opened.

--copy-input=PATH

Copy all binary SiLK Flow records read as input to the specified file or named pipe. PATH may be
stdout or - to write flows to the standard output as long as the --output-path switch is specified to
redirect rwuniq’s textual output to a different location.

--output-path=PATH

Write the textual output to PATH, where PATH is a filename, a named pipe, the keyword stderr to
write the output to the standard error, or the keyword stdout or - to write the output to the standard
output (and bypass the paging program). If PATH names an existing file, rwuniq exits with an error
unless the SILK CLOBBER environment variable is set, in which case PATH is overwritten. If this
switch is not given, the output is either sent to the pager or written to the standard output.

--pager=PAGER PROG

When output is to a terminal, invoke the program PAGER PROG to view the output one screen full
at a time. This switch overrides the SILK PAGER environment variable, which in turn overrides the
PAGER variable. If the --output-path switch is given or if the value of the pager is determined to
be the empty string, no paging is performed and all output is written to the terminal.

474 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

--ipv6-policy=POLICY

Determine how IPv4 and IPv6 flows are handled when SiLK has been compiled with IPv6 support.
When the switch is not provided, the SILK IPV6 POLICY environment variable is checked for a policy.
If it is also unset or contains an invalid policy, the POLICY is mix. When SiLK has not been compiled
with IPv6 support, IPv6 flows are always ignored, regardless of the value passed to this switch or in
the SILK IPV6 POLICY variable. The supported values for POLICY are:

ignore

Ignore any flow record marked as IPv6, regardless of the IP addresses it contains.

asv4

Convert IPv6 flow records that contain addresses in the ::ffff:0:0/96 netblock (that is, IPv4-mapped
IPv6 addresses) to IPv4 and ignore all other IPv6 flow records.

mix

Process the input as a mixture of IPv4 and IPv6 flow records. When an IP address is used as
part of the key or value, this policy is equivalent to force.

force

Convert IPv4 flow records to IPv6, mapping the IPv4 addresses into the ::ffff:0:0/96 netblock.

only

Process only flow records that are marked as IPv6 and ignore IPv4 flow records in the input.

--temp-directory=DIR PATH

Specify the name of the directory in which to store data files temporarily when the memory is not large
enough to store all the bins and their aggregate values. This switch overrides the directory specified
in the SILK TMPDIR environment variable, which overrides the directory specified in the TMPDIR
variable, which overrides the default, /tmp.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwuniq searches for the site configuration file in the locations specified in the FILES section.

--legacy-timestamps

--legacy-timestamps=NUM

When NUM is not specified or is 1, this switch is equivalent to --timestamp-format=m/d/y.
Otherwise, the switch has no effect. This switch is deprecated as of SiLK 3.0.0, and it will be removed
in the SiLK 4.0 release.

--xargs

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwuniq opens each named file in turn
and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit. Specifying switches that add new fields, values, or additional
switches before --help allows the output to include descriptions of those fields or switches.

--help-fields

Print the description and alias(es) of each field and value and exit. Specifying switches that add new
fields before --help-fields allows the output to include descriptions of those fields.

SiLK-3.23.1 475

rwuniq(1) The SiLK Reference Guide

--version

Print the version number and information about how SiLK was configured, then exit the application.

--pmap-file=PATH

--pmap-file=MAPNAME :PATH

Load the prefix map file located at PATH and create fields named src-map-name and dst-map-name
where map-name is either the MAPNAME part of the argument or the map-name specified when the
file was created (see rwpmapbuild(1)). If no map-name is available, rwuniq names the fields sval
and dval. Specify PATH as - or stdin to read from the standard input. The switch may be repeated
to load multiple prefix map files, but each prefix map must use a unique map-name. The --pmap-file
switch(es) must precede the --fields switch. See also pmapfilter(3).

--pmap-column-width=NUM

When printing a label associated with a prefix map, this switch gives the maximum number of char-
acters to use when displaying the textual value of the field.

--python-file=PATH

When the SiLK Python plug-in is used, rwuniq reads the Python code from the file PATH to define
additional fields that can be used as part of the key or as an aggregate value. This file should call
register field() for each field it wishes to define. For details and examples, see the silkpython(3)
and pysilk(3) manual pages.

Deprecated volume switches

These options add the named aggregate field(s) to --values if the field is not present. When an argument is
specified, the switch is equivalent to a --threshold switch. Use of these switches is deprecated.

--all-counts

Append the following fields to the argument of the --values switch unless the field is already present:
Bytes, Packets, Records, sTime-Earliest, and eTime-Latest. Deprecated since SiLK 2.0.0.

--bytes

Append Bytes to the argument of the --values switch unless it is already present. Deprecated since
SiLK 2.0.0.

--bytes=MIN

Add --threshold=bytes=MIN to the options. Deprecated since SiLK 3.17.0.

--bytes=MIN -MAX

Add --threshold=bytes=MIN -MAX to the options. Deprecated since SiLK 3.17.0.

--packets

Append Packets to the argument of the --values switch unless it is already present. Deprecated since
SiLK 2.0.0.

--packets=MIN

Add --threshold=packets=MIN to the options. Deprecated since SiLK 3.17.0.

--packets=MIN -MAX

Add --threshold=packets=MIN -MAX to the options. Deprecated since SiLK 3.17.0.

476 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

--flows

Append Records to the argument of the --values switch unless it is already present. Deprecated
since SiLK 2.0.0.

--flows=MIN

Add --threshold=records=MIN to the options. Deprecated since SiLK 3.17.0.

--flows=MIN -MAX

Add --threshold=records=MIN -MAX to the options. Deprecated since SiLK 3.17.0.

--sip-distinct

Append Distinct:sIP to the argument of the --values switch unless it is already present. Deprecated
since SiLK 2.0.0.

--sip-distinct=MIN

Add --threshold=distinct:sip=MIN to the options. Deprecated since SiLK 3.17.0.

--sip-distinct=MIN -MAX

Add --threshold=distinct:sip=MIN -MAX to the options. Deprecated since SiLK 3.17.0.

--dip-distinct

Append Distinct:dIP to the argument of the --values switch unless it is already present. Deprecated
since SiLK 2.0.0.

--dip-distinct=MIN

Add --threshold=distinct:dip=MIN to the options. Deprecated since SiLK 3.17.0.

--dip-distinct=MIN -MAX

Add --threshold=distinct:dip=MIN -MAX to the options. Deprecated since SiLK 3.17.0.

--stime

Append sTime-Earliest to the argument of the --values switch unless it is already present. Depre-
cated since SiLK 2.0.0.

--etime

Append eTime-Latest to the argument of the --values switch unless it is already present. Deprecated
since SiLK 2.0.0.

EXAMPLES

In these examples, the dollar sign ($) represents the shell prompt and a backslash (\) is used to continue a
line for better readability. Many examples assume previous rwfilter(1) commands have written data files
named data.rw and data-v6.rw.

The --fields switch is required to specify which field(s) comprise the key. By default, rwuniq counts the
number of records for each key. This example uses the source port as the key.

$ rwuniq --fields=sport data.rw | head

sPort| Records|

53| 62216|

22| 27994|

SiLK -3.23.1 477

rwuniq(1) The SiLK Reference Guide

67| 7807|

29897| 78|

28816| 24|

80| 27044|

28925| 22|

0| 7801|

29246| 63|

Notice how the keys are printed in an arbitrary order. Use the --sort-output switch to arrange the keys
from lowest to highest.

$ rwuniq --fields=sport --sort-output data.rw | head

sPort| Records|

0| 7801|

22| 27994|

25| 15568|

53| 62216|

67| 7807|

80| 27044|

123| 7741|

443| 7917|

8080| 3946|

To sort the output by a volume field (such as the number of records), use rwstats(1).

$ rwstats --fields=sport --count=10 data.rw

INPUT: 250928 Records for 4739 Bins and 250928 Total Records

OUTPUT: Top 10 Bins by Records

sPort| Records| %Records| cumul_%|

53| 62216| 24.794363| 24.794363|

22| 27994| 11.156188| 35.950552|

80| 27044| 10.777594| 46.728145|

25| 15568| 6.204170| 52.932315|

443| 7917| 3.155088| 56.087404|

67| 7807| 3.111251| 59.198655|

0| 7801| 3.108860| 62.307515|

123| 7741| 3.084949| 65.392463|

8080| 3946| 1.572563| 66.965026|

29921| 117| 0.046627| 67.011653|

Alternatively, process the textual output of rwuniq with the UNIX sort(1) utility.

$ rwuniq --fields=sport data.rw \

| sort -r -t ’|’ -k 2 | head

sPort| Records|

53| 62216|

22| 27994|

80| 27044|

25| 15568|

443| 7917|

478 SiLK -3.23.1

The SiLK Reference Guide rwuniq(1)

67| 7807|

0| 7801|

123| 7741|

8080| 3946|

Use the --values field to change the volume that rwuniq computes for each key. This example prints the
byte-, packet-, and record-counts for each protocol, sorting the results by protocol.

$ rwuniq --fields=proto --values=bytes,packets,records --sort data.rw

pro| Bytes| Packets| Records|

1| 5344836| 73473| 7801|

6| 59945492930| 72127917| 165363|

17| 17553593| 77764| 77764|

The --threshold switch limits the output to rows where a value field meets a minimum value or falls within
a specific range. For example, print the number of records and packets seen for each source port for bins
having at least 1000 records.

$ rwuniq --fields=sport --values=records,packets \

--threshold=records=1000 data.rw

sPort| Records| Packets|

53| 62216| 62216|

22| 27994| 23434615|

67| 7807| 7807|

80| 27044| 8271125|

0| 7801| 73473|

123| 7741| 7741|

25| 15568| 427777|

443| 7917| 2421124|

8080| 3946| 1202528|

Multiple thresholds may be specified.

$ rwuniq --fields=sport --values=records,packets \

--threshold=records=1000-5000 --threshold=packets=1000000 \

data.rw

sPort| Records| Packets|

8080| 3946| 1202528|

The --bin-time switch adjusts the times used by the sTime and eTime key fields. An argument of 86400
moves the starting and ending time to day boundaries.

$ rwuniq --bin-time=86400 --fields=stime,etime data.rw

sTime| eTime| Records|

2009/02/12T00:00:00|2009/02/12T00:00:00| 82969|

2009/02/12T00:00:00|2009/02/13T00:00:00| 360|

2009/02/13T00:00:00|2009/02/13T00:00:00| 83594|

2009/02/13T00:00:00|2009/02/14T00:00:00| 332|

2009/02/14T00:00:00|2009/02/14T00:00:00| 83673|

SiLK -3.23.1 479

rwuniq(1) The SiLK Reference Guide

The --bin-time switch does not adjust the duration value unless both sTime and eTime are given.

$ rwuniq --bin-time=86400 --fields=stime,dur --sort data.rw | head -6

sTime|durat| Records|

2009/02/12T00:00:00| 0| 29523|

2009/02/12T00:00:00| 1| 4312|

2009/02/12T00:00:00| 2| 4376|

2009/02/12T00:00:00| 3| 3986|

2009/02/12T00:00:00| 4| 923|

$ rwuniq --bin-time=86400 --fields=stime,dur,etime data.rw

sTime|durat| eTime| Records|

2009/02/12T00:00:00| 0|2009/02/12T00:00:00| 82969|

2009/02/12T00:00:00|86400|2009/02/13T00:00:00| 360|

2009/02/13T00:00:00| 0|2009/02/13T00:00:00| 83594|

2009/02/13T00:00:00|86400|2009/02/14T00:00:00| 332|

2009/02/14T00:00:00| 0|2009/02/14T00:00:00| 83673|

As of SiLK 3.17.0, the --bin-time switch accepts a floating point value. When the fractional part is non-zero,
rwuniq uses millisecond precision for the times and the duration.

$ rwuniq --bin-time=0.001 --fields=duration data.rw | head -6

duration| Records|

0.000| 85565|

1791.045| 4|

2.120| 19|

22.263| 5|

19.902| 3|

The --bin-time does not adjust the sTime-Earliest and eTime-Latest aggregate value fields, but it does
determine whether those fields maintain millisecond precision.

$ rwuniq --bin-time=86400 --fields=stime --value=etime data.rw

sTime| eTime-Latest|

2009/02/12T00:00:00|2009/02/12T00:29:59|

2009/02/13T00:00:00|2009/02/13T00:29:58|

2009/02/14T00:00:00|2009/02/14T00:29:59|

$ rwuniq --bin-time=0.001 --fields=proto --value=stime,etime data.rw

pro| sTime-Earliest| eTime-Latest|

17|2009/02/12T00:00:02.745|1970/01/15T06:57:35.997|

6|2009/02/12T00:00:03.004|1970/01/15T06:57:35.998|

1|2009/02/12T00:00:20.601|1970/01/15T06:57:35.992|

With an input of both IPv4 and IPv6 records, rwuniq maps the IPv4 records into the ::ffff:0:0/96 netblock.
The data is normally mapped back to IPv4 on output. Given this input:

$ rwcut --fields=sip,packets /tmp/v4v6.rw

sIP| packets|

480 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

::1| 45|

192.0.2.22| 87|

::ffff:203.0.113.113| 2662|

2001:db8:54:32:ab:cd::| 345|

The rwuniq tool produces:

$ rwuniq --fields=sip --values=packets /tmp/v4v6.rw

sIP| Packets|

::1| 45|

192.0.2.22| 87|

203.0.113.113| 2662|

2001:db8:54:32:ab:cd::| 345|

Set the --ip-format to map-v4 to leave the values as IPv4-mapped IPv6. (Using an --ipv6-policy of
force-ipv6 has the same effect.)

$ rwuniq --fields=sip --values=packets --ip-format=map-v4 /tmp/v4v6.rw

sIP| Packets|

::1| 45|

::ffff:192.0.2.22| 87|

::ffff:203.0.113.113| 2662|

2001:db8:54:32:ab:cd::| 345|

Print the source addresses that sent more than 10,000,000 bytes, and for each address print the number of
unique destination hosts it contacted:

$ rwuniq --fields=sip --values=bytes,distinct:dip \

--threshold=bytes=10000000 data-v6.rw

sIP| Bytes|dIP-Distin|

2001:db8:a:fd::90:bd| 14529210| 2|

Print the number of bytes that host shared with each destination (first use rwfilter to limit the input to
that host):

$ rwfilter --saddr=2001:db8:a:fd::90:bd --pass=- data-v6.rw \

| rwuniq --fields=dip --values=bytes

dIP| Bytes|

2001:db8:c0:a8::fa:5d| 7097847|

2001:db8:c0:a8::dd:6| 7431363|

Print the packet and byte counts for each IPv4 source-destination pair, where the prefix length is 16 (use
rwnetmask(1) on the input to rwuniq):

$ rwnetmask --4sip-prefix=16 --4dip-prefix=16 data.rw \

| rwuniq --fields=sip,dip --values=packet,byte | head

sIP| dIP| Packets| Bytes|

10.139.0.0| 192.168.0.0| 33490| 22950353|

10.40.0.0| 192.168.0.0| 258| 18544|

SiLK -3.23.1 481

rwuniq(1) The SiLK Reference Guide

10.204.0.0| 192.168.0.0| 353233| 288736424|

10.106.0.0| 192.168.0.0| 13051| 3843693|

10.71.0.0| 192.168.0.0| 4355| 1391194|

10.98.0.0| 192.168.0.0| 7312| 7328359|

10.114.0.0| 192.168.0.0| 2538| 4137927|

10.168.0.0| 192.168.0.0| 92094| 86883062|

10.176.0.0| 192.168.0.0| 122101| 116555051|

Given a file of scan traffic, print the source of TCP traffic with no more than 3 packets and which also
appears at least 4 times. First use rwfilter to limit the traffic to TCP and find the flow records where the
packet count in that flow record is no more than 3.

$ rwfilter --proto=6 --packets=1-3 --pass=- scandata.rw \

| rwuniq --field=sip --values=flow,packets --threshold=flows=4 \

| head -5

sIP| Records| Packets|

10.249.216.38| 256| 256|

10.155.55.93| 256| 256|

10.61.255.154| 256| 256|

10.60.122.82| 256| 256|

The silkpython(3) manual page provides examples that use PySiLK to create arbitrary fields to use as part
of the key for rwuniq.

When using rwuniq on input that contains both incoming and outgoing flow records, consider using the int-
ext-fields(3) plug-in which defines four additional fields representing the external IP address, the external
port, the internal IP address, and the internal port. The plug-in requires the user to specify which class/type
pairs are incoming and which are outgoing. See its manual page for additional information. As an example,
here we run rwuniq on a file containing incoming and outgoing web traffic.

$ rwuniq --fields=sip,sport,dip,dport --values=bytes \

--sort-output data.rw | head -7

sIP|sPort| dIP|dPort| Bytes|

10.4.52.235|29631|192.168.233.171| 80| 18260|

10.5.231.251| 80|192.168.226.129|28770| 536169|

10.9.77.117|29906| 192.168.184.65| 80| 55386|

10.11.88.88| 80|192.168.251.222|28902| 433198|

10.14.110.214|29989| 192.168.249.96| 80| 25903|

10.15.224.27| 443| 192.168.231.49|29779| 163759|

Here the int-ext-fields plug-in is used:

$ export INCOMING_FLOWTYPES=all/in,all/inweb

$ export OUTGOING_FLOWTYPES=all/out,all/outweb

$ rwuniq --plugin=int-ext-fields.so \

--fields=ext-ip,ext-port,int-ip,int-port --value=bytes \

--sort-output data.rw | head -7

ext-ip|ext-p| int-ip|int-p| Bytes|

10.4.52.235|29631|192.168.233.171| 80| 726111|

10.5.231.251| 80|192.168.226.129|28770| 561654|

10.9.77.117|29906| 192.168.184.65| 80| 1811738|

482 SiLK -3.23.1

The SiLK Reference Guide rwuniq(1)

10.11.88.88| 80|192.168.251.222|28902| 444277|

10.14.110.214|29989| 192.168.249.96| 80| 393068|

10.15.224.27| 443| 192.168.231.49|29779| 167696|

ENVIRONMENT

SILK IPV6 POLICY

This environment variable is used as the value for --ipv6-policy when that switch is not provided.

SILK IP FORMAT

This environment variable is used as the value for --ip-format when that switch is not provided. Since
SiLK 3.11.0.

SILK TIMESTAMP FORMAT

This environment variable is used as the value for --timestamp-format when that switch is not
provided. Since SiLK 3.11.0.

SILK PAGER

When set to a non-empty string, rwuniq automatically invokes this program to display its output a
screen at a time. If set to an empty string, rwuniq does not automatically page its output.

PAGER

When set and SILK PAGER is not set, rwuniq automatically invokes this program to display its
output a screen at a time.

SILK TMPDIR

When set and --temp-directory is not specified, rwuniq writes the temporary files it creates to this
directory. SILK TMPDIR overrides the value of TMPDIR.

TMPDIR

When set and SILK TMPDIR is not set, rwuniq writes the temporary files it creates to this directory.

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file is specified,
rwuniq must load the Python files that comprise the PySiLK package, such as silk/ init .py. If this
silk/ directory is located outside Python’s normal search path (for example, in the SiLK installation
tree), it may be necessary to set or modify the PYTHONPATH environment variable to include the
parent directory of silk/ so that Python can find the PySiLK module.

SILK PYTHON TRACEBACK

When set, Python plug-ins print traceback information on Python errors to the standard error.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that rwuniq uses
when computing the scc and dcc fields. The value may be a complete path or a file relative to the
SILK PATH. See the FILES section for standard locations of this file.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file that rwuniq uses
when computing the sType and dType fields. The value may be a complete path or a file relative to
the SILK PATH. See the FILES section for standard locations of this file.

SiLK-3.23.1 483

rwuniq(1) The SiLK Reference Guide

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, rwuniq may use this environment variable when searching for the SiLK site configuration file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwuniq may use this environment variable. See the FILES section for details.

TZ

When the argument to the --timestamp-format switch includes local or when a SiLK installation
is built to use the local timezone, the value of the TZ environment variable determines the timezone
in which rwuniq displays timestamps. (If both of those are false, the TZ environment variable is
ignored.) If the TZ environment variable is not set, the machine’s default timezone is used. Setting
TZ to the empty string or 0 causes timestamps to be displayed in UTC. For system information on the
TZ variable, see tzset(3) or environ(7). (To determine if SiLK was built with support for the local
timezone, check the Timezone support value in the output of rwuniq --version.)

SILK PLUGIN DEBUG

When set to 1, rwuniq prints status messages to the standard error as it attempts to find and open
each of its plug-ins. In addition, when an attempt to register a field fails, rwuniq prints a message
specifying the additional function(s) that must be defined to register the field in rwuniq. Be aware
that the output can be rather verbose.

SILK TEMPFILE DEBUG

When set to 1, rwuniq prints debugging messages to the standard error as it creates, re-opens, and
removes temporary files.

SILK UNIQUE DEBUG

When set to 1, the binning engine used by rwuniq prints debugging messages to the standard error.

FILES

${SILK ADDRESS TYPES}

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Possible locations for the address types mapping file required by the sType and dType fields.

${SILK CONFIG FILE}

484 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file required by the scc and dcc fields.

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

/usr/local/lib/

Directories that rwuniq checks when attempting to load a plug-in.

${SILK TMPDIR}/

${TMPDIR}/

/tmp/

Directory in which to create temporary files.

SiLK -3.23.1 485

rwuniq(1) The SiLK Reference Guide

NOTES

If multiple thresholds are given (e.g., --threshold=bytes=80 --threshold=flows=2), the values must meet
all thresholds before the record is printed. For example, if a given key saw a single 100-byte flow, the entry
would not printed given the switches above.

rwuniq functionally replaces the combination of

rwcut | sort | uniq -c

To get a list of unique IP addresses in a data set without the counting or threshold abilities of rwuniq,
consider using the IPset tools rwset(1) and rwsetcat(1) for improved performance:

rwset --sip-set=stdout | rwsetcat --print-ips

For situations where the key and value are each a single field, the Bag tools (rwbag(1), rwbagcat(1))
often provide better performance, especially when the key length is one or two bytes:

rwbag --bag-file=sport,bytes,stdout | rwbagcat

To create a binary file that contains rwuniq-like output, use rwaggbag(1) or rwaggbagbuild(1). The
content of these files may be printed with rwaggbagcat(1).

rwgroup(1) works similarly to rwuniq, except the data remains in the form of SiLK Flow records, and the
next-hop-IP field is modified to denote the records that form a bin.

rwstats(1) can do the same binning as rwuniq, and then sort the data by an aggregate field.

When the --bin-time switch is given and the three time-related key fields (starting-time (sTime), ending-
time (eTime), and duration (duration)) are present, the duration field’s value is modified to be the difference
between the ending and starting times.

The time-related key fields use seconds resolution unless --bin-time is given and includes non-zero fractional
seconds. The --bin-time switch began accepting a floating-point value in SiLK 3.17.0.

When the three time-related key fields (sTime, duration, eTime) are all in use, rwuniq ignores the final
time field when binning the records, but the field does appear in the output. Due to truncation of fractional
values, rwuniq may generate different numbers of bins depending on the order in which those three values
appear in the --fields switch.

rwuniq supports counting distinct source and/or destination IPs. To see the number of distinct sources for
each 10 minute bin, run:

rwuniq --fields=stime --values=distinct:sip --bin-time=600 --sort-output

When computing distinct counts over a field, the field may not be part of the key; that is, you cannot have
--fields=sip --values=sip-distinct.

Using the --presorted-input switch sometimes introduces more issues than it solves, and --presorted-
input is less necessary now that rwuniq can use temporary files while processing input.

When computing distinct IP counts, rwuniq will typically run faster if you do not use the --presorted-
input switch, even if the data was previously sorted.

486 SiLK-3.23.1

The SiLK Reference Guide rwuniq(1)

When using the --presorted-input switch, it is highly recommended that you use no more than one time-
related key field (sTime, duration, eTime) in the --fields switch and that the time-related key appear last
in --fields. The issue is caused by rwsort considering the complete timestamp when sorting while rwuniq
typically uses less precision. The result may be unsorted output and multiple rows in the output that have
the same values for the key fields:

$ rwsort --fields=stime,duration data.rw \

| rwuniq --fields=stime,dur --presorted

sTime|durat| Records|

...

2009/02/12T00:00:57| 0| 2|

2009/02/12T00:00:57| 29| 2|

2009/02/12T00:00:57| 0| 2|

2009/02/12T00:00:57| 13| 2|

...

rwuniq’s strength is its ability to build arbitrary keys and aggregate fields. For a key of a single IP address,
see rwaddrcount(1) and rwbag(1); for a key made up of a single CIDR block (/8, /16, /24 only), a single
port, or a single protocol, use rwtotal(1) or rwbag(1).

As of SiLK 3.17.0, fields that are specified with the legacy thresholding switches (e.g., --bytes) and not with
--values are printed in the order in which those switches appear. Previously, the order was always bytes,
packets, flows, stime, etime, sip-distinct, dip-distinct.

SEE ALSO

rwfilter(1), rwbag(1), rwbagcat(1), rwaggbag(1), rwaggbagbuild(1), rwaggbagcat(1), rwcut(1),
rwset(1), rwsetcat(1), rwaddrcount(1), rwgroup(1), rwstats(1), rwnetmask(1), rwsort(1), rw-
total(1), rwcount(1), rwpmapbuild(1), addrtype(3), ccfilter(3), int-ext-fields(3), pmapfilter(3),
pysilk(3), silkpython(3), silk-plugin(3), sensor.conf(5), rwflowpack(8), silk(7), yaf(1), dlopen(3),
tzset(3), environ(7)

SiLK-3.23.1 487

silk config(1) The SiLK Reference Guide

silk config

Print SiLK compiling and linking information

SYNOPSIS

silk_config [--silk-version] [--compiler] [--cflags] [--include]

[--libs] [--libsilk-libs] [--libsilk-thrd-libs]

[--libflowsource-libs] [--data-rootdir] [--python-site-dir]

silk_config --help

silk_config --version

DESCRIPTION

silk config prints configuration information used to compile and link other files and programs against
the SiLK header files and libraries. silk config will print the output value(s) selected by the user, or all
configuration information if no switches are provided.

This command has nothing to do with the SiLK Configuration file. See the silk.conf(5) manual page for
information on that file.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option.

--silk-version

Print the version of SiLK as a simple string. This output from this switch is only the version number; the
output does not include the additional configuration information that the --version switch normally
prints.

--compiler

Print the compiler used to build SiLK.

--cflags

Print the include paths (that is, the -I switches) and any additional compiler flags to use when compiling
a file against the SiLK header files. To only print the include paths, use --include.

--include

Print the include paths to use when compiling a file against the SiLK header files. See also --cflags.

--libs

This switch is an alias for --libsilk-libs.

--libsilk-libs

Print the linker flags (that is, the -L and -l switches) to use when linking a program against libsilk.so.

488 SiLK-3.23.1

The SiLK Reference Guide silk config(1)

--libsilk-thrd-libs

Print the linker flags to use when linking a program against libsilk-thrd.so. Few external programs will
need to use this library.

--libflowsource-libs

Print the linker flags to use when linking a program against libflowsource.so. It is highly unlikely
that an external program will need to use this library.

--data-rootdir

Print the compiled-in value of the default location of the SiLK data repository, ignoring any environ-
ment variable settings.

--python-site-dir

Print the name of the directory containing the silk subdirectory where the PySiLK module files were
installed. The user may need to set the PYTHONPATH environment variable to this location to be
able to use PySiLK. The value will be empty if PySiLK support is not available in this build of SiLK.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SEE ALSO

silk.conf(5), silk(7)

SiLK-3.23.1 489

silk config(1) The SiLK Reference Guide

490 SiLK-3.23.1

3

SiLK Libraries and Plug-Ins

The behavior of several SiLK tools can be augmented by built-in libraries or plug-ins loaded at run time;
this section describes those libraries and plug-ins.

491

addrtype(3) The SiLK Reference Guide

addrtype

Labeling IPv4 addresses as internal or external

SYNOPSIS

rwfilter [--stype=ID] [--dtype=ID] ...

rwcut --fields=sType,dType ...

rwgroup --id-fields=sType,dType ...

rwsort --fields=sType,dType ...

rwstats --fields=sType,dType ...

rwuniq --fields=sType,dType ...

DESCRIPTION

The address type mapping file provides a way to map an IPv4 address to an integer denoting the IP as inter-
nal, external, or non-routable. With this mapping file, SiLK flow records can be partitioned (rwfilter(1)),
displayed (rwcut(1)), grouped (rwgroup(1)), sorted (rwsort(1)), and counted (rwstats(1) and rwu-
niq(1)) by the characteristic of the address.

The address type is a specialized form of the Prefix Map, pmapfilter(3), where the following labels are
assumed to exist and to have the indicated values:

0

denotes a (non-routable) IP address

1

denotes an IP address internal to the monitored network

2

denotes an IP address external to the monitored network

The SiLK tools look for the address type mapping file in a standard location as detailed in the FILES section
below. To provide an alternate location, specify that location in the SILK ADDRESS TYPES environment
variable.

Creating the prefix map file that maps IPs to one of these labels is described in the MAPPING FILE section
below.

OPTIONS

The address type utility provides the following options to the indicated applications.

492 SiLK-3.23.1

The SiLK Reference Guide addrtype(3)

rwfilter Switches

--stype=ID

When ID is 0, pass the record if its source address is non-routable. When ID is 1, pass the record if its
source address is internal. When ID is 2, pass the record if its source address is external (i.e., routable
and not internal). When ID is 3, pass the record if its source address is not internal (non-routable or
external).

--dtype=ID

As --stype for the destination IP address.

rwcut, rwgroup, rwsort, rwstats, and rwuniq Switches

--fields=FIELDS

FIELDS refers to a list of fields to use for the operation. The address type utility makes two additional
fields, sType (alias 16) and dType (17) available for display, grouping, sorting, and counting using the
rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and rwuniq(1) tools:

sType,16

For the source IP address, prints 0 if the address is non-routable, 1 if it is internal, or 2 if it is
routable and external.

dType,17

as sType, except for the destination address

MAPPING FILE

To denote an address as non-routable, internal, or external at your site, you will need to create the
address types.pmap file and either install it in the appropriate location (see the FILES section below) or set
the SILK ADDRESS TYPES environment variable to the file’s location.

The rwpmapbuild(1) tool creates a prefix map file from a text file. A template for the text file is available in
$SILK PATH/share/silk/addrtype-templ.txt. The text file used to create address types.pmap must include
the following section to ensure that IPs are mapped to the integer values that the addrtype.so expects:

Numerical mappings of labels

label 0 non-routable

label 1 internal

label 2 external

Default to "external" for all un-defined ranges.

default external

The remainder of the file can list CIDR blocks and a label for each block:

RFC1918 space

10.0.0.0/8 non-routable

172.16.0.0/12 non-routable

192.168.0.0/16 non-routable

SiLK -3.23.1 493

addrtype(3) The SiLK Reference Guide

My IP space (CMU)

128.2.0.0/16 internal

Once the text file is saved to disk, use rwpmapbuild to create address types.pmap:

rwpmapbuild --input addresses.txt --output address_types.pmap

ENVIRONMENT

SILK ADDRESS TYPES

This environment variable allows the user to specify the address type mapping file to use. The value
may be a complete path or a file relative to SILK PATH. If the variable is not specified, the code looks
for a file named address types.pmap as specified in the FILES section below.

SILK PATH

This environment variable gives the root of the install tree. The SiLK applications check the di-
rectories $SILK PATH/share/silk and $SILK PATH/share for the address type mapping file, ad-
dress types.pmap.

FILES

The tools will look for the data file that maps IPs to labels in the following locations.
($SILK ADDRESS TYPES is the value of the SILK ADDRESS TYPES environment variable, if it is set.
$SILK PATH is value of the SILK PATH environment variable, if it is set. The use of /usr/local/ assumes
the application is installed in the /usr/local/bin/ directory.)

$SILK_ADDRESS_TYPES

$SILK_PATH/share/silk/address_types.pmap

$SILK_PATH/share/address_types.pmap

/usr/local/share/silk/address_types.pmap

/usr/local/share/address_types.pmap

SEE ALSO

rwcut(1), rwfilter(1), rwgroup(1), rwpmapbuild(1), rwpmapcat(1), rwsort(1), rwstats(1), rwu-
niq(1), pmapfilter(3), silk(7)

494 SiLK-3.23.1

The SiLK Reference Guide app-mismatch(3)

app-mismatch

SiLK plug-in to find services on unusual ports

SYNOPSIS

rwfilter --plugin=app-mismatch.so ...

DESCRIPTION

The app-mismatch plug-in adds a partitioning rule to rwfilter(1) that helps to find services running on
unusual port numbers.

Specifically, when the app-mismatch plug-in is loaded into rwfilter(1), rwfilter adds a partitioning rule
that passes a record when the record’s application field (the applabel(1) value determined by yaf(1)) is
set and the value does not match the value of either the source port or destination port.

The plug-in causes rwfilter to write each record that meets any of these criteria to the location specified by
the --fail-destination switch:

• the protocol field has a value other than 6 or 17 (TCP or UDP)

• the application field has the value 0, indicating that the application labeling feature was disabled or
that it was unable to determine the type of application

• the application field value is equal to either the sPort or the dPort field, indicating the type of traffic
appears to be consistent with what would be expected

The remaining records are either TCP or UDP records where the application field is set and its value is
different than that in the source and destination port. These records are written to the location specified by
the --pass-destination switch.

OPTIONS

The app-mismatch plug-in does not add any additional switches to rwfilter nor modify any field.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The app-mismatch.so plug-in must be explicitly loaded into rwfilter(1) using the --plugin switch. The
plug-in becomes active once it is loaded and no additional switches are required.

The following searches the SiLK Flow file data.rw for services that appear to be running on unusual or
non-typical ports. To get a quick summary of the data, the output from rwfilter is piped into rwuniq(1):

$ rwfilter --plugin=app-mismatch.so --print-stat --pass=- data.rw \

| rwuniq --fields=application,sPort,dPort | head

SiLK -3.23.1 495

app-mismatch(3) The SiLK Reference Guide

Files 1. Read 24494. Pass 890. Fail 23604.

appli|sPort|dPort| Records|

53|62579| 5355| 1|

53|55188| 5355| 1|

53|57807| 5355| 1|

53|54898| 5355| 1|

80| 1171| 591| 1|

53| 5355|50478| 1|

53|64981| 5355| 1|

139|52845| 445| 1|

53|52536| 5355| 1|

As seen in the output of the --print-stat switch from rwfilter, the plug-in failed 23,604 records. Some of
those records have protocols other than TCP and UDP, and some records have an application value of zero.
Adding additional rwfilter invocations provides a way to get count for each:

$ rwfilter --protocol=6,17 --print-stat --pass=- data.rw \

| rwfilter --application=1- --print-stat --pass=- - \

| rwfilter --plugin=app-mismatch.so --print-stat --pass=- - \

| rwuniq --fields=application,sPort,dPort --pager= | head

Files 1. Read 24494. Pass 24420. Fail 74.

Files 1. Read 24420. Pass 14228. Fail 10192.

Files 1. Read 14228. Pass 890. Fail 13338.

appli|sPort|dPort| Records|

53|62579| 5355| 1|

53|55188| 5355| 1|

53|57807| 5355| 1|

53|54898| 5355| 1|

80| 1171| 591| 1|

53| 5355|50478| 1|

53|64981| 5355| 1|

139|52845| 445| 1|

53|52536| 5355| 1|

All but 74 records were either TCP or UDP. For the TCP and UDP records, 10,192 had an application label
of 0. There were 13,338 records where the application label matched the port number. Change the final
rwfilter invocation to use --fail-destination to see those records:

$ rwfilter --protocol=6,17 --print-stat --pass=- data.rw \

| rwfilter --application=1- --print-stat --pass=- - \

| rwfilter --plugin=app-mismatch.so --print-stat --pass=- - \

| rwuniq --fields=application,sPort,dPort --pager= | head

Files 1. Read 24494. Pass 24420. Fail 74.

Files 1. Read 24420. Pass 14228. Fail 10192.

Files 1. Read 14228. Pass 890. Fail 13338.

appli|sPort|dPort| Records|

443| 443|53257| 1|

80|54123| 80| 2|

80|52322| 80| 1|

80|54749| 80| 1|

80| 80|52885| 3|

496 SiLK -3.23.1

The SiLK Reference Guide app-mismatch(3)

80| 80|54204| 1|

53| 53|55964| 1|

80|53497| 80| 1|

80|54122| 80| 2|

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for plug-ins, a SiLK
application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt to
find and open the app-mismatch.so plug-in. A typical invocation using this variable is:

env SILK_PLUGIN_DEBUG=1 rwfilter --plugin=app-mismatch.so --version

FILES

${SILK PATH}/lib64/silk/app-mismatch.so

${SILK PATH}/lib64/app-mismatch.so

${SILK PATH}/lib/silk/app-mismatch.so

${SILK PATH}/lib/app-mismatch.so

/usr/local/lib64/silk/app-mismatch.so

/usr/local/lib64/app-mismatch.so

/usr/local/lib/silk/app-mismatch.so

/usr/local/lib/app-mismatch.so

Possible locations for the plug-in.

SEE ALSO

rwfilter(1), rwuniq(1), silk(7), yaf(1), applabel(1)

SiLK-3.23.1 497

ccfilter(3) The SiLK Reference Guide

ccfilter

Mapping IPv4 addresses to country codes

SYNOPSIS

rwfilter [--scc=COUNTRY_CODES] [--dcc=COUNTRY_CODES] ...

rwcut --fields=scc,dcc ...

rwgroup --id-fields=scc,dcc ...

rwsort --fields=scc,dcc ...

rwstats --fields=scc,dcc ...

rwuniq --fields=scc,dcc ...

rwpmaplookup --country-codes ...

DESCRIPTION

The country code mapping file provides a mapping from an IPv4 address to two-letter, lowercase abbreviation
of the country where that IP address is located. The mapping file allows the country code value of IP
addresses on a SiLK Flow record to be partitioned (rwfilter(1)), displayed (rwcut(1)), sorted (rwsort(1)),
grouped (rwgroup(1)), and counted (rwstats(1) and rwuniq(1)).

The rwpmaplookup(1) tool, when invoked with the --country-codes switch, accepts textual input and
prints the country code for the IPs, which provide a way to print country codes for the IPs in SiLK IPsets
or bags.

The abbreviations used by the country code utility are the two-letter codes defined in ISO 3166 part 1. For
additional information, see https://www.iso.org/iso-3166-country-codes.html and https://en.wikipedia.org/
wiki/ISO 3166-1 alpha-2. Some IP addresses map to one of the following special codes:

--

N/A (e.g. private and experimental reserved addresses)

a1

anonymous proxy

a2

satellite provider

o1

other

498 SiLK-3.23.1

https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

The SiLK Reference Guide ccfilter(3)

The SiLK tools look for the country code mapping file in a standard location as detailed in the FILES section
below. To provide an alternate location, specify that location in the SILK COUNTRY CODES environment
variable.

Creating the Prefix Map (pmap) file that maps an IP to its country code requires the GeoIP2 Country or
free GeoLite2 database created by MaxMind, available from https://dev.maxmind.com/geoip/, as described
in the MAPPING FILE section below.

OPTIONS

Country code support makes available two additional keys to the --fields switch in the rwcut(1), rw-
group(1), rwsort(1), rwstats(1), and rwuniq(1) tools:

scc,18

Print, sort, and/or count the flow records by the country code designation of the source IP address

dcc,19

As scc for the destination address

In rwfilter(1), the following switches are supported:

--scc=COUNTRY CODE LIST

Pass the record if the country code of its source IP address is in the specified COUNTRY CODE LIST.

--dcc=COUNTRY CODE LIST

As --scc for the destination IP address.

MAPPING FILE

To map from IP addresses to country codes you will need to create the country codes.pmap data file and
install it in the appropriate location (see the FILES section below), or specify the path to the file in the
SILK COUNTRY CODES environment variable.

The prefix map data file is based on the GeoIP2 Country(R) or free GeoLite2 database created by MaxMind
and available from https://dev.maxmind.com/geoip/. We do not distribute the database nor the data file,
but we provide the rwgeoip2ccmap(1) tool that converts the GeoIP database to the format that ccfilter.so
expects.

MaxMind distributes multiple versions of their GeoIP Country database; one is a free evaluation copy. In
addition, they sell versions with higher accuracy, and they offer various subscription services.

ENVIRONMENT

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file that the SiLK tools
use. The value may be a complete path or a file relative to SILK PATH. If the variable is not specified,
the code looks for a file named country codes.pmap as specified in the FILES section below.

SiLK-3.23.1 499

https://dev.maxmind.com/geoip/
https://dev.maxmind.com/geoip/

ccfilter(3) The SiLK Reference Guide

SILK PATH

This environment variable gives the root of the install tree. The SiLK applications check the di-
rectories $SILK PATH/share/silk and $SILK PATH/share for the country code mapping file, coun-
try codes.pmap.

FILES

The tools will look for the data file that maps IPs to country codes in the following locations.
($SILK COUNTRY CODES is the value of the SILK COUNTRY CODES environment variable, if it is
set. $SILK PATH is value of the SILK PATH environment variable, if it is set. The use of /usr/local/
assumes the application is installed in the /usr/local/bin/ directory.)

$SILK_COUNTRY_CODES

$SILK_PATH/share/silk/country_codes.pmap

$SILK_PATH/share/country_codes.pmap

/usr/local/share/silk/country_codes.pmap

/usr/local/share/country_codes.pmap

SEE ALSO

rwcut(1), rwfilter(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), rwgeoip2ccmap(1), rw-
pmaplookup(1), silk(7)

500 SiLK-3.23.1

The SiLK Reference Guide conficker-c(3)

conficker-c

SiLK plug-in to detect traffic matching the Conficker C worm

SYNOPSIS

rwfilter --plugin=conficker-c.so [--conficker-seed=SEED]

[--s-conficker] [--d-conficker] [--a-conficker] ...

rwcut --plugin=conficker-c.so [--conficker-seed=SEED]

[--fields=...,sconficker,dconficker,...] ...

rwgroup --plugin=conficker-c.so [--conficker-seed=SEED]

[--fields=...,sconficker,dconficker,...] ...

rwsort --plugin=conficker-c.so [--conficker-seed=SEED]

[--fields=...,sconficker,dconficker,...] ...

rwstats --plugin=conficker-c.so [--conficker-seed=SEED]

[--fields=...,sconficker,dconficker,...] ...

rwuniq --plugin=conficker-c.so [--conficker-seed=SEED]

[--fields=...,sconficker,dconficker,...] ...

DESCRIPTION

The conficker-c plug-in was written in March 2009 to detect traffic that matches the signature of the .C
variant of the Conficker worm.

The .C variant of the Conficker worm (https://www.us-cert.gov/ncas/alerts/TA09-088A) contains a peer-
to-peer scanning thread which generates a large amount of UDP high-port to high-port packets. SRI Inter-
national provides a detailed analysis report on the worm’s behavior which describes features of the peer-to-
peer network traffic. (http://www.csl.sri.com/users/vinod/papers/Conficker/addendumC/index.html) This
report hints at ”...a unique mapping from IP address to the two TCP and UDP listen ports in each host.”

This type of behavior is also ideally suited for flow analysis, and the conficker-c plug-in emulates the same
functionality. When loaded into either rwfilter(1) or rwcut(1) using the --plugin switch, the plug-in adds
fields for detecting and filtering Conficker.C traffic with a limited number of false positives.

The conficker-c plug-in identifies the targets of Conficker.C scanning. When a Conficker.C infected machine
starts scanning for other peers, it targets a somewhat random port on the destination host according to a
function f() where

dPort = f (dIP, seed)

sPort = f (sIP, seed)

and the seed is computed from the function g():

seed = g (start_time)

SiLK-3.23.1 501

https://www.us-cert.gov/ncas/alerts/TA09-088A
http://www.csl.sri.com/users/vinod/papers/Conficker/addendumC/index.html

conficker-c(3) The SiLK Reference Guide

The plug-in implements that function and can check whether the computed source or destination port
matches the observed value of the port. If the source or destination matches, that indicates that the
destination or source, respectively, may be infected.

To compute the seed argument to the function, the plug-in computes the number of weeks between 1970-
Jan-05 and the flow record’s start time. When the flow’s start time is within a few minutes of the week
boundary, the plug-in computes ports using both possible values for the seed. The plug-in provides the
--conficker-seed command line switch to allow selection of a different seed.

The plug-in ignores any non-UDP/non-TCP traffic.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

The conficker-c plug-in provides the following options to the indicated applications.

rwfilter Switches

The conficker-c plug-in adds the following switches to rwfilter(1). You may check for Conficker.C traffic
on a particular side of the flow, or for both sides:

--s-conficker

Pass the flow record if the source IP and port match those targeted by Conficker.C (indicating that
the destination IP may be infected).

--d-conficker

Pass the flow record if the destination IP and port match those targeted by Conficker.C (indicating
that the source IP may be infected).

--a-conficker

Pass the flow record if either the source IP and port or the destination IP and port match those targeted
by Conficker.C.

--conficker-seed=SEED

Use the value SEED to seed Conficker.C checker. Typically the flow’s start time is used as the basis
for the seed.

rwcut, rwgroup, rwsort, rwstats, and rwuniq Switches

The conficker-c plug-in augments the switches of rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and
rwuniq(1) as follows:

--fields=FIELDS

FIELDS refers to a list of fields to use for the operation. The conficker-c plug-in adds the following
fields:

502 SiLK-3.23.1

The SiLK Reference Guide conficker-c(3)

sconficker

Show whether the source IP and source port combination match the values targeted by Con-
ficker.C, which indicate that the destination IP may be infected. This field contains a 1 when
values match and a 0 when they do not.

dconficker

Show whether the destination IP and destination port combination match the values targeted by
Conficker.C, which indicate that the source IP may be infected. This field contains a 1 when
values match and a 0 when they do not.

--conficker-seed=SEED

Use the value SEED to seed Conficker.C checker. Typically the flow’s start time is used as the basis
for the seed.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

This example uses contrived data to test that the plug-in works. Values that are known to match the worm
are piped into rwtuc(1) to create a SiLK Flow record. That record is piped into rwfilter, which matches
the record. That result is piped into rwcut to display the result:

$ echo ’17|10.10.10.10|23332|192.168.192.168|16514|’ \

| rwtuc --fields=protocol,sip,sport,dip,dport \

| rwfilter --plugin=conficker.so --conficker-seed=8888 \

--s-conficker --protocol=17 --print-volume \

--pass=stdout stdin \

| rwcut --plugin=conficker.so --conficker-seed=8888 \

--fields=sip,sport,sconficker,dip,dport,dconficker \

--ipv6-policy=ignore

| Recs | Packets | Bytes | Files |

Total| 1| 1| 1| 1|

Pass | 1| 1| 1| |

Fail | 0| 0| 0| |

sIP|sPort|scon| dIP|dPort|dcon|

10.10.10.10|23332| 1|192.168.192.168|16514| 1|

To find infected hosts on your network, you typically want to look at outgoing traffic and find instances
where source hosts are targeting conficker destination IP and port pairs, so you would use the --d-conficker
switch on rwfilter.

To further refine the query and eliminate most false positives, it is useful to eliminate common service ports
(the packets from a scanner have sport=ephemeral, dport=conficker-chosen):

$ rwfilter --plugin=conficker-c.so --d-conficker \

--sport=1024- --dport=1024- \

--start-date=2009/05/01 --end-date=2009/05/31 --type=out \

--pass=stdout \

| rwuniq --fields=sip --flows=10 --sort-output

SiLK-3.23.1 503

conficker-c(3) The SiLK Reference Guide

There may be false positives from VPN traffic. Depending on your network, you might want to filter traffic
on UDP 500 or 10000.

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for plug-ins, a SiLK
application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt to
find and open the conficker-c.so plug-in. A typical invocation using this variable is:

env SILK_PLUGIN_DEBUG=1 rwcut --plugin=conficker-c.so --version

FILES

${SILK PATH}/lib64/silk/conficker-c.so

${SILK PATH}/lib64/conficker-c.so

${SILK PATH}/lib/silk/conficker-c.so

${SILK PATH}/lib/conficker-c.so

/usr/local/lib64/silk/conficker-c.so

/usr/local/lib64/conficker-c.so

/usr/local/lib/silk/conficker-c.so

/usr/local/lib/conficker-c.so

Possible locations for the plug-in.

SEE ALSO

rwfilter(1), rwcut(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), rwtuc(1), silk(7)

504 SiLK-3.23.1

The SiLK Reference Guide cutmatch(3)

cutmatch

Display value in next-hop field written by rwmatch

SYNOPSIS

rwcut --plugin=cutmatch.so --fields=...,match,... ...

DESCRIPTION

The cutmatch plug-in creates a field in rwcut(1) that provides a more user-friendly representation of the
match parameter value that rwmatch(1) writes into a SiLK Flow record’s next hop IP field.

The cutmatch plug-in defines a match field that displays the direction of the flow (-> represents a query
and <- a response) and the numeric match ID.

OPTIONS

The cutmatch plug-in modifies the following switch of rwcut(1):

--fields=FIELDS

FIELDS refers to a list of fields to print. The cutmatch plug-in adds the following field:

match

Print the direction of the flow (-> represents a query and <- a response) and the numeric match
ID

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Given two files containing unidirectional flow records, use rwsort(1) and rwmatch(1) to create the file
matched.rw where a query and its response have been labeled with a unique value in the next-hop IP field.
See the rwmatch manual page for more information.

$ rwsort --fields=1,4,2,3,5,stime incoming.rw > incoming-query.rw

$ rwsort --fields=2,3,1,4,5,stime outgoing.rw > outgoing-response.rw

$ rwmatch --relate=1,2 --relate=4,3 --relate=2,1 --relate=3,4 \

--relate=5,5 incoming-query.rw outgoing-response.rw matched.rw

To use the plug-in, you must explicitly load it into rwcut(1) by specifying the --plugin switch. You can
then include match in the list of --fields to print:

$ rwcut --plugin=cutmatch.so --num-rec=8 \

--fields=sIP,sPort,match,dIP,dPort,type matched.rw

sIP|sPort| <->Match#| dIP|dPort| type|

SiLK -3.23.1 505

cutmatch(3) The SiLK Reference Guide

10.4.52.235|29631|-> 1|192.168.233.171| 80| inweb|

192.168.233.171| 80|<- 1| 10.4.52.235|29631| outweb|

10.9.77.117|29906|-> 2| 192.168.184.65| 80| inweb|

192.168.184.65| 80|<- 2| 10.9.77.117|29906| outweb|

10.14.110.214|29989|-> 3| 192.168.249.96| 80| inweb|

192.168.249.96| 80|<- 3| 10.14.110.214|29989| outweb|

10.18.66.79|29660|-> 4| 192.168.254.69| 80| inweb|

192.168.254.69| 80|<- 4| 10.18.66.79|29660| outweb|

This shows external hosts querying the web server (the Match column contains ->) and the web server’s
responses (<-).

Using the sIP and dIP fields may be confusing when the file you are examining contains both incoming and
outgoing flow records. To make the output from rwmatch more clear, consider using the int-ext-fields(3)
plug-in as well. That plug-in allows you to display the external IPs in one column and the internal IPs in a
another column. See its manual page for additional information.

$ export INCOMING_FLOWTYPES=all/in,all/inweb

$ export OUTGOING_FLOWTYPES=all/out,all/outweb

$ rwcut --plugin=cutmatch.so --plugin=int-ext-fields.so --num-rec=8 \

--fields=ext-ip,ext-port,match,int-ip,int-port,proto matched.rw

ext-ip|ext-p| <->Match#| int-ip|int-p| type|

10.4.52.235|29631|-> 1|192.168.233.171| 80| inweb|

10.4.52.235|29631|<- 1|192.168.233.171| 80| outweb|

10.9.77.117|29906|-> 2| 192.168.184.65| 80| inweb|

10.9.77.117|29906|<- 2| 192.168.184.65| 80| outweb|

10.14.110.214|29989|-> 3| 192.168.249.96| 80| inweb|

10.14.110.214|29989|<- 3| 192.168.249.96| 80| outweb|

10.18.66.79|29660|-> 4| 192.168.254.69| 80| inweb|

10.18.66.79|29660|<- 4| 192.168.254.69| 80| outweb|

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for plug-ins, a SiLK
application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt to
find and open the cutmatch.so plug-in. A typical invocation using this variable is:

env SILK_PLUGIN_DEBUG=1 rwcut --plugin=cutmatch.so --version

FILES

${SILK PATH}/lib64/silk/cutmatch.so

${SILK PATH}/lib64/cutmatch.so

${SILK PATH}/lib/silk/cutmatch.so

506 SiLK-3.23.1

The SiLK Reference Guide cutmatch(3)

${SILK PATH}/lib/cutmatch.so

/usr/local/lib64/silk/cutmatch.so

/usr/local/lib64/cutmatch.so

/usr/local/lib/silk/cutmatch.so

/usr/local/lib/cutmatch.so

Possible locations for the plug-in.

SEE ALSO

rwcut(1), rwmatch(1), rwsort(1), int-ext-fields(3), silk(7)

SiLK-3.23.1 507

flowkey(3) The SiLK Reference Guide

flowkey

SiLK plug-in providing YAF flow key filter and field

SYNOPSIS

rwfilter --plugin=flowkey.so [--flow-key=VALUE_LIST]

rwcut --plugin=flowkey.so --fields=FIELDS ...

rwgroup --plugin=flowkey.so --fields=FIELDS ...

rwsort --plugin=flowkey.so --fields=FIELDS ...

rwstats --plugin=flowkey.so --fields=FIELDS --values=FIELDS ...

rwuniq --plugin=flowkey.so --fields=FIELDS --values=FIELDS ...

DESCRIPTION

The YAF flow key hash is a numeric value that the yaf(1) IPFIX generator computes for every flow record.
The flow key hash is computed from the IP protocol, the source and destination IP addresses, the source
and destination ports, and the vlan identifier. The getFlowKeyHash(1) tool in YAF distribution reads
IPFIX data and computes the flow key hash for each flow record.

The flowkey plug-in uses the same formula as YAF to compute the flow key hash for a record. The flow key
hash may be printed by rwcut(1), may be used as part of the sorting key in rwsort(1), may be used as a
grouping key in rwgroup(1), rwstats(1), and rwuniq(1), and may be used as a partitioning criterion in
rwfilter(1).

Note that the flow key hash computed by this plug-in may be different than the value computed by YAF:

• When SiLK processes a bi-directional IPFIX record (a bi-flow), it splits the record into two uni-
directional records and reverses the source and destination fields when it stores the reverse record. The
flow key hash for this reverse record is different than that of the forward record. The getFlowKeyHash
tool has a --reverse switch to duplicate this behavior.

• YAF computes the flow key hash using the vlan identifier, but SiLK ignores the vlan ID unless it is
explicitly instructed to use it. When SiLK is told to the use the vlan ID, the vlan ID is stored in the
the in field of the SiLK Flow record. That field normally holds the SNMP ingress value.

(Instructing SiLK to use the vlan ID depends on whether one is using rwipfix2silk(1), rwflow-
pack(8), or flowcap(8). For rwipfix2silk, run the tool with the --interface-values=vlan switch.
For rwflowpack and flowcap, edit the sensor.conf(5) file and specify interface-values vlan in
the probe block where the flow is collected.)

• Even when SiLK has been told to store the vlan identifier in the field normally used for the ingress
interface, rwflowpack typically does not store that field in the files it creates in the data repository.
When reading these files, the in field is set to 0. To tell rwflowpack to store the field, run it with the
command line switch --pack-interfaces. To tell getFlowKeyHash to ignore the value, specify the
--snmp switch.

The flowkey plug-in must be explicitly loaded into an application via the --plugin switch.

508 SiLK-3.23.1

The SiLK Reference Guide flowkey(3)

OPTIONS

The flowkey plug-in provides the following options to the indicated applications.

rwfilter Switches

When the flowkey plug-in has been loaded, the following switch is added to rwfilter. To pass the filter,
the record must pass the test implied by the switch.

--flowkey=VALUE LIST

Check whether the flow key hash of the flow record matches one of the values in VALUE LIST, where
VALUE LIST is a comma-separated list of values expressed as either decimal or hexadecimal numbers.
Hexadecimal numbers must be preceded by 0x.

rwcut, rwgroup, rwsort, rwstats, and rwuniq Switch

--fields=FIELDS

FIELDS refers to a list of fields to use for the operation. The flowkey plug-in adds the following
field for display, sorting, and grouping using the rwcut(1), rwgroup(1), rwsort(1), rwstats(1),
and rwuniq(1) tools:

flowkey

Print, sort by, or group by the flow key hash.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The file vlan.pcap is a packet capture file created by tcpdump(1). The packets in the file include vlan
identifiers.

In the following command, yaf(1) creates IPFIX flow records from the PCAP file, rwipfix2silk(1)) converts
the IPFIX records to SiLK Flow records, and rwcut(1) prints the SiLK records as text. Note the use of
the --interface-values=vlan switch on rwipfix2silk, and see how the --plugin switch is used on rwcut.
The flowkey field contains the flow key hash.

$ yaf < vlan.pcap \

| rwipfix2silk --interface-values=vlan \

| rwcut --plugin=flowkey.so --fields=1-5,in,flowkey,stime \

--ipv6=ignore --timestamp=epoch --num-rec=9

sIP| dIP|sPort|dPort|pro| in| flowkey| sTime|

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270|1252941224.465|

10.0.0.4| 10.128.87.50| 80|32942| 6| 2| 15775704|1252941224.465|

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270|1252941224.505|

10.128.34.93| 10.0.0.3|41443|46612| 6| 2|2705585162|1252941224.505|

10.0.0.3| 10.128.34.93|46612|41443| 6| 2|3065308157|1252941224.505|

10.128.34.93| 10.0.0.3|41442| 21| 6| 2|2705474059|1252941224.465|

10.0.0.3| 10.128.34.93| 21|41442| 6| 2| 11920380|1252941224.465|

SiLK -3.23.1 509

flowkey(3) The SiLK Reference Guide

10.128.44.78| 10.0.0.4|48081| 80| 6| 2|3144764506|1252941276.278|

10.0.0.4| 10.128.44.78| 80|48081| 6| 2| 15792091|1252941276.279|

Here is the output from getFlowKeyHash(1) when it is run with no arguments. The hash column is the
flow key hash and the ms column is the flow’s time stamp.

$ yaf < vlan.pcap \

| getFlowKeyHash \

| head -10

sIP| dIP|sPort|dPort|pro| vlan| hash| ms

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270| 1252941224465

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270| 1252941224505

10.128.34.93| 10.0.0.3|41443|46612| 6| 2|2705585162| 1252941224505

10.128.34.93| 10.0.0.3|41442| 21| 6| 2|2705474059| 1252941224465

10.128.44.78| 10.0.0.4|48081| 80| 6| 2|3144764506| 1252941276278

10.128.44.78| 10.0.0.4|48081| 80| 6| 2|3144764506| 1252941276279

10.128.30.43| 10.0.0.4|20803| 80| 6| 2|1373863487| 1252941276278

10.128.30.43| 10.0.0.4|20803| 80| 6| 2|1373863487| 1252941276280

10.128.67.47| 10.0.0.4|10912| 80| 6| 2| 704652091| 1252941276278

The rwcut output has two records for each bi-flow record in the getFlowKeyHash output. The hash
values match for every-other record.

Adding the --reverse switch to getFlowKeyHash produces the following:

$ yaf < vlan.pcap \

| getFlowKeyHash --reverse \

| head -10

sIP| dIP|sPort|dPort|pro| vlan| hash| ms

10.128.87.50| 10.0.0.4|32942| 80| 6| 2| 15775704| 1252941224465

10.128.87.50| 10.0.0.4|32942| 80| 6| 2| 15775704| 1252941224505

10.128.34.93| 10.0.0.3|41443|46612| 6| 2|3065308157| 1252941224505

10.128.34.93| 10.0.0.3|41442| 21| 6| 2| 11920380| 1252941224465

10.128.44.78| 10.0.0.4|48081| 80| 6| 2| 15792091| 1252941276278

10.128.44.78| 10.0.0.4|48081| 80| 6| 2| 15792091| 1252941276279

10.128.30.43| 10.0.0.4|20803| 80| 6| 2| 15740716| 1252941276278

10.128.30.43| 10.0.0.4|20803| 80| 6| 2| 15740716| 1252941276280

10.128.67.47| 10.0.0.4|10912| 80| 6| 2| 15731147| 1252941276278

The values for every-other flow record match nearly match, but things appear to get out of sync.

A different approach is to run yaf with the --uniflow switch:

$ yaf --uniflow < vlan.pcap \

| getFlowKeyHash \

| head -10

sIP| dIP|sPort|dPort|pro| vlan| hash| ms

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270| 1252941224465

10.0.0.4| 10.128.87.50| 80|32942| 6| 2| 15775704| 1252941224465

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270| 1252941224505

10.128.34.93| 10.0.0.3|41443|46612| 6| 2|2705585162| 1252941224505

510 SiLK -3.23.1

The SiLK Reference Guide flowkey(3)

10.0.0.3| 10.128.34.93|46612|41443| 6| 2|3065308157| 1252941224505

10.128.34.93| 10.0.0.3|41442| 21| 6| 2|2705474059| 1252941224465

10.0.0.3| 10.128.34.93| 21|41442| 6| 2| 11920380| 1252941224465

10.128.44.78| 10.0.0.4|48081| 80| 6| 2|3144764506| 1252941276278

10.0.0.4| 10.128.44.78| 80|48081| 6| 2| 15792091| 1252941276279

This result exactly matches that from rwcut.

When rwipfix2silk does not include the --interface-values=vlan switch, the result is:

$ yaf < vlan.pcap \

| rwipfix2silk \

| rwcut --plugin=flowkey.so --fields=1-5,in,flowkey,stime \

--ipv6=ignore --timestamp=epoch --num-rec=9

sIP| dIP|sPort|dPort|pro| in| flowkey| sTime|

10.128.87.50| 10.0.0.4|32942| 80| 6| 0|2150512422|1252941224.465|

10.0.0.4| 10.128.87.50| 80|32942| 6| 0| 13678552|1252941224.465|

10.128.87.50| 10.0.0.4|32942| 80| 6| 0|2150512422|1252941224.505|

10.128.34.93| 10.0.0.3|41443|46612| 6| 0|2707682314|1252941224.505|

10.0.0.3| 10.128.34.93|46612|41443| 6| 0|3063211005|1252941224.505|

To get the same result from getFlowKeyHash, use the --snmp switch:

$ yaf --uniflow < vlan.pcap \

| getFlowKeyHash --snmp \

| head -6

sIP| dIP|sPort|dPort|pro| vlan| hash| ms

10.128.87.50| 10.0.0.4|32942| 80| 6| 0|2150512422| 1252941224465

10.0.0.4| 10.128.87.50| 80|32942| 6| 0| 13678552| 1252941224465

10.128.87.50| 10.0.0.4|32942| 80| 6| 0|2150512422| 1252941224505

10.128.34.93| 10.0.0.3|41443|46612| 6| 0|2707682314| 1252941224505

10.0.0.3| 10.128.34.93|46612|41443| 6| 0|3063211005| 1252941224505

To find SiLK flow records that have a particular flow key hash, use rwfilter(1):

$ yaf < vlan.pcap \

| rwipfix2silk --interface-values=vlan \

| rwfilter --plugin=flowkey.so --flowkey=2148415270,15775704 \

--pass=stdout - \

| rwcut --plugin=flowkey.so --fields=1-5,in,flowkey,stime \

--ipv6=ignore --timestamp=epoch --num-rec=9

sIP| dIP|sPort|dPort|pro| in| flowkey| sTime|

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270|1252941224.465|

10.0.0.4| 10.128.87.50| 80|32942| 6| 2| 15775704|1252941224.465|

10.128.87.50| 10.0.0.4|32942| 80| 6| 2|2148415270|1252941224.505|

When using rwfilter, it is best to specify the flow hash key for both the forward and reverse records.

Use rwuniq(1) to check if records with the same flow key hash appear more than twice.

SiLK -3.23.1 511

flowkey(3) The SiLK Reference Guide

$ yaf < vlan.pcap \

| rwipfix2silk --interface-values=vlan \

| rwuniq --plugin=flowkey.so --fields=flowkey --flows=3-

flowkey| Records|

Since no flow records are printed, the maximum number of times a flow key hash appears is 2.

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for plug-ins, a SiLK
application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt to
find and open the flowkey.so plug-in. A typical invocation using this variable is:

env SILK_PLUGIN_DEBUG=1 rwcut --plugin=flowkey.so --version

FILES

${SILK PATH}/lib64/silk/flowkey.so

${SILK PATH}/lib64/flowkey.so

${SILK PATH}/lib/silk/flowkey.so

${SILK PATH}/lib/flowkey.so

/usr/local/lib64/silk/flowkey.so

/usr/local/lib64/flowkey.so

/usr/local/lib/silk/flowkey.so

/usr/local/lib/flowkey.so

Possible locations for the plug-in.

SEE ALSO

rwcut(1), rwfilter(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), rwipfix2silk(1), rwflow-
pack(8), flowcap(8), sensor.conf(5), silk(7), yaf(1), getFlowKeyHash(1), tcpdump(1)

NOTES

The flowkey plug-in was added in SiLK 3.15.0.

512 SiLK-3.23.1

The SiLK Reference Guide flowrate(3)

flowrate

SiLK plug-in providing payload and rate filters and fields

SYNOPSIS

rwfilter --plugin=flowrate.so [--payload-bytes=INTEGER_RANGE]

[--payload-rate=DECIMAL_RANGE]

[--bytes-per-second=DECIMAL_RANGE]

[--packets-per-second=DECIMAL_RANGE]

[--flowrate-zero-duration=MICROSECONDS] ...

rwcut --plugin=flowrate.so --fields=FIELDS

[--flowrate-zero-duration=MICROSECONDS] ...

rwgroup --plugin=flowrate.so --fields=FIELDS

[--flowrate-zero-duration=MICROSECONDS] ...

rwsort --plugin=flowrate.so --fields=FIELDS

[--flowrate-zero-duration=MICROSECONDS] ...

rwstats --plugin=flowrate.so --fields=FIELDS --values=FIELDS

[--flowrate-zero-duration=MICROSECONDS] ...

rwuniq --plugin=flowrate.so --fields=FIELDS --values=FIELDS

[--flowrate-zero-duration=MICROSECONDS] ...

DESCRIPTION

When loaded into rwfilter(1), the flowrate plug-in provides switches that can partition flows based on
bytes of payload and/or on the rates of data transfer.

For rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and rwuniq(1), the flowrate plug-in provides fields
that will print, sort flows by, and group flows by the bytes of payload, bytes-per-packet, bytes-per-second,
packets-per-second, and bytes of payload per second. The flowrate plug-in also provides aggregate value
fields in rwstats and rwuniq.

The payload byte count is determined by subtracting from the total byte count in the flow the bytes of
overhead used by the packet headers. The payload calculation assumes minimal packet headers---that is,
there are no options in the packets. For TCP, the switch assumes there are no TCP timestamps in the packets.
Thus, the calculated payload will be the maximum possible bytes of payload. If the packet-overhead is larger
than the reported number of bytes, the value is zero.

The various flow-rate quantities are determined by dividing the payload byte count, packet count, or byte
count by the duration of the flow, giving the average rate across the flow. Flow records whose duration is
zero create a problem when computing a flow-rate.

If a flow record’s reported duration is zero, the count is divided by a value which defaults to 400 microseconds
and may be specified by the --flowrate-zero-duration switch. The switch accepts a minimum of 1 mi-
crosecond. The smallest (non-zero) duration SiLK flow records support is 1 millisecond (1000 microseconds).

SiLK-3.23.1 513

flowrate(3) The SiLK Reference Guide

Prior to SiLK 3.16.0, the flowrate plug-in used a duration of 1 second (1000000 microseconds) when the
reported duration was zero except when the rate was used as an aggregate value field in rwstats or rwuniq.

The flowrate plug-in must be explicitly loaded into an application via the --plugin switch. The reason for
this is due to name clashes with existing switches and fields. For example, adding the --packets-per-second
switch to rwfilter means any short-cutting of the current --packets switch will fail.

OPTIONS

The flowrate plug-in provides the following options to the indicated applications.

Common Switches

The following switch is available whenever the flowrate plug-in has been loaded into a supported application:

--flowrate-zero-duration=MICROSECONDS

When computing a rate and a flow record has a duration of zero, assume the duration is actually
MICROSECONDS microseconds. The MICROSECONDS value must be one or greater. If this switch
is not specified, a duration of 400 microseconds is used. The smallest non-zero duration SiLK flow
records support is 1 millisecond (1000 microseconds). Since SiLK 3.16.0.

rwfilter Switches

When the flowrate plug-in has been loaded, the following set of partitioning switches are added to rwfilter.
To pass the filter, the record must pass the test implied by each switch. The form of the argument to each
switch is described below. The partitioning switches are:

--payload-bytes=INTEGER RANGE

Check whether the payload byte count is within INTEGER RANGE.

--payload-rate=DECIMAL RANGE

Check whether the average number of payload bytes seen per second in the flow is within DECI-
MAL RANGE.

--packets-per-second=DECIMAL RANGE

Check whether the average number of packets per second in the flow is within DECIMAL RANGE.

--bytes-per-second=DECIMAL RANGE

Check whether the average number of bytes per second in the flow is within DECIMAL RANGE.

An INTEGER RANGE is a range of two non-negative integers, and a DECIMAL RANGE is a range of two
non-negative decimal values with accuracy up to 0.0001. The ranges are specified as two values separated by
a hyphen, MIN -MAX ; for example 1-500 or 5.0-10.031. If a single value is given (e.g., 3.14), the range
consists of that single value. The upper limit of the range may be omitted, such as 1-, in which case the
upper limit is set to the maximum possible value.

514 SiLK-3.23.1

The SiLK Reference Guide flowrate(3)

rwcut, rwgroup, rwsort, rwstats, and rwuniq Switches

--fields=FIELDS

FIELDS refers to a list of fields to use for the operation. The flowrate plug-in adds the following
fields for display, sorting, and grouping using the rwcut(1), rwgroup(1), rwsort(1), rwstats(1),
and rwuniq(1) tools:

payload-bytes

Print, sort by, or group by the number of bytes of payload.

payload-rate

Print, sort by, or group by the bytes of payload seen per second.

pckts/sec

Print, sort by, or group by the packets seen per second.

bytes/sec

Print, sort by, or group by the bytes seen per second.

bytes/packet

Print, sort by, or group by the average number of bytes contained in each packet.

--values=AGGREGATES

The flowrate plug-in adds the following aggregate value fields to rwstats and rwuniq. AGGRE-
GATES refers to a list of values to compute for each bin. To compute these values, flowrate maintains
separate sums for the numerator and denominator while reading the records, then flowrate computes
the ratio when the output is generated.

payload-bytes

Compute the approximate bytes of payload for records in this bin.

payload-rate

Compute the average bytes of payload seen per second for records in this bin.

pckts/sec

Compute the average packets seen per second for records in this bin,

bytes/sec

Compute the average bytes seen per second for records in this bin.

bytes/packet

Compute the average number of bytes contained in each packet for records in this bin.

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for plug-ins, a SiLK
application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt to
find and open the flowrate.so plug-in. A typical invocation using this variable is:

env SILK_PLUGIN_DEBUG=1 rwcut --plugin=flowrate.so --version

SiLK-3.23.1 515

flowrate(3) The SiLK Reference Guide

FILES

${SILK PATH}/lib64/silk/flowrate.so

${SILK PATH}/lib64/flowrate.so

${SILK PATH}/lib/silk/flowrate.so

${SILK PATH}/lib/flowrate.so

/usr/local/lib64/silk/flowrate.so

/usr/local/lib64/flowrate.so

/usr/local/lib/silk/flowrate.so

/usr/local/lib/flowrate.so

Possible locations for the plug-in.

SEE ALSO

rwcut(1), rwfilter(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), silk(7)

516 SiLK-3.23.1

The SiLK Reference Guide int-ext-fields(3)

int-ext-fields

SiLK plug-in providing internal/external ip/port fields

SYNOPSIS

rwcut --plugin=int-ext-fields.so --fields=FIELDS ...

rwgroup --plugin=int-ext-fields.so --fields=FIELDS ...

rwsort --plugin=int-ext-fields.so --fields=FIELDS ...

rwstats --plugin=int-ext-fields.so --fields=FIELDS ...

rwuniq --plugin=int-ext-fields.so --fields=FIELDS ...

DESCRIPTION

The int-ext-fields plug-in adds four potential fields to rwcut(1), rwgroup(1), rwsort(1), rwstats(1),
and rwuniq(1). These fields contain the internal IP (int-ip), the external IP (ext-ip), the internal port
(int-port, and the external port (ext-port). To use these fields, specify their names in the --fields switch.

These fields can be useful when a file contains flow records that were collected for multiple directions---for
example, some flow records are incoming and some are outgoing.

For these fields to be available, the user must specify the list of flowtypes (i.e., class/type pairs) that are
considered incoming and the list that are considered outgoing. The user must specify the flowtypes because
SiLK has no innate sense of the direction of a flow record. Although ”in” and ”out” are common types,
SiLK does not recognize that these represent flows going in opposite directions.

If a record has a flowtype that is not in the list of incoming and output flowtypes, the application uses a
value of 0 for that field.

The user specifies the flowtypes by giving a comma-separated list of class/type pairs using the --incoming-
flowtypes and --outgoing-flowtypes switches on the application’s command line. When the switch is
not provided, the application checks the INCOMING FLOWTYPES and OUTGOING FLOWTYPES en-
vironment variables. If the list of incoming and/or outgoing flowtypes are not specified, the fields are not
available.

For the packlogic-twoway(3) site, one would set the following environment variables:

INCOMING_FLOWTYPES=all/in,all/inweb,all/inicmp,all/innull

OUTGOING_FLOWTYPES=all/out,all/outweb,all/outicmp,all/outnull

The parsing of flowtypes requires the silk.conf(5) site configuration file. You may need to set the
SILK CONFIG FILE environment variable or specify --site-config-file on the command line prior to load-
ing the plug-in.

SiLK-3.23.1 517

int-ext-fields(3) The SiLK Reference Guide

OPTIONS

The int-ext-fields plug-in provides the following options to rwcut, rwgroup, rwsort, rwstats, and rwu-
niq.

--fields=FIELDS

FIELDS refers to a list of fields to use for the operation. The int-ext-fields plug-in adds the following
fields for display, sorting, and grouping using the rwcut(1), rwgroup(1), rwsort(1), rwstats(1),
and rwuniq(1) tools:

int-ip

Print, sort by, or group by the internal IP address. The internal IP is the destination address for
incoming flowtypes and the source address for outgoing flowtypes. When a SiLK Flow record’s
flowtype is not listed in either the incoming or outgoing flowtypes list, the int-ip field is 0.

ext-ip

Print, sort by, or group by the external IP address. The external IP is the source address for
incoming flowtypes and the destination address for outgoing flowtypes. When a SiLK Flow
record’s flowtype is not listed in either the incoming or outgoing flowtypes list, the ext-ip field is
0.

int-port

Print, sort by, or group by the internal port. This value is 0 for ICMP flow records, and when
the SiLK Flow record’s flowtype is not listed in either the incoming or outgoing flowtypes list.

ext-port

Print, sort by, or group by the external port. This value is 0 for ICMP flow records, and when
the SiLK Flow record’s flowtype is not listed in either the incoming or outgoing flowtypes list.

--incoming-flowtypes=CLASS/TYPE [,CLASS/TYPE ...]

Names the flowtypes that should be considered incoming. The list of flowtypes should be specified
as a comma-separated list of class/type pairs. This switch overrides the flowtype list specified in the
INCOMING FLOWTYPES environment variable. If this switch is not provided and the INCOM-
ING FLOWTYPES environment variable is not set, the int-ext-fields plug-in will not define any
fields.

--outgoing-flowtypes=CLASS/TYPE [,CLASS/TYPE ...]

Similar to --incoming-flowtypes, except it names the flowtypes that should be considered outgoing,
and it overrides the OUTGOING FLOWTYPES environment variable.

EXAMPLE

In the following example, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Consider the file data.rw that contains data going in different directions:

$ rwcut --fields=sip,sport,dip,dport,proto,class,type data.rw

sIP|sPort| dIP|dPort|pro|cla| type|

10.239.86.13|29897|192.168.228.153| 25| 6|all| in|

192.168.228.153| 25| 10.239.86.13|29897| 6|all| out|

518 SiLK -3.23.1

The SiLK Reference Guide int-ext-fields(3)

192.168.208.237|29416| 10.233.108.250| 25| 6|all| out|

10.233.108.250| 25|192.168.208.237|29416| 6|all| in|

192.168.255.94|29301| 10.198.18.193| 80| 6|all| outweb|

10.198.18.193| 80| 192.168.255.94|29301| 6|all| inweb|

10.202.7.122|29438|192.168.248.202| 25| 6|all| in|

192.168.248.202| 25| 10.202.7.122|29438| 6|all| out|

10.255.142.104|26731|192.168.236.220| 25| 6|all| in|

192.168.236.220| 25| 10.255.142.104|26731| 6|all| out|

Using the int-ext-fields plug-in allows one to print the internal and external addresses and ports (note:
command line wrapped for improved readability):

$ rwcut --plugin=int-ext-fields.so \

--incoming=all/in,all/inweb --outgoing=all/out,all/outweb \

--fields=ext-ip,ext-port,int-ip,int-port,proto,class,type

ext-ip|ext-p| int-ip|int-p|pro|cla| type|

10.239.86.13|29897|192.168.228.153| 25| 6|all| in|

10.239.86.13|29897|192.168.228.153| 25| 6|all| out|

10.233.108.250| 25|192.168.208.237|29416| 6|all| out|

10.233.108.250| 25|192.168.208.237|29416| 6|all| in|

10.198.18.193| 80| 192.168.255.94|29301| 6|all| outweb|

10.198.18.193| 80| 192.168.255.94|29301| 6|all| inweb|

10.202.7.122|29438|192.168.248.202| 25| 6|all| in|

10.202.7.122|29438|192.168.248.202| 25| 6|all| out|

10.255.142.104|26731|192.168.236.220| 25| 6|all| in|

10.255.142.104|26731|192.168.236.220| 25| 6|all| out|

This can be especially useful when using a tool like rwuniq or rwstats:

$ export INCOMING_FLOWTYPES=all/in,all/inweb

$ export OUTGOING_FLOWTYPES=all/out,all/outweb

$ rwuniq --plugin=int-ext-fields.so \

--fields=int-ip,int-port --value=bytes

int-ip|int-p| Bytes|

192.168.208.237|29416| 28517|

192.168.248.202| 25| 4016|

192.168.228.153| 25| 3454|

192.168.236.220| 25| 31872|

192.168.255.94|29301| 14147|

Beware of traffic whose type is not listed in INCOMING FLOWTYPES or OUTGOING FLOWTYPES

$ rwcut --num-rec=4 --fields=sip,sport,dip,dport,proto,type data2.rw

sIP|sPort| dIP|dPort|pro| type|

67.215.0.5| 53| 155.6.5.1| 1613| 17|ext2ext|

67.215.0.5| 53| 155.6.5.1| 1895| 17|ext2ext|

67.215.0.5| 53| 155.6.5.1| 1351| 17|ext2ext|

67.215.0.5| 53| 155.6.5.1| 1988| 17|ext2ext|

since the int-ext-fields plug-in sets the fields to 0.

SiLK -3.23.1 519

int-ext-fields(3) The SiLK Reference Guide

$ rwcut --num-rec=4 --plugin=int-ext-fields.so \

--incoming=all/in,all/inweb --outgoing=all/out,all/outweb \

--fields=int-ip,int-port,ext-ip,ext-port,proto,type data4.rw

int-ip|int-p| ext-ip|ext-p|pro| type|

0.0.0.0| 0| 0.0.0.0| 0| 17|ext2ext|

0.0.0.0| 0| 0.0.0.0| 0| 17|ext2ext|

0.0.0.0| 0| 0.0.0.0| 0| 17|ext2ext|

0.0.0.0| 0| 0.0.0.0| 0| 17|ext2ext|

ENVIRONMENT

INCOMING FLOWTYPES

Used as the value for the --incoming-flowtypes when that switch is not provided.

OUTGOING FLOWTYPES

Used as the value for the --outgoing-flowtypes when that switch is not provided.

SILK CONFIG FILE

This environment variable is used when the SiLK application attempts to locate the the SiLK site
configuration file unless the --site-config-file switch is specified. Additional locations where the
application searches are listed in the FILES section. The site configuration file is required to parse the
flowtypes.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. As described in the FILES
section, an application may use this environment variable when searching for the SiLK site configuration
file.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, an application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt to
find and open the int-ext-fields.so plug-in. A typical invocation using this variable is

env SILK_PLUGIN_DEBUG=1 rwcut --plugin=int-ext-fields.so --version

FILES

${SILK CONFIG FILE}

${SILK DATA ROOTDIR}/silk.conf

/data/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

520 SiLK-3.23.1

The SiLK Reference Guide int-ext-fields(3)

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided.

${SILK PATH}/lib64/silk/int-ext-fields.so

${SILK PATH}/lib64/int-ext-fields.so

${SILK PATH}/lib/silk/int-ext-fields.so

${SILK PATH}/lib/int-ext-fields.so

/usr/local/lib64/silk/int-ext-fields.so

/usr/local/lib64/int-ext-fields.so

/usr/local/lib/silk/int-ext-fields.so

/usr/local/lib/int-ext-fields.so

Possible locations for the plug-in.

SEE ALSO

rwcut(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), silk.conf(5), packlogic-twoway(3),
silk(7)

BUGS

The int-ip and ext-ip fields do not respect the --ip-format switch nor SILK IP FORMAT environment
variable. The IP addresses are printed in the canonical format, and the columns are wide enough for an
IPv6 address.

SiLK-3.23.1 521

ipafilter(3) The SiLK Reference Guide

ipafilter

SiLK plug-in for flow filtering based on IPA data

SYNOPSIS

rwfilter [--ipa-src-expr IPA_EXPR] [--ipa-dst-expr IPA_EXPR]

[--ipa-any-expr IPA_EXPR] ...

DESCRIPTION

The ipafilter plug-in provides switches to rwfilter(1) that can partition flows using data in an IPA database.
rwfilter will automatically load the ipafilter plug-in when it is available.

OPTIONS

The ipafilter plug-in provides the following options to rwfilter.

--ipa-src-expr=IPA EXPR

Use IPA EXPR to filter flows based on the source IP of the flow matching the IPA EXPR expression.

--ipa-dst-expr=IPA EXPR

Use IPA EXPR to filter flows based on the destination IP of the flow matching the IPA EXPR expres-
sion.

--ipa-any-expr=IPA EXPR

Use IPA EXPR to filter flows based on either the source or destination IP of the flow matching the
IPA EXPR expression.

IPA EXPRESSIONS

The syntax for IPA filter expressions is documented in ipaquery(1). Some simple examples are shown in
the EXAMPLES section below.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

To pull flows from or to any IP address in the ”watch” catalog:

$ rwfilter --start-date 2010/01/01:00 \

--ipa-any-expr "in watch at 2010/01/01" \

--pass watchflows.rw

To pull flows from any IP labeled ”bad” in the last year:

522 SiLK -3.23.1

The SiLK Reference Guide ipafilter(3)

$ rwfilter --start-date 2010/01/01:00 \

--ipa-src-expr "label bad after 2009/01/01" \

--pass badguys.rw

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files and
plug-ins, rwfilter may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, rwfilter prints status messages to the standard error as it attempts to find and open
the ipafilter.so plug-in. A typical invocation using this variable is

env SILK_PLUGIN_DEBUG=1 rwfilter --plugin=ipafilter.so --version

FILES

$SILK PATH/share/silk/silk-ipa.conf

$SILK PATH/share/silk-ipa.conf

/usr/local/share/silk/silk-ipa.conf

/usr/local/share/silk-ipa.conf

Possible locations for the IPA configuration file. This file contains the URI for connecting to the IPA
database. If the configuration file does not exist, attempts to use the ipafilter plug-in will exit with
an error. The format of this URI is driver ://user :pass-word@hostname/database. For example:

postgresql://ipauser:secret@database-server.domain.com/ipa

${SILK PATH}/lib64/silk/ipafilter.so

${SILK PATH}/lib64/ipafilter.so

${SILK PATH}/lib/silk/ipafilter.so

${SILK PATH}/lib/ipafilter.so

/usr/local/lib64/silk/ipafilter.so

/usr/local/lib64/ipafilter.so

/usr/local/lib/silk/ipafilter.so

/usr/local/lib/ipafilter.so

Possible locations for the plug-in.

SEE ALSO

rwfilter(1), rwipaimport(1), rwipaexport(1), silk(7), ipaquery(1), ipaimport(1), ipaexport(1)

SiLK-3.23.1 523

packlogic-generic.so(3) The SiLK Reference Guide

packlogic-generic.so

Packing logic for the generic site

SYNOPSIS

rwflowpack --packing-logic=packlogic-generic.so ...

DESCRIPTION

This manual page describes the packlogic-generic.so plug-in that defines the packing logic that rwflow-
pack(8) may use to categorize flow records. (This document uses the term plug-in, but the builder of SiLK
may choose to compile the packing logic into rwflowpack. See the SiLK Installation Handbook for details.)

General Overview of rwflowpack

The primary job of rwflowpack is to categorize flow records into one or more class and type pairs. The
class and type pair (also called a flowtype) are used by the analyst when selecting flow records from the data
store using rwfilter(1).

The settings that rwflowpack uses to categorize each flow record are determined by two textual configuration
files and a compiled plug-in that is referred to as the packing logic.

The first of the configuration files is silk.conf(5) which specifies the classes, types, and sensors that rwflow-
pack uses when writing files and that rwfilter uses when selecting flow files.

The second configuration file is the sensor.conf(5) file. This file contains multiple sensor blocks, where
each block contains information which the packing logic uses to categorize flow records collected by the
probes specified for that sensor.

The combination of a silk.conf file and a particular packing logic plug-in define a site. By having the
configuration and packing logic outside of the core tools, users can more easily configure SiLK for their
particular installation and a single installation of SiLK can support multiple sites.

This manual page describes the packing logic for the generic site. For a description of the packing logic at
another site, see that site’s manual page.

• packlogic-twoway(3)

Networks, Classes, and Types for the ”generic” Site

The packlogic-generic.so plug-in uses three network names to describe the logical address spaces that border
the sensor:

internal

the space that is being monitored

external

the space outside the monitored network

524 SiLK-3.23.1

The SiLK Reference Guide packlogic-generic.so(3)

null

the destination network for a flow that does not leave the router, because either the flow was blocked
by the router’s access control list or its destination was the router itself---e.g., a BGP message

The generic site assumes that all packets are either blocked by the sensor (that is, their destination is the
null network), or that the packets cross the sensor so the source and destination networks always differ.

The packing logic also assumes that the above networks completely describe the space around the sensor.
Since the null network is strictly a destination network, any flow that does not originate from the external
network must originate from the internal network.

This allows the generic site to categorizes a flow record primarily by comparing a flow record’s source to
the external network, and the packing logic contains no comparisons to the internal network

The silk.conf file and packlogic-generic.so plug-in define a single class, all.

The type assigned to a flow record within the all class is one of:

in, inweb

Records whose source is the external network and whose destination is not the null network represent
incoming traffic. The traffic is split into multiple types, and these types allow the analysts to query a
subset of the flow records depending on their needs. Each incoming flow record is split into the one of
incoming types using the following rules:

inweb

Contains traffic where the protocol is TCP (6) and either the source port or the destination port
is one of 80, 443, or 8080

in

Contains all other incoming traffic.

out, outweb

Records whose source is not the external network and whose destination is not the null network
represent outgoing traffic. The traffic is split among the types using rules similar to those for incoming
traffic.

innull

Records whose source is the external network and whose destination is the null network represent
blocked incoming traffic.

outnull

Records whose source is not the external network and whose destination is the null network represent
blocked outgoing traffic.

Assigning a flow to source and destination networks

Since the generic site uses the external network to determine a flow record’s type, each sensor block in
the sensor.conf(5) file must specify a definition for the external network.

The sensor.conf file provides two ways to define a network: use the NET -ipblocks statement to specify
the NET network as a list of IP address blocks, or use the NET -interfaces statement to specify the NET
network using a list of SNMP interfaces.

SiLK-3.23.1 525

packlogic-generic.so(3) The SiLK Reference Guide

For the source network of a flow record to be considered external, either the source IP (SiLK field sIP)
must appear in the list of external-ipblocks or the incoming SNMP interface (SiLK field in) must appear
in the list of external-interfaces. Note: If the probe block that specifies where the flow was collected
contains an interface-values vlan statement, the SiLK in field contains the VLAN ID.

For the destination network of a flow record to be considered null, either the destination IP (dIP) must
appear in the list of null-ipblocks or the outgoing SNMP interface (out) must appear in the list of null-
interfaces.

Consider the following two sensors:

sensor S2

ipfix-probes S2

external-ipblocks 172.16.0.0/16

internal-ipblocks 172.20.0.0/16

end sensor

sensor S3

ipfix-probes S3

external-interfaces 17,18,19

internal-interfaces 21,22,23

end sensor

A flow record collected at probe S2 whose sIP is 172.16.1.1 is considered incoming, regardless of the desti-
nation IP.

A flow record collected at probe S3 whose in is 27 is considered outgoing. (Since in does not match
the external-interfaces, the record is considered outgoing even though in does not match the internal-
interfaces either.)

There are two constructs in the sensor.conf file that help when specifying these lists:

1. The NET -interfaces or NET -ipblocks statement in a sensor block may use remainder to denote
interfaces or IP blocks that do not appear elsewhere in the block.

2. A group block can be used to give a name to a set of IP blocks or SNMP interfaces which a sensor
block can reference.

For details, see the sensor.conf(5) manual page.

Valid sensors

When using the packlogic-generic.so plug-in, the sensor blocks in the sensor.conf file supports the following
types of probes:

• ipfix

• netflow-v5

• netflow-v9

In addition, each sensor block must meet the following rules:

526 SiLK-3.23.1

The SiLK Reference Guide packlogic-generic.so(3)

• Either external-interfaces or external-ipblocks must be specified. And,

• A sensor cannot mix NET -ipblocks and NET -interfaces, with the exception that null-interfaces
are always allowed. And,

• Only one network on the sensor may use remainder. And,

• If a sensor contains only one NET -ipblocks statement, that statement may not use remainder.
(The NET -interfaces statement does not have this restriction.)

Packing logic code

This section provides the logic used to assign the class and type at the generic site.

A single sensor block will assign the flow record to a single class and type, and processing of the flow for
that sensor block stops as soon as a type is assigned. When multiple sensor blocks reference the same
probe, the flow records collected by that probe are processed by each of those sensor blocks.

A flow record is always assigned to the class all.

A textual description of the code used to assign the type is shown here. As of SiLK 3.8.0, the type may be
determined by the presence of certain IPFIX or NetFlowV9 information elements.

• If sIP matches external-ipblocks or in matches external-interfaces, then

– If dIP matches null-ipblocks or out matches null-interfaces, pack as innull. Else,

– Pack as in or inweb.

• If dIP matches null-ipblocks or out matches null-interfaces, pack as outnull. Else,

• Pack as out or outweb.

• Potentially modify the type: If the probe has a quirks setting that includes firewall-event and if
the incoming record contains the firewallEvent or NF F FW EVENT information element whose value
is 3 (flow denied), change the type where the flow is packed as follows:

– If the flow was denied due to an ingress ACL (NF F FW EXT EVENT of 1001), pack as innull.

– If the flow was denied due to an egress ACL (NF F FW EXT EVENT of 1002), pack as outnull.

– If the flow’s current type is innull, in, or inweb, pack as innull.

– If the flow’s current type is outnull, out, or outweb, pack as outnull.

SEE ALSO

rwfilter(1), rwflowpack(8), sensor.conf(5), silk.conf(5), packlogic-twoway(3), silk(7), SiLK Instal-
lation Handbook

SiLK-3.23.1 527

packlogic-twoway.so(3) The SiLK Reference Guide

packlogic-twoway.so

Packing logic for the twoway site

SYNOPSIS

rwflowpack --packing-logic=packlogic-twoway.so ...

DESCRIPTION

This manual page describes the packlogic-twoway.so plug-in that defines the packing logic that rwflow-
pack(8) may use to categorize flow records. (This document uses the term plug-in, but the builder of SiLK
may choose to compile the packing logic into rwflowpack. See the SiLK Installation Handbook for details.)

General Overview of rwflowpack

The primary job of rwflowpack is to categorize flow records into one or more class and type pairs. The
class and type pair (also called a flowtype) are used by the analyst when selecting flow records from the data
store using rwfilter(1).

The settings that rwflowpack uses to categorize each flow record are determined by two textual configuration
files and a compiled plug-in that is referred to as the packing logic.

The first of the configuration files is silk.conf(5) which specifies the classes, types, and sensors that rwflow-
pack uses when writing files and that rwfilter uses when selecting flow files.

The second configuration file is the sensor.conf(5) file. This file contains multiple sensor blocks, where
each block contains information which the packing logic uses to categorize flow records collected by the
probes specified for that sensor.

The combination of a silk.conf file and a particular packing logic plug-in define a site. By having the
configuration and packing logic outside of the core tools, users can more easily configure SiLK for their
particular installation and a single installation of SiLK can support multiple sites.

This manual page describes the packing logic for the twoway site. For a description of the packing logic at
another site, see that site’s manual page.

• packlogic-generic(3)

Networks, Classes, and Types for the ”twoway” Site

The silk.conf file and packlogic-twoway.so plug-in categorize a flow record based on how the packets that
comprise the flow record moved between different networks.

The packlogic-twoway.so plug-in specifies three network names to describe the logical address spaces that
border the sensor:

internal

the space that is being monitored

528 SiLK-3.23.1

The SiLK Reference Guide packlogic-twoway.so(3)

external

the space outside the monitored network

null

the destination network for a flow that does not leave the router, because either the flow was blocked
by the router’s access control list or its destination was the router itself---e.g., a BGP message

There is an implicit fourth network, unknown, which is anything that does not match the three networks
above.

Given these networks, the following table describes how flows can move between the networks. Traffic
between the networks is successfully routed unless the description explicitly says ”blocked”.

SOURCE DESTINATION DESCRIPTION

external internal incoming traffic

internal external outgoing traffic

external null blocked incoming traffic

internal null blocked outgoing traffic

external external strictly external traffic

internal internal strictly internal traffic

null any unclear: null should never be a source

external unknown unclear

internal unknown unclear

unknown any unclear

The silk.conf file and packlogic-twoway.so plug-in define a single class, all.

The type assigned to a flow record within the all class depends on the how the record moves between the
networks, and the types follow from the table above:

in, inicmp, inweb

Incoming traffic. The traffic is split into multiple types, and these types allow the analysts to query a
subset of the flow records depending on their needs. Each incoming flow record is split into the one of
incoming types using the following rules:

inweb

Contains traffic where the protocol is TCP (6) and either the source port or the destination port
is one of 80, 443, or 8080

inicmp

Contains flow records where either the protocol is ICMP (1) or the flow record is IPv6 and the
protocol is ICMPV6 (58). By default, the inicmp and outicmp types are not used by the
packlogic-twoway.so plug-in.

in

Contains all other incoming traffic.

out, outicmp, outweb

Outgoing traffic. The traffic is split among the types using rules similar to those for incoming traffic.

innull

Blocked incoming traffic

SiLK-3.23.1 529

packlogic-twoway.so(3) The SiLK Reference Guide

outnull

Blocked outgoing traffic

ext2ext

Strictly external traffic

int2int

Strictly internal traffic

other

Either traffic from the null network or traffic to or from the unknown network

Assigning a flow to source and destination networks

Each sensor block in the sensor.conf(5) file must specify how to determine the source and destination
networks for each flow record collected by the probes specified for that sensor. There are two ways to do
this.

The first method sets the source and destination of all records to particular networks. This can be used, for
example, when the physical network device at the sensor only sees one direction of the traffic. To do this,
use the source-network and destination-network statements in the sensor block. The following sensor,
S1, considers all traffic as blocked incoming:

sensor S1

ipfix-probes S1

source-network external

destination-network null

end sensor

The second method to determine how a flow record moves between the networks is to define the networks
and use characteristics of the flow record to determine its source and destination networks.

The sensor.conf file provides two ways to define a network: use the NET -ipblocks statement to specify
the NET network as a list of IP address blocks, or use the NET -interfaces statement to specify the NET
network using a list of SNMP interfaces.

For the source network of a flow record to be considered external, either the source IP (SiLK field sIP)
must appear in the list of external-ipblocks or the incoming SNMP interface (SiLK field in) must appear
in the list of external-interfaces. Note: If the probe block that specifies where the flow was collected
contains an interface-values vlan statement, the SiLK in field contains the VLAN ID.

For the destination network of a flow record to be considered null, either the destination IP (dIP) must
appear in the list of null-ipblocks or the outgoing SNMP interface (out) must appear in the list of null-
interfaces.

Consider the following two sensors:

sensor S2

ipfix-probes S2

external-ipblocks 172.16.0.0/16

internal-ipblocks 172.20.0.0/16

end sensor

530 SiLK -3.23.1

The SiLK Reference Guide packlogic-twoway.so(3)

sensor S3

ipfix-probes S3

external-interfaces 17,18,19

internal-interfaces 21,22,23

end sensor

A flow record collected at probe S2 whose sIP is 172.16.1.1 and whose dIP is 172.20.2.2 is considered
incoming.

A flow record collected at probe S3 whose in is 23 and whose out is 18 is considered outgoing. A flow on
S3 whose in is 23 and whose out is 27 is written to other since the out field is not matched.

There are two constructs in the sensor.conf file that help when specifying these lists:

1. The NET -interfaces or NET -ipblocks statement in a sensor block may use remainder to denote
interfaces or IP blocks that do not appear elsewhere in the block.

2. A group block can be used to give a name to a set of IP blocks or SNMP interfaces which a sensor
block can reference.

For details, see the sensor.conf(5) manual page.

Valid sensors

When using the packlogic-twoway.so plug-in, the sensor blocks in the sensor.conf file supports the following
types of probes:

• ipfix

• netflow-v5

• netflow-v9

• sflow

• silk

In addition, each sensor block must meet the following rules:

• If the sensor has the source-network and destination-network explicitly set, the sensor is valid
and none of the following checks are performed. Otherwise,

• At least one of NET -interfaces or NET -ipblocks must be specified, where NET is either internal
or external. And,

• A sensor cannot mix NET -ipblocks and NET -interfaces, with the exception that null-interfaces
are always allowed. And,

• Only one network on the sensor may use remainder. And,

• If a sensor contains only one NET -ipblocks statement, that statement may not use remainder.
(The NET -interfaces statement does not have this restriction.) And,

• When the remainder keyword is not used and only one of the internal or external networks is
defined, the external or internal network, respectively, is defined as having the remainder.

SiLK-3.23.1 531

packlogic-twoway.so(3) The SiLK Reference Guide

Packing logic code

This section provides the logic used to assign the class and type at the twoway site.

A single sensor block will assign the flow record to a single class and type, and processing of the flow for
that sensor block stops as soon as a type is assigned. When multiple sensor blocks reference the same
probe, the flow records collected by that probe are processed by each of those sensor blocks.

A flow record is always assigned to the class all unless the flow is ignored.

A textual description of the code used to assign the type is shown here. As of SiLK 3.8.0, the type may be
determined by the presence of certain IPFIX or NetFlowV9 information elements.

• Ignore any flow record that matches a discard-when statement or does not match a discard-unless
statement.

• If source-network is external, if sIP matches external-ipblocks, or if in matches external-
interfaces, then

– If destination-network is null, if dIP matches null-ipblocks, or if out matches null-
interfaces, pack as innull. Else,

– If destination-network is internal, if dIP matches internal-ipblocks, or if out matches
internal-interfaces, pack as in, inicmp, or inweb. Else,

– If destination-network is external, if dIP matches external-ipblocks, or if out matches
external-interfaces, pack as ext2ext. Else,

– Pack as other.

• Else, if source-network is internal, if sIP matches internal-ipblocks, or if in matches internal-
interfaces, then

– If destination-network is null, if dIP matches null-ipblocks, or if out matches null-
interfaces, pack as outnull. Else,

– If destination-network is external, if dIP matches external-ipblocks, or if out matches
external-interfaces, pack as out, outicmp, or outweb. Else,

– If destination-network is internal, if dIP matches internal-ipblocks, or if out matches
internal-interfaces, pack as int2int. Else,

– Pack as other.

• Else, pack as other.

• Potentially modify the type: If the probe has a quirks setting that includes firewall-event and if
the incoming record contains the firewallEvent or NF F FW EVENT information element whose value
is 3 (flow denied), change the type where the flow is packed as follows:

– If the flow was denied due to an ingress ACL (NF F FW EXT EVENT of 1001), pack as innull.

– If the flow was denied due to an egress ACL (NF F FW EXT EVENT of 1002), pack as outnull.

– If the flow’s current type is in, inweb, inicmp, or ext2ext, pack as innull.

– If the flow’s current type is out, outweb, outicmp, or int2int, pack as outnull.

– Else leave the type as is (innull, outnull, or other).

SEE ALSO

rwfilter(1), rwflowpack(8), sensor.conf(5), silk.conf(5), packlogic-generic(3), silk(7), SiLK Instal-
lation Handbook

532 SiLK-3.23.1

The SiLK Reference Guide pmapfilter(3)

pmapfilter

User-defined labels for IPs and protocol/port pairs

SYNOPSIS

rwfilter --pmap-file=[MAPNAME:]FILENAME

[--pmap-file=[MAPNAME:]FILENAME ...]

[--pmap-src-MAPNAME=LABELS] [--pmap-dst-MAPNAME=LABELS]

[--pmap-any-MAPNAME=LABELS] ...

rwcut --pmap-file=[MAPNAME:]FILENAME

[--pmap-file=[MAPNAME:]FILENAME ...]

--fields=FIELDS [--pmap-column-width=NUM]

rwgroup --pmap-file=[MAPNAME:]FILENAME

[--pmap-file=[MAPNAME:]FILENAME ...]

--id-fields=FIELDS

rwsort --pmap-file=[MAPNAME:]FILENAME

[--pmap-file=[MAPNAME:]FILENAME ...]

--fields=FIELDS

rwstats --pmap-file=[MAPNAME:]FILENAME

[--pmap-file=[MAPNAME:]FILENAME ...]

--fields=FIELDS [--pmap-column-width=NUM]

rwuniq --pmap-file=[MAPNAME:]FILENAME

[--pmap-file=[MAPNAME:]FILENAME ...]

--fields=FIELDS [--pmap-column-width=NUM]

DESCRIPTION

Prefix maps provide a mapping from values on a SiLK Flow record to string labels. The binary prefix
map file is created from textual input with rwpmapbuild. See the rwpmapbuild(1) manual page for the
syntax of input file. This manual page describes how to use a prefix map file to augment the features of
some commonly used SiLK applications.

A prefix map file maps either an IP address or a protocol/port pair to a label. The mode statement in the
input to rwpmapbuild determines whether the prefix map file is a mapping for IPs or for protocol/port
pairs. To see the mode of an existing prefix map, use rwpmapcat(1) and specify --output-type=type.

When using the prefix map file as described in this manual page, one typically uses the prefix map’s map-
name. The map-name statement in the input to rwpmapbuild allows one to assign the map-name when
creating the prefix map. To see the map-name of an existing prefix map, use rwpmapcat --output-
type=mapname. To assign a map-name when loading a prefix map file, use the --pmap-file switch and
specify the map-name you want to use, a colon, and the file name. A map-name provided to the --pmap-file
switch overrides the map-name in the file (if one exists).

When using a prefix map in rwfilter(1), the map-name is combined with the prefix --pmap-src-, --pmap-
dst-, or --pmap-any- to create the partitioning switches. When using the prefix map to create fields in

SiLK-3.23.1 533

pmapfilter(3) The SiLK Reference Guide

rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and rwuniq(1), the map-name must be combined with
the prefix src- or dst- to create the field names.

The applications support using multiple prefix map files in a single invocation. When using multiple prefix
map files, each file must have a unique map-name (or be assigned a unique map-name on the command line).

When a prefix map file does not contain a map-name and no map-name is provided on the command line,
SiLK processes the prefix map in legacy mode. When in legacy mode, only one prefix map file may be used.
See the LEGACY section for details.

Three types of prefix map files are currently implemented:

proto-port

Maps a protocol/port pair to a label.

IPv4-address

Maps an IPv4 address to a label. When used with IPv6 addresses, an IPv6 address in the ::ffff:0:0/96
prefix is converted to IPv4 and mapped to the label. Any other IPv6 address is mapped to the label
UNKNOWN.

IPv6-address

Maps an IPv6 address to a label. When used with an IPv4 address, the IPv4 address is converted to
IPv6, mapping the IPv4 address into the ::ffff:0:0/96 prefix.

For more information on constructing prefix map files, see the rwpmapbuild(1) documentation. To view
the contents, type, or map-name of a prefix map file, use rwpmapcat(1). To map textual input to the
labels in a prefix map, use rwpmaplookup(1).

OPTIONS

The --pmap-file switch is used to load the prefix map into the application. Use of the prefix map varies by
application.

To use a prefix map within a supported application, one or more --pmap-file switches are required. Multiple
--pmap-file switches are allowed as long as each prefix map is associated with a unique map-name. The
switch has two forms:

--pmap-file=MAPNAME :FILENAME

FILENAME refers to a prefix map file generated using rwpmapbuild. MAPNAME is a name that
may be used to refer to the fields or options specific to that prefix map. Specify FILENAME as - or
stdin to read the prefix map from the standard input.

--pmap-file=FILENAME

When a MAPNAME is not specified explicitly as part of the argument, the prefix map file is checked
to determine if a map-name was set when the prefix map was created (see rwpmapbuild). If so,
that map-name is used. If not, the prefix map is processed in legacy mode for backward compatibility.
See LEGACY below for more information. A prefix map’s map-name is printed by the rwfileinfo(1)
command or by specifying --output-types=mapname to rwpmapcat.

534 SiLK-3.23.1

The SiLK Reference Guide pmapfilter(3)

rwfilter Switches

When using the prefix map in rwfilter(1), the map-name is combined with the prefix --pmap-src-, --
pmap-dst-, or --pmap-any- to create the partitioning switches; that is, the switch name depends in part
on the map-name of the prefix map.

--pmap-src-map-name=LABELS

If the prefix map associated with map-name is an IP prefix map, this matches records with a source
address that maps to a label contained in the list of labels in LABELS.

If the prefix map associated with map-name is a proto-port prefix map, this matches records with a
protocol and source port combination that maps to a label contained in the list of labels in LABELS.

--pmap-dst-map-name=LABELS

Similar to --pmap-src-map-name , but uses the destination IP or the protocol and destination port.

--pmap-any-map-name=LABELS

If the prefix map associated with map-name is an IP prefix map, this matches records with a source
or destination address that maps to a label contained in the list of labels in LABELS.

If the prefix map associated with map-name is a proto-port prefix map, this matches records with a
protocol and a source or destination port combination that maps to a label contained in the list of
labels in LABELS.

rwcut, rwgroup, rwsort, rwstats, and rwuniq Switches

When using the prefix map to create fields in rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and rwu-
niq(1), the map-name must be combined with the prefix src- or dst- to create the field names. The field
names depend in part on the map-name of the prefix map.

--fields=FIELDS

FIELDS refers to a list of fields to use for the operation. Each prefix map associated with map-name
creates two additional fields, src-map-name and dst-map-name , available for display, sorting, and
counting using the rwcut, rwgroup, rwsort, rwstats, and rwuniq tools.

src-map-name

The value for the source from the prefix map file associated withmap-name. For an IP-based prefix
map file, this corresponds to the source IP. For a proto-port prefix map, it is the protocol/source-
port.

dst-map-name

As src-map-name for the destination IP address or protocol/destination-port. It is possible
to encode type and code in a proto-port prefix map, but it will only work when used for the
protocol/destination-port.

--pmap-column-width=NUM

Set the maximum number of characters to use when displaying the textual value of any prefix map
field in rwcut, rwstats, and rwuniq to NUM. This switch must precede the --fields switch. This
switch is useful for prefix map files that have very long dictionary values.

SiLK-3.23.1 535

pmapfilter(3) The SiLK Reference Guide

LEGACY

When a prefix map file does not contain a map-name and no map-name is specified in the --pmap-file
argument, SiLK processes the prefix map as it did prior to SiLK 2.0, which is called legacy mode. When in
legacy mode, only one prefix map file may be used by the application. Legacy mode is deprecated, but it is
maintained for backwards compatibility.

Legacy Switches

When a prefix map is loaded into rwfilter in legacy mode, the following switches are defined:

--pmap-saddress=LABELS

Match records with a source IP address that maps to a label contained in the list of labels in LABELS.
Only works with IP prefix maps.

--pmap-daddress=LABELS

As --pmap-saddress for the destination IP.

--pmap-any-address=LABELS

Match records with a source or destination IP address that maps to a label contained in the list of
labels in LABELS. Only works with IP prefix maps.

--pmap-sport-proto=LABELS

Match records with a protocol and source port combination that maps to a label contained in the list
of labels in LABELS. Only works with proto-port prefix maps.

--pmap-dport-proto=LABELS

As --pmap-saddress for the protocol and destination port.

--pmap-any-port-proto=LABELS

Match records with a protocol and a source or destination port combination that maps to a label
contained in the list of labels in LABELS. Only works with proto-port prefix maps.

Legacy Fields

When a prefix map is loaded into rwcut, rwgroup, rwsort, rwstats, or rwuniq in legacy mode, the
following fields are made available to the --fields switch:

sval

The value from the prefix map file for the source. For an IP-based prefix map file, this corresponds to
the source IP. For a proto-port prefix map, it is the protocol/source-port.

dval

As sval for the destination IP address or protocol/destination-port.

536 SiLK-3.23.1

The SiLK Reference Guide pmapfilter(3)

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

The following examples explicitly specify the map name on the command line, ensuring the examples work
any prefix map file. The examples use two prefix map files:

carnegiemellon.pmap

Maps the internal IP space of Carnegie Mellon to labels specifying the department that has been
assigned that IP space. (An IPv4 prefix map provides a label for every IPv4 address; in this case, any
IP outside of Carnegie Mellon’s IP space is given the label external.)

service.pmap

Maps protocol/ports pairs to well-known services associated with those pairs (e.g., based the file
/etc/protocols and /etc/services). For example, 80/tcp is labeled TCP/HTTP, 25/tcp is TCP/SMTP,
ephemeral ports in protocol 6 are TCP, protocol 1 is ICMP, etc.

To find today’s incoming flow records going to ”FineArts”:

$ rwfilter --type=in,inweb --pmap-file=CMU:carnegiemellon.pmap \

--pmap-dst-CMU="FineArts" --pass=fine-arts-in.rw

To find today’s outgoing flow records coming from ”ChemE”:

$ rwfilter --type=out,outweb --pmap-file=CMU:carnegiemellon.pmap \

--pmap-src-CMU="ChemE" --pass=cheme-out.rw

To find today’s internal traffic from ”FineArts” to ”ChemE”:

$ rwfilter --type=int2int --pmap-file=CMU:carnegiemellon.pmap \

--pmap-src-CMU="FineArts" --pmap-dst-CMU="ChemE" \

--pass=finearts-to-cheme.rw

To find the reverse traffic:

$ rwfilter --type=int2int --pmap-file=CMU:carnegiemellon.pmap \

--pmap-src-CMU="ChemE" --pmap-dst-CMU="FineArts" \

--pass=cheme-to-finearts.rw

To find today’s internal traffic that started or ended at ”FineArts” and ”ChemE” (this will find traffic
between them, as well as traffic they had with any other university department):

$ rwfilter --type=int2int --pmap-file=CMU:carnegiemellon.pmap \

--pmap-any-CMU="ChemE,FineArts" \

--pass=cheme-finearts.rw

Using the service.pmap file with rwcut to print the label for the protocol/port pairs:

SiLK -3.23.1 537

pmapfilter(3) The SiLK Reference Guide

$ rwcut --pmap-file=service:service.pmap \

--fields=protocol,dport,dst-service,sport,src-service \

flow-records.rw

pro|dPort|dst-service|sPort|src-service|

17| 53| UDP/DNS|29617| UDP|

17|29617| UDP| 53| UDP/DNS|

6| 22| TCP/SSH|29618| TCP|

6|29618| TCP| 22| TCP/SSH|

1| 771| ICMP| 0| ICMP|

17| 67| UDP/DHCP| 68| UDP/DHCP|

6| 443| TCP/HTTPS|28816| TCP|

6|29897| TCP| 25| TCP/SMTP|

6|29222| TCP| 80| TCP/HTTP|

17|29361| UDP| 53| UDP/DNS|

Using the service.pmap file with rwuniq:

$ rwuniq --pmap-file=serv:service.pmap --fields=dst-serv \

--values=bytes flow-records.rw

dst-serv| Bytes|

TCP/SSH| 3443906999|

TCP/SMTP| 780000305|

TCP| 114397570896|

TCP/HTTPS| 387741258|

TCP/HTTP| 1526975653|

UDP/NTP| 1176632|

UDP| 14404581|

UDP/DHCP| 5121392|

UDP/DNS| 3797474|

ICMP| 10695328|

Using the service.pmap file with rwstats:

$ rwstats --pmap-file=srvc:service.pmap --fields=dst-srvc \

--values=bytes --count=5 flow-records.rw

INPUT: 501876 Records for 10 Bins and 120571390518 Total Bytes

OUTPUT: Top 5 Bins by Bytes

dst-srvc| Bytes| %Bytes| cumul_%|

TCP| 114397570896| 94.879532| 94.879532|

TCP/SSH| 3443906999| 2.856322| 97.735854|

TCP/HTTP| 1526975653| 1.266449| 99.002303|

TCP/SMTP| 780000305| 0.646920| 99.649223|

TCP/HTTPS| 387741258| 0.321586| 99.970809|

Using rwsort with two prefix maps, where the records are first sorted by the originating department and
then by the service they are requesting:

$ rwsort --pmap-file=service:service.pmap \

--pmap-file=cmu:carnegiemellon.pmap \

--fields=src-cmu,dst-service flow-records.rw

538 SiLK-3.23.1

The SiLK Reference Guide pmapfilter(3)

To see the partitioning switches that a prefix map adds to rwfilter, load the prefix map file prior to specifying
the --help switch.

$ rwfilter --pmap-file=carnegiemellon.pmap --help \

| sed -n ’/^--pmap-/p’

To see the fields that a prefix map file adds to rwcut, rwgroup, rwsort, rwstats, or rwuniq, load the
prefix map file prior to specifying --help, and then view the description of the --fields switch.

$ rwsort --pmap-file=service.pmap --help \

| sed -n ’/^--fields/,/^--/p’

SEE ALSO

rwcut(1), rwfilter(1), rwgroup(1), rwpmapbuild(1), rwpmapcat(1), rwpmaplookup(1), rw-
sort(1), rwstats(1), rwuniq(1), rwfileinfo(1), silk(7)

SiLK-3.23.1 539

pysilk(3) The SiLK Reference Guide

PySiLK

Silk in Python

DESCRIPTION

This document describes the features of PySiLK, the SiLK Python extension. It documents the objects
and methods that allow one to read, manipulate, and write SiLK Flow records, IPsets, Bags, and Prefix
Maps (pmaps) from within python(1). PySiLK may be used in a stand-alone Python script or as a plug-in
from within the SiLK tools rwfilter(1), rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and rwuniq(1).
This document describes the objects and methods that PySiLK provides; the details of using those from
within a plug-in are documented in the silkpython(3) manual page.

The SiLK Python extension defines the following objects and modules:

IPAddr object

Represents an IP Address.

IPv4Addr object

Represents an IPv4 Address.

IPv6Addr object

Represents an IPv6 Address.

IPWildcard object

Represents CIDR blocks or SiLK IP wildcard addresses.

IPSet object

Represents a SiLK IPset.

PrefixMap object

Represents a SiLK Prefix Map.

Bag object

Represents a SiLK Bag.

TCPFlags object

Represents TCP flags.

RWRec object

Represents a SiLK Flow record.

SilkFile object

Represents a channel for writing to or reading from SiLK Flow files.

FGlob object

Allows retrieval of filenames in a SiLK data store. See also the silk.site module.

silk.site module

Defines several functions that relate to the SiLK site configuration and allow iteration over the files in
a SiLK data store.

540 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

silk.plugin module

Defines functions that may only be used in SiLK Python plug-ins.

The SiLK Python extension provides the following functions:

silk.get configuration(name=None)

When name is None, return a dictionary whose keys specify aspects of how SiLK was compiled. When
name is provided, return the dictionary value for that key, or None when name is an unknown key.
The dictionary’s keys and their meanings are:

COMPRESSION METHODS

A list of strings specifying the compression methods that were compiled into this build of SiLK.
The list will contain one or more of NO COMPRESSION, ZLIB, LZO1X, and/or SNAPPY.

INITIAL TCPFLAGS ENABLED

True if SiLK was compiled with support for initial TCP flags; False otherwise.

IPV6 ENABLED

True if SiLK was compiled with IPv6 support; False otherwise.

SILK VERSION

The version of SiLK linked with PySiLK, as a string.

TIMEZONE SUPPORT

The string UTC if SiLK was compiled to use UTC, or the string local if SiLK was compiled to
use the local timezone.

Since SiLK 3.8.1.

silk.ipv6 enabled()

Return True if SiLK was compiled with IPv6 support, False otherwise.

silk.initial tcpflags enabled()

Return True if SiLK was compiled with support for initial TCP flags, False otherwise.

silk.init country codes(filename=None)

Initialize PySiLK’s country code database. filename should be the path to a country code prefix map, as
created by rwgeoip2ccmap(1). If filename is not supplied, SiLK will look first for the file specified by
$SILK COUNTRY CODES, and then for a file named country codes.pmap in $SILK PATH/share/silk,
$SILK PATH/share, /usr/local/share/silk, and /usr/local/share. (The latter two assume that SiLK
was installed in /usr/local.) Will throw a RuntimeError if loading the country code prefix map fails.

silk.silk version()

Return the version of SiLK linked with PySiLK, as a string.

IPAddr Object

An IPAddr object represents an IPv4 or IPv6 address. These two types of addresses are represented by
two subclasses of IPAddr: IPv4Addr and IPv6Addr.

SiLK-3.23.1 541

pysilk(3) The SiLK Reference Guide

class silk.IPAddr(address)

The constructor takes a string address, which must be a string representation of either an IPv4 or IPv6
address, or an IPAddr object. IPv6 addresses are only accepted if silk.ipv6 enabled() returns True.
The IPAddr object that the constructor returns will be either an IPv4Addr object or an IPv6Addr
object.

For compatibility with releases prior to SiLK 2.2.0, the IPAddr constructor will also accept an integer
address, in which case it converts that integer to an IPv4Addr object. This behavior is deprecated.
Use the IPv4Addr and IPv6Addr constructors instead.

Examples:

>>> addr1 = IPAddr(’192.160.1.1’)

>>> addr2 = IPAddr(’2001:db8::1428:57ab’)

>>> addr3 = IPAddr(’::ffff:12.34.56.78’)

>>> addr4 = IPAddr(addr1)

>>> addr5 = IPAddr(addr2)

>>> addr6 = IPAddr(0x10000000) # Deprecated as of SiLK 2.2.0

Supported operations and methods:

Inequality Operations

In all the below inequality operations, whenever an IPv4 address is compared to an IPv6 address, the
IPv4 address is converted to an IPv6 address before comparison. This means that IPAddr(”0.0.0.0”)
== IPAddr(”::ffff:0.0.0.0”).

addr1 == addr2

Return True if addr1 is equal to addr2 ; False otherwise.

addr1 != addr2

Return False if addr1 is equal to addr2 ; True otherwise.

addr1 < addr2

Return True if addr1 is less than addr2 ; False otherwise.

addr1 <= addr2

Return True if addr1 is less than or equal to addr2 ; False otherwise.

addr1 >= addr2

Return True if addr1 is greater than or equal to addr2 ; False otherwise.

addr1 > addr2

Return True if addr1 is greater than addr2 ; False otherwise.

addr.is ipv6()

Return True if addr is an IPv6 address, False otherwise.

addr.isipv6()

(DEPRECATED in SiLK 2.2.0) An alias for is ipv6().

addr.to ipv6()

If addr is an IPv6Addr, return a copy of addr. Otherwise, return a new IPv6Addr mapping addr
into the ::ffff:0:0/96 prefix.

542 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

addr.to ipv4()

If addr is an IPv4Addr, return a copy of addr. If addr is in the ::ffff:0:0/96 prefix, return a new
IPv4Addr containing the IPv4 address. Otherwise, return None.

int(addr)

Return the integer representation of addr. For an IPv4 address, this is a 32-bit number. For an IPv6
address, this is a 128-bit number.

str(addr)

Return a human-readable representation of addr in its canonical form.

addr.padded()

Return a human-readable representation of addr which is fully padded with zeroes. With IPv4, it
will return a string of the form ”xxx.xxx.xxx.xxx”. With IPv6, it will return a string of the form
”xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx”.

addr.octets()

Return a tuple of integers representing the octets of addr. The tuple’s length is 4 for an IPv4 address
and 16 for an IPv6 address.

addr.mask(mask)

Return a copy of addr masked by the IPAddr mask.

When both addresses are either IPv4 or IPv6, applying the mask is straightforward.

If addr is IPv6 but mask is IPv4, mask is converted to IPv6 and then the mask is applied. This may
result in an odd result.

If addr is IPv4 and mask is IPv6, addr will remain an IPv4 address if masking mask with
::ffff:0000:0000 results in ::ffff:0000:0000, (namely, if bytes 10 and 11 of mask are 0xFFFF).
Otherwise, addr is converted to an IPv6 address and the mask is performed in IPv6 space, which may
result in an odd result.

addr.mask prefix(prefix)

Return a copy of addr masked by the high prefix bits. All bits below the prefix th bit will be set to
zero. The maximum value for prefix is 32 for an IPv4Addr, and 128 for an IPv6Addr.

addr.country code()

Return the two character country code associated with addr. If no country code is associated with addr,
return None. The country code association is initialized by the silk.init country codes() function. If
init country codes() is not called before calling this method, it will act as if init country codes()
was called with no argument.

IPv4Addr Object

An IPv4Addr object represents an IPv4 address. IPv4Addr is a subclass of IPAddr, and supports all
operations and methods that IPAddr supports.

class silk.IPv4Addr(address)

The constructor takes a string address, which must be a string representation of IPv4 address, an
IPAddr object, or an integer. A string will be parsed as an IPv4 address. An IPv4Addr object will
be copied. An IPv6Addr object will be converted to an IPv4 address, or throw a ValueError if the
conversion is not possible. A 32-bit integer will be converted to an IPv4 address.

Examples:

SiLK -3.23.1 543

pysilk(3) The SiLK Reference Guide

>>> addr1 = IPv4Addr(’192.160.1.1’)

>>> addr2 = IPv4Addr(IPAddr(’::ffff:12.34.56.78’))

>>> addr3 = IPv4Addr(addr1)

>>> addr4 = IPv4Addr(0x10000000)

IPv6Addr Object

An IPv6Addr object represents an IPv6 address. IPv6Addr is a subclass of IPAddr, and supports all
operations and methods that IPAddr supports.

class silk.IPv6Addr(address)

The constructor takes a string address, which must be a string representation of either an IPv6 address,
an IPAddr object, or an integer. A string will be parsed as an IPv6 address. An IPv6Addr object
will be copied. An IPv4Addr object will be converted to an IPv6 address. A 128-bit integer will be
converted to an IPv6 address.

Examples:

>>> addr1 = IPAddr(’2001:db8::1428:57ab’)

>>> addr2 = IPv6Addr(IPAddr(’192.160.1.1’))

>>> addr3 = IPv6Addr(addr1)

>>> addr4 = IPv6Addr(0x100000000000000000000000)

IPWildcard Object

An IPWildcard object represents a range or block of IP addresses. The IPWildcard object handles iteration
over IP addresses with for x in wildcard .

class silk.IPWildcard(wildcard)

The constructor takes a string representation wildcard of the wildcard address. The string wildcard can
be an IP address, an IP with a CIDR notation, an integer, an integer with a CIDR designation, or an
entry in SiLK wildcard notation. In SiLK wildcard notation, a wildcard is represented as an IP address
in canonical form with each octet (IPv4) or hexadectet (IPv6) represented by one of following: a value,
a range of values, a comma separated list of values and ranges, or the character ’x’ used to represent
the entire octet or hexadectet. IPv6 wildcard addresses are only accepted if silk.ipv6 enabled() returns
True. The wildcard element can also be an IPWildcard, in which case a duplicate reference is returned.

Examples:

>>> a = IPWildcard(’1.2.3.0/24’)

>>> b = IPWildcard(’ff80::/16’)

>>> c = IPWildcard(’1.2.3.4’)

>>> d = IPWildcard(’::ffff:0102:0304’)

>>> e = IPWildcard(’16909056’)

>>> f = IPWildcard(’16909056/24’)

>>> g = IPWildcard(’1.2.3.x’)

>>> h = IPWildcard(’1:2:3:4:5:6:7.x’)

>>> i = IPWildcard(’1.2,3.4,5.6,7’)

>>> j = IPWildcard(’1.2.3.0-255’)

>>> k = IPWildcard(’::2-4’)

>>> l = IPWildcard(’1-2:3-4:5-6:7-8:9-a:b-c:d-e:0-ffff’)

>>> m = IPWildcard(a)

544 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

Supported operations and methods:

addr in wildcard

Return True if addr is in wildcard, False otherwise.

addr not in wildcard

Return False if addr is in wildcard, True otherwise.

string in wildcard

Return the result of IPAddr(string) in wildcard .

string not in wildcard

Return the result of IPAddr(string) not in wildcard .

wildcard.is ipv6()

Return True if wildcard contains IPv6 addresses, False otherwise.

str(wildcard)

Return the string that was used to construct wildcard.

IPSet Object

An IPSet object represents a set of IP addresses, as produced by rwset(1) and rwsetbuild(1). The IPSet
object handles iteration over IP addresses with for x in set , and iteration over CIDR blocks using for x
in set.cidr iter().

In the following documentation, and ip iterable can be any of:

• an IPAddr object representing an IP address

• the string representation of a valid IP address

• an IPWildcard object

• the string representation of an IPWildcard

• an iterable of any combination of the above

• another IPSet object

class silk.IPSet([ip iterable])

The constructor creates an empty IPset. If an ip iterable is supplied as an argument, each member of
ip iterable will be added to the IPset.

Other constructors, all class methods:

silk.IPSet.load(path)

Create an IPSet by reading a SiLK IPset file. path must be a valid location of an IPset.

Other class methods:

SiLK-3.23.1 545

pysilk(3) The SiLK Reference Guide

silk.IPSet.supports ipv6()

Return whether this implementation of IPsets supports IPv6 addresses.

Supported operations and methods:

In the lists of operations and methods below,

• set is an IPSet object

• addr can be an IPAddr object or the string representation of an IP address.

• set2 is an IPSet object. The operator versions of the methods require an IPSet object.

• ip iterable is an iterable over IP addresses as accepted by the IPSet constructor. Consider ip iterable
as creating a temporary IPSet to perform the requested method.

The following operations and methods do not modify the IPSet:

set.cardinality()

Return the cardinality of set.

len(set)

Return the cardinality of set. In Python 2.x, this method will raise OverflowError if the number of
IPs in the set cannot be represented by Python’s Plain Integer type--that is, if the value is larger than
sys.maxint. The cardinality() method will not raise this exception.

set.is ipv6()

Return True if set is a set of IPv6 addresses, and False if it a set of IPv4 addresses. For the purposes
of this method, IPv4-in-IPv6 addresses (that is, addresses in the ::ffff:0:0/96 prefix) are considered
IPv6 addresses.

addr in set

Return True if addr is a member of set ; False otherwise.

addr not in set

Return False if addr is a member of set ; True otherwise.

set.copy()

Return a new IPSet with a copy of set.

set.issubset(ip iterable)

set <= set2

Return True if every IP address in set is also in set2. Return False otherwise.

set.issuperset(ip iterable)

set >= set2

Return True if every IP address in set2 is also in set. Return False otherwise.

set.union(ip iterable[, ...])

546 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

set | other | ...
Return a new IPset containing the IP addresses in set and all others.

set.intersection(ip iterable[, ...])

set & other & ...

Return a new IPset containing the IP addresses common to set and others.

set.difference(ip iterable[, ...])

set - other - ...

Return a new IPset containing the IP addresses in set but not in others.

set.symmetric difference(ip iterable)

set ˆ other

Return a new IPset containing the IP addresses in either set or in other but not in both.

set.isdisjoint(ip iterable)

Return True when none of the IP addresses in ip iterable are present in set. Return False otherwise.

set.cidr iter()

Return an iterator over the CIDR blocks in set. Each iteration returns a 2-tuple, the first element of
which is the first IP address in the block, the second of which is the prefix length of the block. Can be
used as for (addr, prefix) in set.cidr iter().

set.save(filename, compression=DEFAULT)

Save the contents of set in the file filename. The compression determines the compression method
used when outputting the file. Valid values are the same as those in silk.silkfile open().

The following operations and methods will modify the IPSet:

set.add(addr)

Add addr to set and return set. To add multiple IP addresses, use the add range() or update()
methods.

set.discard(addr)

Remove addr from set if addr is present; do nothing if it is not. Return set. To discard multiple IP
addresses, use the difference update() method. See also the remove() method.

set.remove(addr)

Similar to discard(), but raise KeyError if addr is not a member of set.

set.pop()

Remove and return an arbitrary address from set. Raise KeyError if set is empty.

set.clear()

Remove all IP addresses from set and return set.

set.convert(version)

Convert set to an IPv4 IPset if version is 4 or to an IPv6 IPset if version is 6. Return set. Raise
ValueError if version is not 4 or 6. If version is 4 and set contains IPv6 addresses outside of the
::ffff:0:0/96 prefix, raise ValueError and leave set unchanged.

SiLK-3.23.1 547

pysilk(3) The SiLK Reference Guide

set.add range(start, end)

Add all IP addresses between start and end, inclusive, to set. Raise ValueError if end is less than
start.

set.update(ip iterable[, ...])

set |= other | ...
Add the IP addresses specified in others to set ; the result is the union of set and others.

set.intersection update(ip iterable[, ...])

set &= other & ...

Remove from set any IP address that does not appear in others; the result is the intersection of set
and others.

set.difference update(ip iterable[, ...])

set -= other | ...
Remove from set any IP address found in others; the result is the difference of set and others.

set.symmetric difference update(ip iterable)

set ˆ= other

Update set, keeping the IP addresses found in set or in other but not in both.

RWRec Object

An RWRec object represents a SiLK Flow record.

class silk.RWRec([rec] ,[field=value] ,...)

This constructor creates an empty RWRec object. If an RWRec rec is supplied, the constructor
will create a copy of it. The variable rec can be a dictionary, such as that supplied by the as dict()
method. Initial values for record fields can be included.

Example:

>>> recA = RWRec(input=10, output=20)

>>> recB = RWRec(recA, output=30)

>>> (recA.input, recA.output)

(10, 20)

>>> (recB.input, recB.output)

(10, 30)

Instance attributes:

Accessing or setting attributes on an RWRec whose descriptions mention functions in the silk.site module
causes the silk.site.init site() function to be called with no argument if it has not yet been called successfully-
--that is, if silk.site.have site config() returns False.

rec.application

The service port of the flow rec as set by the flow meter if the meter supports it, a 16-bit unsigned
integer. The yaf(1) flow meter refers to this value as the appLabel. The default application value is 0.

548 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

rec.bytes

The count of the number of bytes in the flow rec, a 64-bit unsigned integer. The default bytes value is
0. Prior to SiLK 3.23, rec.bytes was a 32-bit unsigned integer.

rec.classname

(READ ONLY) The class name assigned to the flow rec, a string. This value is first member of the
tuple returned by the rec.classtype attribute, which see.

rec.classtype

A 2-tuple containing the classname and the typename of the flow rec. Getting the value returns the
result of §??. If that function throws an error, the result is a 2-tuple containing the string ? and a string
representation of rec.classtype id. Setting the value to (class,type) sets rec.classtype id to the result of
§??. If that function throws an error because the (class,type) pair is unknown, rec is unchanged and
ValueError is thrown.

rec.classtype id

The ID for the class and type of the flow rec, an 8-bit unsigned integer. The default classtype id value
is 255. Changes to this value are reflected in the rec.classtype attribute. The classtype id attribute
may be set to a value that is considered invalid by the silk.site.

rec.dip

The destination IP of the flow rec, an IPAddr object. The default dip value is IPAddr(’0.0.0.0’). May
be set using a string containing a valid IP address.

rec.dport

The destination port of the flow rec, a 16-bit unsigned integer. The default dport value is 0. Since the
destination port field is also used to store the values for the ICMP type and code, setting this value
may modify rec.icmptype and rec.icmpcode.

rec.duration

The duration of the flow rec, a datetime.timedelta object. The default duration value is 0. Changing
the rec.duration attribute will modify the rec.etime attribute such that (rec.etime - rec.stime) == the
new rec.duration. The maximum possible duration is datetime.timedelta(milliseconds=0xffffffff). See
also rec.duration secs.

rec.duration secs

The duration of the flow rec in seconds, a float that includes fractional seconds. The default dura-
tion secs value is 0. Changing the rec.duration secs attribute will modify the rec.etime attribute in the
same way as changing rec.duration. The maximum possible duration secs value is 4294967.295.

rec.etime

The end time of the flow rec, a datetime.datetime object. The default etime value is the UNIX epoch
time, datetime.datetime(1970,1,1,0,0). Changing the rec.etime attribute modifies the flow record’s
duration. If the new duration would become negative or would become larger than RWRec supports,
a ValueError will be raised. See also rec.etime epoch secs.

rec.etime epoch secs

The end time of the flow rec as a number of seconds since the epoch time, a float that includes
fractional seconds. Epoch time is 1970-01-01 00:00:00 UTC. The default etime epoch secs value is 0.
Changing the rec.etime epoch secs attribute modifies the flow record’s duration. If the new duration
would become negative or would become larger than RWRec supports, a ValueError will be raised.

SiLK-3.23.1 549

pysilk(3) The SiLK Reference Guide

rec.initial tcpflags

The TCP flags on the first packet of the flow rec, a TCPFlags object. The default initial tcpflags
value is None. The rec.initial tcpflags attribute may be set to a new TCPFlags object, or a string
or number which can be converted to a TCPFlags object by the TCPFlags() constructor. Set-
ting rec.initial tcpflags when rec.session tcpflags is None sets the latter to TCPFlags(”). Setting
rec.initial tcpflags or rec.session tcpflags sets rec.tcpflags to the binary OR of their values. Trying to
set rec.initial tcpflags when rec.protocol is not 6 (TCP) will raise an AttributeError.

rec.icmpcode

The ICMP code of the flow rec, an 8-bit unsigned integer. The default icmpcode value is 0. The value
is only meaningful when rec.protocol is ICMP (1) or when rec.is ipv6() is True and rec.protocol is
ICMPv6 (58). Since a record’s ICMP type and code are stored in the destination port, setting this
value may modify rec.dport.

rec.icmptype

The ICMP type of the flow rec, an 8-bit unsigned integer. The default icmptype value is 0. The value
is only meaningful when rec.protocol is ICMP (1) or when rec.is ipv6() is True and rec.protocol is
ICMPv6 (58). Since a record’s ICMP type and code are stored in the destination port, setting this
value may modify rec.dport.

rec.input

The SNMP interface where the flow rec entered the router or the vlanId if the packing tools are
configured to capture it (see sensor.conf(5)), a 32-bit unsigned integer. The default input value is 0.
Prior to SiLK 3.23, rec.input was a 16-bit unsigned integer.

rec.nhip

The next-hop IP of the flow rec as set by the router, an IPAddr object. The default nhip value is
IPAddr(’0.0.0.0’). May be set using a string containing a valid IP address.

rec.output

The SNMP interface where the flow rec exited the router or the postVlanId if the packing tools are
configured to capture it (see sensor.conf(5)), a 32-bit unsigned integer. The default output value is
0. Prior to SiLK 3.23, rec.output was a 16-bit unsigned integer.

rec.packets

The packet count for the flow rec, a 64-bit unsigned integer. The default packets value is 0. Prior to
SiLK 3.23, rec.packets was a 32-bit unsigned integer.

rec.protocol

The IP protocol of the flow rec, an 8-bit unsigned integer. The default protocol value is 0. Setting
rec.protocol to a value other than 6 (TCP) causes rec.initial tcpflags and rec.session tcpflags to be set
to None.

rec.sensor

The name of the sensor where the flow rec was collected, a string. Getting the value returns the
result of §??. If that function throws an error, the result is a string representation of rec.sensor id
or the string ? when sensor id is 65535. Setting the value to sensor name sets rec.sensor id to the
result of §??. If that function throws an error because sensor name is unknown, rec is unchanged and
ValueError is thrown.

550 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

rec.sensor id

The ID of the sensor where the flow rec was collected, a 16-bit unsigned integer. The default sensor id
value is 65535. Changes to this value are reflected in the rec.sensor attribute. The sensor id attribute
may be set to a value that is considered invalid by silk.site.

rec.session tcpflags

The union of the flags of all but the first packet in the flow rec, a TCPFlags object. The default ses-
sion tcpflags value is None. The rec.session tcpflags attribute may be set to a new TCPFlags object,
or a string or number which can be converted to a TCPFlags object by the TCPFlags() constructor.
Setting rec.session tcpflags when rec.initial tcpflags is None sets the latter to TCPFlags(”). Setting
rec.initial tcpflags or rec.session tcpflags sets rec.tcpflags to the binary OR of their values. Trying to
set rec.session tcpflags when rec.protocol is not 6 (TCP) will raise an AttributeError.

rec.sip

The source IP of the flow rec, an IPAddr object. The default sip value is IPAddr(’0.0.0.0’). May be
set using a string containing a valid IP address.

rec.sport

The source port of the flow rec, an unsigned integer. The default sport value is 0.

rec.stime

The start time of the flow rec, a datetime.datetime object. The default stime value is the UNIX
epoch time, datetime.datetime(1970,1,1,0,0). Modifying the rec.stime attribute will modify the flow’s
end time such that rec.duration is constant. The maximum possible stime is 2038-01-19 03:14:07 UTC.
See also rec.etime epoch secs.

rec.stime epoch secs

The start time of the flow rec as a number of seconds since the epoch time, a float that includes
fractional seconds. Epoch time is 1970-01-01 00:00:00 UTC. The default stime epoch secs value is 0.
Changing the rec.stime epoch secs attribute will modify the flow’s end time such that rec.duration is
constant. The maximum possible stime epoch secs is 2147483647 (2ˆ31-1).

rec.tcpflags

The union of the TCP flags of all packets in the flow rec, a TCPFlags object. The default tcpflags
value is TCPFlags(’ ’). The rec.tcpflags attribute may be set to a new TCPFlags object, or a string
or number which can be converted to a TCPFlags object by the TCPFlags() constructor. Setting
rec.tcpflags sets rec.initial tcpflags and rec.session tcpflags to None. Setting rec.initial tcpflags or
rec.session tcpflags changes rec.tcpflags to the binary OR of their values.

rec.timeout killed

Whether the flow rec was closed early due to timeout by the collector, a boolean. The default time-
out killed value is False.

rec.timeout started

Whether the flow rec is a continuation from a timed-out flow, a boolean. The default timeout started
value is False.

rec.typename

(READ ONLY) The type name of the flow rec, a string. This value is second member of the tuple
returned by the rec.classtype attribute, which see.

SiLK-3.23.1 551

pysilk(3) The SiLK Reference Guide

rec.uniform packets

Whether the flow rec contained only packets of the same size, a boolean. The default uniform packets
value is False.

Supported operations and methods:

rec.is icmp()

Return True if the protocol of rec is 1 (ICMP) or if the protocol of rec is 58 (ICMPv6) and rec.is ipv6()
is True. Return False otherwise.

rec.is ipv6()

Return True if rec contains IPv6 addresses, False otherwise.

rec.is web()

Return True if rec can be represented as a web record, False otherwise. A record can be represented
as a web record if the protocol is TCP (6) and either the source or destination port is one of 80, 443,
or 8080.

rec.as dict()

Return a dictionary representing the contents of rec. Implicitly calls silk.site.init site() with no argu-
ments if silk.site.have site config() returns False.

rec.to ipv4()

Return a new copy of rec with the IP addresses (sip, dip, and nhip) converted to IPv4. If any of these
addresses cannot be converted to IPv4, (that is, if any address is not in the ::ffff:0:0/96 prefix) return
None.

rec.to ipv6()

Return a new copy of rec with the IP addresses (sip, dip, and nhip) converted to IPv6. Specifically,
the function maps the IPv4 addresses into the ::ffff:0:0/96 prefix.

str(rec)

Return the string representation of rec.as dict().

rec1 == rec2

Return True if rec1 is structurally equivalent to rec2. Return False otherwise.

rec1 != rec2

Return True if rec1 is not structurally equivalent to rec2 Return False otherwise.

SilkFile Object

A SilkFile object represents a channel for writing to or reading from SiLK Flow files. A SiLK file open for
reading can be iterated over using for rec in file .

Creation functions:

silk.silkfile open(filename, mode, compression=DEFAULT, notes=[], invocations=[])

This function takes a filename, a mode, and a set of optional keyword parameters. It returns a SilkFile
object. The mode should be one of the following constant values:

552 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

silk.READ

Open file for reading

silk.WRITE

Open file for writing

silk.APPEND

Open file for appending

The filename should be the path to the file to open. A few filenames are treated specially. The filename
stdin maps to the standard input stream when the mode is READ. The filenames stdout and stderr
map to the standard output and standard error streams respectively when the mode is WRITE. A
filename consisting of a single hyphen (-) maps to the standard input if the mode is READ, and to
the standard output if the mode is WRITE.

The compression parameter may be one of the following constants. (This list assumes SiLK was
built with the required libraries. To check which compression methods are available at your site, see
silk.get configuration(”COMPRESSION METHODS”)).

silk.DEFAULT

Use the default compression scheme compiled into SiLK.

silk.NO COMPRESSION

Use no compression.

silk.ZLIB

Use zlib block compression (as used by gzip(1)).

silk.LZO1X

Use lzo1x block compression.

silk.SNAPPY

Use snappy block compression.

If notes or invocations are set, they should be list of strings. These add annotation and invocation
headers to the file. These values are visible by the rwfileinfo(1) program.

Examples:

>>> myinputfile = silkfile_open(’/path/to/file’, READ)

>>> myoutputfile = silkfile_open(’/path/to/file’, WRITE,

compression=LZO1X,

notes=[’My output file’,

’another annotation’])

silk.silkfile fdopen(fileno, mode, filename=None, compression=DEFAULT, notes=[], invoca-
tions=[])

This function takes an integer file descriptor, a mode, and a set of optional keyword parameters. It
returns a SilkFile object. The filename parameter is used to set the value of the name attribute of
the resulting object. All other parameters work as described in the silk.silkfile open() function.

Deprecated constructor:

class silk.SilkFile(filename, mode, compression=DEFAULT, notes=[], invocations=[])

This constructor creates a SilkFile object. The parameters are identical to those used by the silk-
file open() function. This constructor is deprecated as of SiLK 3.0.0. For future compatibility, please
use the silkfile open() function instead of the SilkFile() constructor to create SilkFile objects.

SiLK-3.23.1 553

pysilk(3) The SiLK Reference Guide

Instance attributes:

file.name

The filename that was used to create file.

file.mode

The mode that was used to create file. Valid values are READ, WRITE, or APPEND.

Instance methods:

file.read()

Return an RWRec representing the next record in the SilkFile file. If there are no records left in the
file, return None.

file.write(rec)

Write the RWRec rec to the SilkFile file. Return None.

file.next()

A SilkFile object is its own iterator. For example, iter(file) returns file. When the SilkFile is used
as an iterator, the next() method is called repeatedly. This method returns the next record, or raises
StopIteration once the end of file is reached

file.skip(count)

Skip the next count records in file and return the number of records skipped. If the return value is
less than count, the end of the file has been reached. At end of file, return 0. Since SiLK 3.19.1.

file.notes()

Return the list of annotation headers for the file as a list of strings.

file.invocations()

Return the list of invocation headers for the file as a list of strings.

file.close()

Close the file and return None.

PrefixMap Object

A PrefixMap object represents an immutable mapping from IP addresses or protocol/port pairs to labels.
PrefixMap objects are created from SiLK prefix map files as created by rwpmapbuild(1).

class silk.PrefixMap(filename)

The constructor creates a prefix map initialized from the filename. The PrefixMap object will be of
one of the two subtypes of PrefixMap: an AddressPrefixMap or a ProtoPortPrefixMap.

Supported operations and methods:

pmap[key]

Return the string label associated with key in pmap. key must be of the correct type: either an
IPAddr if pmap is an AddressPrefixMap, or a 2-tuple of integers (protocol, port), if pmap is a
ProtoPortPrefixMap. The method raises TypeError when the type of the key is incorrect.

554 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

pmap.get(key, default=None)

Return the string label associated with key in pmap. Return the value default if key is not in pmap,
or if key is of the wrong type or value to be a key for pmap.

pmap.values()

Return a tuple of the labels defined by the PrefixMap pmap.

pmap.iterranges()

Return an iterator that will iterate over ranges of contiguous values with the same label. The return
values of the iterator will be the 3-tuple (start, end, label), where start is the first element of the range,
end is the last element of the range, and label is the label for that range.

Bag Object

A Bag object is a representation of a multiset. Each key represents a potential element in the set, and the
key’s value represents the number of times that key is in the set. As such, it is also a reasonable representation
of a mapping from keys to integers.

Please note, however, that despite its set-like properties, Bag objects are not nearly as efficient as IPSet
objects when representing large contiguous ranges of key data.

In PySiLK, the Bag object is designed to look and act similar to Python dictionary objects, and in many
cases Bags and dicts can be used interchangeably. There are differences, however, the primary of which is
that bag[key] returns a value for all values in the key range of the bag. That value will be an integer zero
for all key values that have not been incremented.

class silk.Bag(mapping=None, key type=None, key len=None, counter type=None,
counter len=None)

The constructor creates a bag. All arguments are optional, and can be used as keyword arguments.

If mapping is included, the bag is initialized from that mapping. Valid mappings are:

• a Bag

• a key/value dictionary

• an iterable of key/value pairs

The key type and key len arguments describe the key field of the bag. The key type should be a string from
the list of valid types below. The key len should be an integer describing the number of bytes that will
represent values of key type. The key type argument is case-insensitive.

If key type is not specified, it defaults to ’any-ipv6’, unless silk.ipv6 enabled() is False, in which case the
default is ’any-ipv4’. The one exception to this is when key type is not specified, but key len is specified with
a value of less than 16. In this case, the default type is ’custom’.

Note: Key types that specify IPv6 addresses are not valid if silk.ipv6 enabled() returns False. An error
will be thrown if they are used in this case.

If key len is not specified, it defaults to the default number of bytes for the given key type (which can be
determined by the chart below). If specified, key len must be one of the following integers: 1, 2, 4, 16.

The counter type and counter len arguments describe the counter value of the bag. The counter type should
be a string from the list of valid types below. The counter len should be an integer describing the number
of bytes that will represent valid of counter type. The counter type argument is case insensitive.

SiLK-3.23.1 555

pysilk(3) The SiLK Reference Guide

If counter type is not specified, it defaults to ’custom’.

If counter len is not specified, it defaults to 8. Currently, 8 is the only valid value of counter len.

Here is the list of valid key and counter types, along with their default key len values:

’sIPv4’, 4

’dIPv4’, 4

’sPort’, 2

’dPort’, 2

’protocol’, 1

’packets’, 4

’bytes’, 4

’flags’, 1

’sTime’, 4

’duration’, 4

’eTime’, 4

’sensor’, 2

’input’, 2

’output’, 2

’nhIPv4’, 4

’initialFlags’, 1

’sessionFlags’, 1

’attributes’, 1

’application’, 2

’class’, 1

’type’, 1

’icmpTypeCode’, 2

’sIPv6’, 16

’dIPv6’, 16

’nhIPv6’, 16

’records’, 4

’sum-packets’, 4

’sum-bytes’, 4

’sum-duration’, 4

556 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

’any-ipv4’, 4

’any-ipv6’, 16

’any-port’, 2

’any-snmp’, 2

’any-time’, 4

’custom’, 4

Deprecation Notice: For compatibility with SiLK 2.x, the key type argument may be a Python class. An
object of the key type class must be constructable from an integer, and it must possess an int () method
which retrieves that integer from the object. Regardless of the maximum integer value supported by the
key type class, internally the bag will store the keys as type ’custom’ with length 4.

Other constructors, all class methods:

silk.Bag.ipaddr(mapping , counter type=None, counter len=None)

Creates a Bag using ’any-ipv6’ as the key type (or ’any-ipv4’ if silk.ipv6 enabled() is False).
counter type and counter len are used as in the standard Bag constructor. Equivalent to
Bag(mapping).

silk.Bag.integer(mapping , key len=None, counter type=None, counter len=None)

Creates a Bag using ’custom’ as the key type (integer bag). key len, counter type, and counter len are
used as in the standard Bag constructor. Equivalent to Bag(mapping, key type=’custom’).

silk.Bag.load(path, key type=None)

Creates a Bag by reading a SiLK bag file. path must be a valid location of a bag. When present, the
key type argument is used as in the Bag constructor, ignoring the key type specified in the bag file.
When key type is not provided and the bag file does not contain type information, the key is set to
’custom’ with a length of 4.

silk.Bag.load ipaddr(path)

Creates an IP address bag from a SiLK bag file. Equivalent to
Bag.load(path, key type = IPv4Addr). This constructor is deprecated as of SiLK 3.2.0.

silk.Bag.load integer(path)

Creates an integer bag from a SiLK bag file. Equivalent to Bag.load(path, key type = int). This
constructor is deprecated as of SiLK 3.2.0.

Constants:

silk.BAG COUNTER MAX

This constant contains the maximum possible value for Bag counters.

Other class methods:

silk.Bag.field types()

Returns a tuple of strings which are valid key type or counter type values.

SiLK-3.23.1 557

pysilk(3) The SiLK Reference Guide

silk.Bag.type merge(type a, type b)

Given two types from Bag.field types(), returns the type that would be given (by default)
to a bag that is a result of the co-mingling of two bags of the given types. For example:
Bag.type merge(’sport’,’dport’) == ’any-port’.

Supported operations and methods:

In the lists of operations and methods below,

• bag and bag2 are Bag objects

• key and key2 are IPAddrs for bags that contain IP addresses, or integers for other bags

• value and value2 are integers which represent the counter associated a key in the bag

• ipset is an IPSet object

• ipwildcard is an IPWildcard object

The following operations and methods do not modify the Bag:

bag.get info()

Return information about the keys and counters of the bag. The return value is a dictionary with the
following keys and values:

’key type’

The current key type, as a string.

’key len’

The current key length in bytes.

’counter type’

The current counter type, as a string.

’counter len’

The current counter length in bytes.

The keys have the same names as the keyword arguments to the bag constructor. As a result, a bag
with the same key and value information as an existing bag can be generated by using the following
idiom: Bag(**bag.get info()).

bag.copy()

Return a new Bag which is a copy of bag.

bag [key]

Return the counter value associated with key in bag.

bag [key :key2] or bag [key,key2,...]

Return a new Bag which contains only the elements in the key range [key, key2), or a new Bag
containing only the given elements in the comma-separated list. In point of fact, the argument(s) in
brackets can be any number of comma separated keys or key ranges. For example: bag [1,5,15:18,20]
will return a bag which contains the elements 1, 5, 15, 16, 17, and 20 from bag.

558 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

bag [ipset]

Return a new Bag which contains only elements in bag that are also contained in ipset. This is only
valid for IP address bags. The ipset can be included as part of a comma-separated list of slices, as
above.

bag [ipwildcard]

Return a new Bag which contains only elements that are also contained in ipwildcard. This is only
valid for IP address bags. The ipwildcard can be included as part of a comma-separated list of slices,
as above.

key in bag

Return True if bag [key] is non-zero, False otherwise.

bag.get(key, default=None)

Return bag [key] if key is in bag, otherwise return default.

bag.items()

Return a list of (key, value) pairs for all keys in bag with non-zero values. This list is not guaranteed
to be sorted in any order.

bag.iteritems()

Return an iterator over (key, value) pairs for all keys in bag with non-zero values. This iterator is
not guaranteed to iterate over items in any order.

bag.sorted iter()

Return an iterator over (key, value) pairs for all keys in bag with non-zero values. This iterator is
guaranteed to iterate over items in key-sorted order.

bag.keys()

Return a list of keys for all keys in bag with non-zero values. This list is guaranteed to be in key-sorted
order.

bag.iterkeys()

Return an iterkeys over keys for all keys in bag with non-zero values. This iterator is not guaranteed
to iterate over keys in any order.

bag.values()

Return a list of values for all keys in bag with non-zero values. The list is guaranteed to be in key-sorted
order.

bag.itervalues()

Return an iterator over values for all keys in bag with non-zero values. This iterator is not guaranteed
iterate over values in any order, but the order is consistent with that returned by iterkeys().

bag.group iterator(bag2)

Return an iterator over keys and values of a pair of Bags. For each key which is in either bag or
bag2, this iterator will return a (key, value, value2) triple, where value is bag.get(key), and value2
is bag.get(key). This iterator is guaranteed to iterate over triples in key order.

bag + bag2

Add two bags together. Return a new Bag for which newbag [key] = bag [key] + bag2 [key] for
all keys in bag and bag2. Will raise an OverflowError if the resulting value for a key is greater than
BAG COUNTER MAX. If the two bags are of different types, the resulting bag will be of a type
determined by Bag.type merge().

SiLK-3.23.1 559

pysilk(3) The SiLK Reference Guide

bag - bag2

Subtract two bags. Return a new Bag for which newbag [key] = bag [key] - bag2 [key] for all keys
in bag and bag2, as long as the resulting value for that key would be non-negative. If the resulting
value for a key would be negative, the value of that key will be zero. If the two bags are of different
types, the resulting bag will be of a type determined by Bag.type merge().

bag.min(bag2)

Return a new Bag for which newbag [key] = min(bag [key], bag2 [key]) for all keys in bag and bag2.

bag.max(bag2)

Return a new Bag for which newbag [key] = max(bag [key], bag2 [key]) for all keys in bag and
bag2.

bag.div(bag2)

Divide two bags. Return a new Bag for which newbag [key] = bag [key] / bag2 [key]) rounded to
the nearest integer for all keys in bag and bag2, as long as bag2 [key] is non-zero. newbag [key] = 0
when bag2 [key] is zero. If the two bags are of different types, the resulting bag will be of a type
determined by Bag.type merge().

bag * integer

integer * bag

Multiple a bag by a scalar. Return a new Bag for which newbag [key] = bag [key] * integer for all
keys in bag.

bag.intersect(set like)

Return a new Bag which contains bag [key] for each key where key in set like is true. set like is any
argument that supports Python’s in operator, including Bags, IPSets, IPWildcards, and Python sets,
lists, tuples, et cetera.

bag.complement intersect(set like)

Return a new Bag which contains bag [key] for each key where key in set like is not true.

bag.ipset()

Return an IPSet consisting of the set of IP address key values from bag with non-zero values. This
only works if bag is an IP address bag.

bag.inversion()

Return a new integer Bag for which all values from bag are inserted as key elements. Hence, if two
keys in bag have a value of 5, newbag [5] will be equal to two.

bag == bag2

Return True if the contents of bag are equivalent to the contents of bag2, False otherwise.

bag != bag2

Return False if the contents of bag are equivalent to the contents of bag2, True otherwise.

bag.save(filename, compression=DEFAULT)

Save the contents of bag in the file filename. The compression determines the compression method
used when outputting the file. Valid values are the same as those in silk.silkfile open().

The following operations and methods will modify the Bag:

560 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

bag.clear()

Empty bag, such that bag [key] is zero for all keys.

bag [key] = value

Set the number of key in bag to value.

del bag [key]

Remove key from bag, such that bag [key] is zero.

bag.update(mapping)

For each item in mapping, bag is modified such that for each key in mapping, the value for that key in
bag will be set to the mapping’s value. Valid mappings are those accepted by the Bag() constructor.

bag.add(key [, key2 [, ...]])

Add one of each key to bag. This is the same as incrementing the value for each key by one.

bag.add(iterable)

Add one of each key in iterable to bag. This is the same as incrementing the value for each key by one.

bag.remove(key [, key2 [, ...]])

Remove one of each key from bag. This is the same as decrementing the value for each key by one.

bag.remove(iterable)

Remove one of each key in iterable from bag. This is the same as decrementing the value for each key
by one.

bag.incr(key, value = 1)

Increment the number of key in bag by value. value defaults to one.

bag.decr(key, value = 1)

Decrement the number of key in bag by value. value defaults to one.

bag += bag2

Equivalent to bag = bag + bag2 , unless an OverflowError is raised, in which case bag is
no longer necessarily valid. When an error is not raised, this operation takes less memory than
bag = bag + bag2 . This operation can change the type of bag, as determined by Bag.type merge().

bag -= bag2

Equivalent to bag = bag - bag2 . This operation takes less memory than bag = bag - bag2 . This
operation can change the type of bag, as determined by Bag.type merge().

bag *= integer

Equivalent to bag = bag * integer , unless an OverflowError is raised, in which case bag is no longer
necessarily valid. When an error is not raised, this operation takes less memory than bag = bag * in-
teger .

bag.constrain values(min=None, max=None)

Remove key from bag if that key’s value is less than min or greater than max. At least one of min or
max must be specified.

bag.constrain keys(min=None, max=None)

Remove key from bag if that key is less than min, or greater than max. At least one of min or max
must be specified.

SiLK-3.23.1 561

pysilk(3) The SiLK Reference Guide

TCPFlags Object

A TCPFlags object represents the eight bits of flags from a TCP session.

class silk.TCPFlags(value)

The constructor takes either a TCPFlags value, a string, or an integer. If a TCPFlags value, it
returns a copy of that value. If an integer, the integer should represent the 8-bit representation of the
flags. If a string, the string should consist of a concatenation of zero or more of the characters F, S, R,
P, A, U, E, and C---upper or lower-case---representing the FIN, SYN, RST, PSH, ACK, URG, ECE, and
CWR flags. As of SiLK 3.20.0, the constructor accepts - which sets all flags in the contructor. Spaces
in the string are ignored.

Examples:

>>> a = TCPFlags(’SA’)

>>> b = TCPFlags(5)

Instance attributes (read-only):

flags.fin

True if the FIN flag is set on flags, False otherwise

flags.syn

True if the SYN flag is set on flags, False otherwise

flags.rst

True if the RST flag is set on flags, False otherwise

flags.psh

True if the PSH flag is set on flags, False otherwise

flags.ack

True if the ACK flag is set on flags, False otherwise

flags.urg

True if the URG flag is set on flags, False otherwise

flags.ece

True if the ECE flag is set on flags, False otherwise

flags.cwr

True if the CWR flag is set on flags, False otherwise

Supported operations and methods:

~flags

Return the bitwise inversion (not) of flags

flags1 & flags2

Return the bitwise intersection (and) of the flags from flags1 and flags2

562 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

flags1 | flags2
Return the bitwise union (or) of the flags from flags1 and flags2.

flags1 ˆ flags2

Return the bitwise exclusive disjunction (xor) of the flags from flags1 and flags2.

int(flags)

Return the integer value of the flags set in flags.

str(flags)

Return a string representation of the flags set in flags.

flags.padded()

Return a string representation of the flags set in flags. This representation will be padded with spaces
such that flags will line up if printed above each other.

flags

When used in a setting that expects a boolean, return True if any flag value is set in flags. Return
False otherwise.

flags.matches(flagmask)

Given flagmask, a string of the form high flags/mask flags, return True if the flags of flags match
high flags after being masked with mask flags; False otherwise. Given a flagmask without the slash
(/), return True if all bits in flagmask are set in flags. I.e., a flagmask without a slash is interpreted
as ”flagmask/flagmask”.

Constants:

The following constants are defined:

silk.TCP FIN

A TCPFlags value with only the FIN flag set

silk.TCP SYN

A TCPFlags value with only the SYN flag set

silk.TCP RST

A TCPFlags value with only the RST flag set

silk.TCP PSH

A TCPFlags value with only the PSH flag set

silk.TCP ACK

A TCPFlags value with only the ACK flag set

silk.TCP URG

A TCPFlags value with only the URG flag set

silk.TCP ECE

A TCPFlags value with only the ECE flag set

silk.TCP CWR

A TCPFlags value with only the CWR flag set

SiLK-3.23.1 563

pysilk(3) The SiLK Reference Guide

FGlob Object

An FGlob object is an iterable object which iterates over filenames from a SiLK data store. It does this
internally by calling the rwfglob(1) program. The FGlob object assumes that the rwfglob program is in
the PATH, and will raise an exception when used if not.

Note: It is generally better to use the silk.site.repository iter() function from the silk.site Module instead of
the FGlob object, as that function does not require the external rwfglob program. However, the FGlob
constructor allows you to use a different site configuration file every time, whereas the silk.site.init site()
function only supports a single site configuration file.

class silk.FGlob(classname=None, type=None, sensors=None, start date=None,
end date=None, data rootdir=None, site config file=None)

Although all arguments have defaults, at least one of classname, type, sensors, start date must be
specified. The arguments are:

classname

if given, should be a string representing the class name. If not given, defaults based on the site
configuration file, silk.conf(5).

type

if given, can be either a string representing a type name or comma-separated list of type names,
or can be a list of strings representing type names. If not given, defaults based on the site
configuration file, silk.conf.

sensors

if given, should be either a string representing a comma-separated list of sensor names or IDs,
and integer representing a sensor ID, or a list of strings or integers representing sensor names or
IDs. If not given, defaults to all sensors.

start date

if given, should be either a string in the format YYYY/MM/DD[:HH], a date object, a datetime
object (which will be used to the precision of one hour), or a time object (which is used for the
given hour on the current date). If not given, defaults to start of current day.

end date

if given, should be either a string in the format YYYY/MM/DD[:HH], a date object, a datetime
object (which will be used to the precision of one hour), or a time object (which is used for the
given hour on the current date). If not given, defaults to start date. The end date cannot be
specified without a start date.

data rootdir

if given, should be a string representing the directory in which to find the packed SiLK data files.
If not given, defaults to the value in the SILK DATA ROOTDIR environment variable or the
compiled-in default (/data).

site config file

if given, should be a string representing the path of the site configuration file, silk.conf.
If not given, defaults to the value in the SILK CONFIG FILE environment variable or
$SILK DATA ROOTDIR/silk.conf.

An FGlob object can be used as a standard iterator. For example:

for filename in FGlob(classname="all", start_date="2005/09/22"):

for rec in silkfile_open(filename):

...

564 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

silk.site Module

The silk.site module contains functions that load the SiLK site file, and query information from that file.

silk.site.init site(siteconf=None, rootdir=None)

Initializes the SiLK system’s site configuration. The siteconf parameter, if given, should be the path
and name of a SiLK site configuration file (see silk.conf(5)). If siteconf is omitted, the value specified
in the environment variable SILK CONFIG FILE will be used as the name of the configuration file. If
SILK CONFIG FILE is not set, the module looks for a file named silk.conf in the following directories:
the directory specified by the rootdir argument, the directory specified in the SILK DATA ROOTDIR
environment variable; the data root directory that is compiled into SiLK (/data); the directories
$SILK PATH/share/silk/ and $SILK PATH/share/.

The rootdir parameter, if given, should be the path to a SiLK data repository that a configura-
tion that matches the SiLK site configuration. If rootdir is omitted, the value specified in the
SILK DATA ROOTDIR environment variable will be used, or if that variable is not set, the data
root directory that is compiled into SiLK (/data). The rootdir may be specified without a siteconf
argument by using rootdir as a keyword argument. I.e., init site(rootdir=”/data”).

This function should not generally be called explicitly unless one wishes to use a non-default site
configuration file.

The init site() function can only be called successfully once. The return value of init site() will be
true if the site configuration was successful, or False if a site configuration file was not found. If a
siteconf parameter was specified but not found, or if a site configuration file was found but did not
parse properly, an exception will be raised instead. Once init site() has been successfully invoked,
silk.site.have site config() will return True, and subsequent invocations of init site() will raise a
RuntimeError exception.

Some silk.site methods and RWRec members require information from the silk.conf file, and
when these methods are called or members accessed, the silk.site.init site() function is implicitly
invoked with no arguments if it has not yet been called successfully. The list of functions, methods,
and attributes that exhibit this behavior include: silk.site.sensors(), silk.site.classtypes(),
silk.site.classes(), silk.site.types(), silk.site.default types(), silk.site.default class(),
silk.site.class sensors(), silk.site.sensor id(), silk.site.sensor from id(), silk.site.classtype id(),
silk.site.classtype from id(), silk.site.set data rootdir(), silk.site.repository iter(),
silk.site.repository silkfile iter(), silk.site.repository full iter(), rwrec.as dict(),
rwrec.classname, rwrec.typename, rwrec.classtype, and rwrec.sensor.

silk.site.have site config()

Return True if silk.site.init site() has been called and was able to successfully find and load a SiLK
configuration file, False otherwise.

silk.site.set data rootdir(rootdir)

Change the current SiLK data root directory once the silk.conf file has been loaded. This function
can be used to change the directory used by the silk.site iterator functions. To change the SiLK
data root directory before loading the silk.conf file, call silk.site.init site() with a rootdir argument.
set data rootdir() implicitly calls silk.site.init site() with no arguments before changing the root
directory if silk.site.have site config() returns False.

silk.site.get site config()

Return the current path to the SiLK site configuration file. Before silk.site.init site() is called suc-
cessfully, this will return the place that init site() called with no arguments will first look for a
configuration file. After init site() has been successfully called, this will return the path to the file
that init site() loaded.

SiLK-3.23.1 565

pysilk(3) The SiLK Reference Guide

silk.site.get data rootdir()

Return the current SiLK data root directory.

silk.site.sensors()

Return a tuple of valid sensor names. Implicitly calls silk.site.init site() with no arguments if
silk.site.have site config() returns False. Returns an empty tuple if no site file is available.

silk.site.classes()

Return a tuple of valid class names. Implicitly calls silk.site.init site() with no arguments if
silk.site.have site config() returns False. Returns an empty tuple if no site file is available.

silk.site.types(class)

Return a tuple of valid type names for class class. Implicitly calls silk.site.init site() with no arguments
if silk.site.have site config() returns False. Throws KeyError if no site file is available or if class is
not a valid class.

silk.site.classtypes()

Return a tuple of valid (class name, type name) tuples. Implicitly calls silk.site.init site() with no
arguments if silk.site.have site config() returns False. Returns an empty tuple if no site file is available.

silk.site.default class()

Return the default class name. Implicitly calls silk.site.init site() with no arguments if
silk.site.have site config() returns False. Returns None if no site file is available.

silk.site.default types(class)

Return a tuple of default types associated with class class. Implicitly calls silk.site.init site() with no
arguments if silk.site.have site config() returns False. Throws KeyError if no site file is available or
if class is not a valid class.

silk.site.class sensors(class)

Return a tuple of sensors that are in class class. Implicitly calls silk.site.init site() with no arguments
if silk.site.have site config() returns False. Throws KeyError if no site file is available or if class is
not a valid class.

silk.site.sensor classes(sensor)

Return a tuple of classes that are associated with sensor. Implicitly calls silk.site.init site() with no
arguments if silk.site.have site config() returns False. Throws KeyError if no site file is available or
if sensor is not a valid sensor.

silk.site.sensor description(sensor)

Return the sensor description as a string, or None if there is no description. Implicitly calls
silk.site.init site() with no arguments if silk.site.have site config() returns False. Throws KeyEr-
ror if no site file is available or if sensor is not a valid sensor.

silk.site.sensor id(sensor)

Return the numeric sensor ID associated with the string sensor. Implicitly calls silk.site.init site() with
no arguments if silk.site.have site config() returns False. Throws KeyError if no site file is available
or if sensor is not a valid sensor.

silk.site.sensor from id(id)

Return the sensor name associated with the numeric sensor ID id. Implicitly calls silk.site.init site()
with no arguments if silk.site.have site config() returns False. Throws KeyError if no site file is
available or if id is not a valid sensor identifier.

566 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

silk.site.classtype id((class, type))

Return the numeric ID associated with the tuple (class, type). Implicitly calls silk.site.init site() with
no arguments if silk.site.have site config() returns False. Throws KeyError if no site file is available,
if class is not a valid class, or if type is not a valid type in class.

silk.site.classtype from id(id)

Return the (class, type) name pair associated with the numeric ID id. Implicitly calls silk.site.init site()
with no arguments if silk.site.have site config() returns False. Throws KeyError if no site file is
available or if id is not a valid identifier.

silk.site.repository iter(start=None, end=None, classname=None, types=None,
classtypes=None, sensors=None)

Return an iterator over file names in a SiLK repository. The repository is assumed to be in
the data root directory that is returned by silk.site.get data rootdir() and to conform to the for-
mat of the current site configuration. This function implicitly calls silk.site.init site() with no
arguments if silk.site.have site config() returns False. See also silk.site.repository full iter() and
silk.site.repository silkfile iter().

The following types are accepted for start and end :

• a datetime.datetime object, which is considered to be specified to hour precision

• a datetime.date object, which is considered to be specified to day precision

• a string in the SiLK date format YYYY/MM/DD[:HH], where the timezone depends on how SiLK
was compiled; check the value of silk.get configuration(”TIMEZONE SUPPORT”).

The rules for interpreting start and end are:

• When both start and end are specified to hour precision, files from all hours within that time
range are returned.

• When start is specified to day precision, the hour specified in end (if any) is ignored, and files for
all dates between midnight at start and the end of the day represented by end are returned.

• When end is not specified and start is specified to day precision, files for that complete day are
returned.

• When end is not specified and start is specified to hour precision, files for that single hour are
returned.

• When neither start nor end are specified, files for the current day are returned.

• It is an error to specify end without start, or to give an end that proceeds start.

To specify classes and types, either use the classname and types parameters or use the classtypes
parameter. It is an error to use classname or types when classtypes is specified.

The classname parameter should be a named class that appears in silk.site.classes(). If neither class-
name nor classtypes are specified, classname will default to that returned by silk.site.default class().

The types parameter should be either a named type that appears in silk.site.types(classname) or
a sequence of said named types. If neither types nor classtypes is specified, types will default to
silk.site.default types(classname).

The classtypes parameter should be a sequence of (classname, type) pairs. These pairs must be in the
sequence returned by silk.site.classtypes().

The sensors parameter should be either a sensor name or a sequence of sensor names from the se-
quence returned by silk.site.sensors(). If sensors is left unspecified, it will default to the list of sensors
supported by the given class(es).

SiLK-3.23.1 567

pysilk(3) The SiLK Reference Guide

silk.site.repository silkfile iter(start=None, end=None, classname=None, types=None,
classtypes=None, sensors=None)

Works similarly to silk.site.repository iter() except the file names that repository iter() would return
are opened as SilkFile objects and returned.

silk.site.repository full iter(start=None, end=None, classname=None, types=None,
classtypes=None, sensors=None)

Works similarly to silk.site.repository iter(). Unlike repository iter(), this iterator’s output will
include the names of files that do not exist in the repository. The iterator returns (filename, bool)
pairs where the bool value represents whether the given filename exists. For more information, see the
description of the --print-missing-files switch in rwfglob(1).

silk.plugin Module

silk.plugin is a module to support using PySiLK code as a plug-in to the rwfilter(1), rwcut(1), rw-
group(1), rwsort(1), rwstats(1), and rwuniq(1) applications. The module defines the following meth-
ods, which are described in the silkpython(3) manual page:

silk.plugin.register switch(switch name, handler=handler , [arg=needs arg],
[help=help string])

Define the command line switch --switch name that can be used by the PySiLK plug-in.

silk.plugin.register filter(filter , [finalize=finalize], [initialize=initialize])

Register the callback function filter that can be used by rwfilter to specify whether the flow record
passes or fails.

silk.plugin.register field(field name, [add rec to bin=add rec to bin,]
[bin compare=bin compare,] [bin bytes=bin bytes,] [bin merge=bin merge,]
[bin to text=bin to text ,] [column width=column width,] [description=description,]
[initial value=initial value,] [initialize=initialize,] [rec to bin=rec to bin,]
[rec to text=rec to text])

Define the new key field or aggregate value field named field name. Key fields can be used in rwcut,
rwgroup, rwsort, rwstats, and rwuniq. Aggregate value fields can be used in rwstats and rwuniq.
Creating a field requires specifying one or more callback functions---the functions required depend on
the application(s) where the field will be used. To simplify field creation for common field types, the
remaining functions can be used instead.

silk.plugin.register int field(field name, int function, min, max , [width])

Create the key field field name whose value is an unsigned integer.

silk.plugin.register ipv4 field(field name, ipv4 function, [width])

Create the key field field name whose value is an IPv4 address.

silk.plugin.register ip field(field name, ipv4 function, [width])

Create the key field field name whose value is an IPv4 or IPv6 address.

silk.plugin.register enum field(field name, enum function, width, [ordering])

Create the key field field name whose value is a Python object (often a string).

silk.plugin.register int sum aggregator(agg value name, int function, [max sum], [width])

Create the aggregate value field agg value name that maintains a running sum as an unsigned integer.

568 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

silk.plugin.register int max aggregator(agg value name, int function, [max max], [width])

Create the aggregate value field agg value name that maintains the maximum unsigned integer value.

silk.plugin.register int min aggregator(agg value name, int function, [max min], [width])

Create the aggregate value field agg value name that maintains the minimum unsigned integer value.

EXAMPLE

Using PySiLK

The following is an example using the PySiLK bindings. The code is meant to show some standard PySiLK
techniques, but is not otherwise meant to be useful.

The code reads each record in a SiLK flow file, checks whether the record’s source port is 80/tcp or 8080/tcp
and its volume is larger than 3 packets and 120 bytes, stores the destination IP of matching records in
an IPset, and writes the IPset to a destination file. In addition, it prints the number of unique destination
addresses and the addresses themselves to the standard output. Additional explanations can be found in-line
in the comments.

#! /usr/bin/python

Use print functions (Compatible with Python 3.0; Requires 2.6+)

from __future__ import print_function #Python2.6 or later required

Import the PySiLK bindings

from silk import *

Import sys for the command line arguments.

import sys

Main function

def main():

if len(sys.argv) != 3:

print ("Usage: %s infile outset" % sys.argv[0])

sys.exit(1)

Open a silk flow file for reading

infile = silkfile_open(sys.argv[1], READ)

Create an empty IPset

destset = IPSet()

Loop over the records in the file

for rec in infile:

Do comparisons based on rwrec field values

if (rec.protocol == 6 and rec.sport in [80, 8080] and

rec.packets > 3 and rec.bytes > 120):

SiLK -3.23.1 569

pysilk(3) The SiLK Reference Guide

Add the dest IP of the record to the IPset

destset.add(rec.dip)

Save the IPset for future use

try:

destset.save(sys.argv[2])

except:

sys.exit("Unable to write to %s" % sys.argv[2])

count the items in the set

count = 0

for addr in destset:

count = count + 1

print("%d addresses" % count)

Another way to do the same

print("%d addresses" % len(destset))

Print the ip blocks in the set

for base_prefix in destset.cidr_iter():

print("%s/%d" % base_prefix)

Call the main() function when this program is started

if __name__ == ’__main__’:

main()

Adjusting the Class and Type Fields of a Flow File

Normally SiLK flow records get stamped with a class as flow records are recorded in the repository. However,
if you are importing raw packet data or need to change some records that inadvertantly have the wrong
class/type, PySiLK makes it easy to fix.

The example below sets the class to ”all” and assigns a type of ”in”, ”inweb”, ”out”, or ”outweb” to each
record in an input file. The direction (in or out) is defined by an IPset that represents the internal network
(traffic that neither comes from nor goes to the internal network is discarded in this example). Web/non-web
flows are separated based on port.

#! /usr/bin/python

from __future__ import print_function #Python2.6 or later required

from silk import *

import silk.site

import sys # for command line args

from datetime import timedelta # for date math

webports = (80,443,8080)

inwebtype = ("all","inweb")

intype = ("all","in")

outwebtype = ("all","outweb")

outtype = ("all","out")

570 SiLK -3.23.1

The SiLK Reference Guide pysilk(3)

def main():

if len(sys.argv) != 4:

print("Usage: %s infile setfile outfile" % sys.argv[0])

sys.exit(1)

open the SiLK file for reading

infile = silkfile_open(sys.argv[1], READ)

open the set file which represents my internal network

#print(sys.argv[2])

setfile = IPSet.load (sys.argv[2])

open the modified output file

outfile = silkfile.open(sys.argv[3], WRITE)

loop over the records in the file, shift time and write the update:

for rec in infile:

#

If the src ip is in the set, it’s going out.

If the dst ip is in the set, it’s coming in.

If neither IP is in the set, discard the record.

#

if (rec.sport in webports) or (rec.dport in webports):

if rec.sip in setfile:

rec.classtype = outwebtype

outfile.write(rec)

elif rec.dip in setfile:

rec.classtype = inwebtype

outfile.write(rec)

else:

if rec.sip in setfile:

rec.classtype = outtype

outfile.write(rec)

elif rec.dip in setfile:

rec.classtype = intype

outfile.write(rec)

clean up

outfile.close()

infile.close()

if __name__ == ’__main__’:

main()

Changing Timestamps in a Flow File

On occasion you may find that you need to adjust all the timestamps for a SiLK flow file. For example, the
flow file came from a packet capture file that was collected in a different time zone and had to be shifted a
number of hours. Another possibility is if you need to adjust files because you determine the clock time was
off.

SiLK-3.23.1 571

pysilk(3) The SiLK Reference Guide

It is relatively simple to change the timestamps using PySiLK. The sample code for changing data to another
time zone is shown below; a minor change would shift the data by seconds instead of hours.

#! /usr/bin/python

from __future__ import print_function #Python2.6 or later required

from silk import *

import sys # for command line args

from datetime import timedelta # for date math

def main():

if len(sys.argv) != 4:

print ("Usage: %s infile offset-hours outfile" % sys.argv[0])

sys.exit(1)

open the SiLK file for reading

infile = silkfile_open(sys.argv[1], READ)

create the time offset object

offset = timedelta(hours=int(sys.argv[2]))

open the modified output file

outfile = silkfile_open(sys.argv[3], WRITE)

loop over the records in the file, shift time and write the update:

for rec in infile:

rec.stime = rec.stime + offset

outfile.write(rec)

clean up

outfile.close()

infile.close()

if __name__ == ’__main__’:

main()

Grouping FTP Flow Records

The following script attempts to group all flows representing one direction of an FTP session and print them
together. It takes as an argument the name of a file containing raw SiLK records sorted by start time and
port number (rwsort --fields=stime,sport). The script extracts from the file all flows that potentially
represent FTP traffic. We define a possible FTP flow as any flow where:

• the source port is 21 (FTP control channel)

• the source port is 20 (FTP data transfer port)

• both the source port and destination port are ephemeral (data transfer)

572 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

If a flow record has a source port of 21, the script adds the source and destination address to the list
of possible FTP groups. The script categorizes each data transfer flow (source port 20 or ephemeral to
ephemeral) according to its source and destination IP address pair. If a flow from the control channel with
the same source and destination IP address exists the source and destination ports in the flow are added to
the list of ports associated with the control channel interaction, otherwise the script lists the data transfer as
being unclassified. After the entire file is processed, all FTP sessions that have been grouped are displayed.

#! /usr/bin/python

from __future__ import print_function #Python2.6 or later required

import the necessary modules

import silk

import sys

Test that the argument number is correct

if (len(sys.argv) != 2):

print("Must supply a SiLK data file.")

sys.exit()

open the SiLK file for reading

rawFile=silk.silkfile_open(sys.argv[1], silk.READ)

Initialize the record structure

Unclassified will be the record ephemeral to ephemeral

connections that don’t appear to have a control channel

interactions = {"Unclassified":[]}

Count of records processed

count = 0

Process the input file

for rec in rawFile:

count += 1

key="%15s <--> %15s"%(rec.sip,rec.dip)

if (rec.sport==21):

if not key in interactions:

interactions[key] = []

else:

if key in interactions:

interactions[key].append("%5d <--> %5d"%(rec.sport,rec.dport))

else:

interactions["Unclassified"].append(

"%15s:%5d <--> %15s:%5d"%(rec.sip,rec.sport,rec.dip,rec.dport))

Print the count of all records

print(str(count) + " records processed")

Print the groups of FTP flows

keyList = sorted(interactions.keys())

SiLK -3.23.1 573

pysilk(3) The SiLK Reference Guide

for key in keyList:

print("\n" + key + " " + str(len(interactions[key])))

if (key != "Unclassified"):

for line in interactions[key]:

print(" " + line)

Example output of the script:

184 records processed

xxx.xxx.xxx.236 <--> yyy.yyy.yyy.231 3

20 <--> 56180

20 <--> 56180

20 <--> 58354

Unclassified 158

ENVIRONMENT

The following environment variables affect the tools in the SiLK tool suite.

SILK CONFIG FILE

This environment variable contains the location of the site configuration file, silk.conf. This variable
will be used by silk.site.init site() if no argument is passed to that method.

SILK DATA ROOTDIR

This variable gives the root of directory tree where the data store of SiLK Flow files is maintained,
overriding the location that is compiled into the tools (/data). This variable will be used by the FGlob
constructor unless an explicit data rootdir value is specified. In addition, the silk.site.init site() may
search for the site configuration file, silk.conf, in this directory.

SILK COUNTRY CODES

This environment variable gives the location of the country code mapping file that the
silk.init country codes() function will use when no name is given to that function. The value of
this environment variable may be a complete path or a file relative to the SILK PATH. See the FILES
section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value removes this restriction.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
PySiLK may use this environment variable. See the FILES section for details.

PYTHONPATH

This is the search path that Python uses to find modules and extensions. The SiLK Python extension
described in this document may be installed outside Python’s installation tree; for example, in SiLK’s
installation tree. It may be necessary to set or modify the PYTHONPATH environment variable so
Python can find the SiLK extension.

574 SiLK-3.23.1

The SiLK Reference Guide pysilk(3)

PYTHONVERBOSE

If the SiLK Python extension fails to load, setting this environment variable to a non-empty string
may help you debug the issue.

SILK PYTHON TRACEBACK

When set, Python plug-ins (see silkpython(3)) will output trace back information regarding Python
errors to the standard error.

PATH

This is the standard search path for executable programs. The FGlob constructor will invoke the
rwfglob(1) program; the directory containing rwfglob should be included in the PATH.

TZ

When a SiLK installation is built to use the local timezone (to determine if this is the case, check
the value of silk.get configuration(”TIMEZONE SUPPORT”)), the value of the TZ environment
variable determines the timezone in which silk.site.repository iter() parses timestamp strings. If the
TZ environment variable is not set, the default timezone is used. Setting TZ to 0 or the empty string
causes timestamps to be parsed as UTC. The value of the TZ environment variable is ignored when
the SiLK installation uses utc. For system information on the TZ variable, see tzset(3).

FILES

${SILK CONFIG FILE}

ROOT DIRECTORY/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when no argument is passed
to silk.site.init site().

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Possible locations for the country code mapping file used by silk.init country codes() when no name
is given to the function.

${SILK DATA ROOTDIR}/

/data/

Locations for the root directory of the data repository. The silk.site.init site() may search for the site
configuration file, silk.conf, in this directory.

SiLK-3.23.1 575

pysilk(3) The SiLK Reference Guide

SEE ALSO

silkpython(3), rwfglob(1), rwfileinfo(1), rwfilter(1), rwcut(1), rwpmapbuild(1), rwset(1), rwset-
build(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), rwgeoip2ccmap(1), silk.conf(5), sen-
sor.conf(5), silk(7), python(1), gzip(1), yaf(1), tzset(3), http://docs.python.org/

576 SiLK-3.23.1

http://docs.python.org/

The SiLK Reference Guide silk-plugin(3)

silk-plugin

Creating a SiLK run-time plug-in using C

SYNOPSIS

sk_cc=‘silk_config --compiler‘

sk_cflags=‘silk_config --cflags‘

$sk_cc $sk_cflags -shared -o FILENAME.so FILENAME.c

rwfilter --plugin=FILENAME.so [--plugin=FILENAME.so ...] ...

rwcut --plugin=FILENAME.so [--plugin=FILENAME.so ...]

--fields=FIELDS ...

rwgroup --plugin=FILENAME.so [--plugin=FILENAME.so ...]

--id-fields=FIELDS ...

rwsort --plugin=FILENAME.so [--plugin=FILENAME.so ...]

--fields=FIELDS ...

rwstats --plugin=FILENAME.so [--plugin=FILENAME.so ...]

--fields=FIELDS --values=VALUES ...

rwuniq --plugin=FILENAME.so [--plugin=FILENAME.so ...]

--fields=FIELDS --values=VALUES ...

DESCRIPTION

Several of the SiLK analysis tools allow the user to augment the tools’ functionality through the use of
plug-ins that get loaded at run-time. These tools are:

rwfilter(1)

Supports adding new switches to determine whether each SiLK Flow record should be written in the
--pass or the --fail output stream.

rwcut(1)

Supports adding new output fields that, when selected using the --fields switch, appear as a column
in the output.

rwsort(1)

Supports adding new key fields that, when selected using the --fields switch, are used to determine
the order in which records are sorted.

rwgroup(1)

Supports adding new key fields that, when selected using the --id-fields switch, are used to determine
how records are grouped.

SiLK-3.23.1 577

silk-plugin(3) The SiLK Reference Guide

rwuniq(1)

Supports adding new key fields that, when selected using the --fields switch, are used to bin (i.e., group)
the records. In addition, rwuniq supports adding new aggregate value fields that, when selected using
the --values switch, will be computed for each bin. The key and value fields will appear in the output.

rwstats(1)

Supports adding new key fields that, when selected using the --fields switch, are used to bin (i.e.,
group) the records. In addition, rwstats supports adding new aggregate value fields that, when
selected using the --values switch, will be computed for each bin and can be used to determine the
top-N (or bottom-N) bins. The key and value fields will appear in the output for bins that meet the
top-N threshold.

rwptoflow(1)

Supports adding functionality to ignore packets in the pcap(3) input stream or to modify the SiLK
Flow records as the records are generated.

In addition, all of the above tools support adding new command line switches that can be used to initialize
the plug-in itself (for example, to load an auxiliary file that the plug-in requires).

The plug-ins for all tools except rwptoflow can be written in either C or using PySiLK (the SiLK Python
extension, see pysilk(3)). Although the execution time for PySiLK plug-ins is slower than for C plug-ins,
we encourage you to use PySiLK for your plug-ins since the time-to-result can be faster for PySiLK: The
faster development time in Python typically more than compensates for the slower execution time. Once you
find that your PySiLK plug-in is seeing a great deal of use, or that PySiLK is just too slow for the amount
of data you are processing, then re-write the plug-in using C. Even when you intend to write a plug-in using
C, it can be helpful to prototype your plug-in using PySiLK.

The remainder of this document explains how to create a plug-in for the SiLK analysis tools (except rw-
ptoflow) using the C programming language. For information on creating a plug-in using PySiLK, see
silkpython(3).

A template file for plug-ins is included in the SiLK source tree, in the silk-VERSION/src/template/c-plugin.c
file.

The setup function

When you provide --plugin=my-plugin.so on the command line to an application, the application loads
the my-plugin.so file and calls a setup function in that file to determine the new switches and/or fields
that my-plugin.so provides.

This setup function is called with three arguments: the first two describe the version of the plug-in API, and
the third is a pointer that is currently unused.

skplugin_err_t SKPLUGIN_SETUP_FN(

uint16_t major_version,

uint16_t minor_version,

void *plug_in_data)

{

...

}

578 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

There are several tasks this setup function may do: (1) check the API version, (2) register new command
line switches (if any), (3) register new filters (if any), and (4) register new fields (if any). Let’s describe these
in more detail.

(1) Check the API version

The setup function should ensure that the plug-in and the application agree on the API to use. This provides
protection in case the SiLK API to plug-ins changes in the future. To make this determination, call the
skpinSimpleCheckVersion() function. A typical invocation is shown here, where the major version

and minor version were passed into the SKPLUGIN SETUP FN, and PLUGIN API VERSION MAJOR and
PLUGIN API VERSION MINOR are macros defined in the template file to the current version of the API.

#define PLUGIN_API_VERSION_MAJOR 1

#define PLUGIN_API_VERSION_MINOR 0

/* Check the plug-in API version */

rv = skpinSimpleCheckVersion(major_version, minor_version,

PLUGIN_API_VERSION_MAJOR,

PLUGIN_API_VERSION_MINOR,

skAppPrintErr);

if (rv != SKPLUGIN_OK) {

return rv;

}

(2) Register command line switches

If the plug-in wants to define new command line switches, those switches must be registered in the setup
function. A typical use of a command line switch is to allow the user to configure the plug-in; for example,
the switch may allow the user to specify the location of an auxiliary input file that the plug-in requires, or
to set a parameter used by the plug-in.

A second use for a command line switch is more subtle. When creating a plug-in for rwfilter, you may want
your plug-in to provide several similar features, and only enable each feature when the user requests it via a
command line switch. For this case, you want to delay registering the filter until the command line switch
is seen, in which case the filter registration function should be invoked in the switch’s callback function.

Information on registering a command line switch is available below (Registering command line switches).

(3) Register filters

You only need to register filters when the plug-in will be used by rwfilter(1). You may choose to register
the filters in the setup function; if you do, the filter will always be used when the plug-in is loaded by
rwfilter. If you the plug-in provides several filtering functions that the user may choose from via command
line switches, you should call the filter registration function in the callback function for the command line
switch.

See Registering filter functions for details on registering a function to use with rwfilter.

(4) Register fields

If you want your plug-in to create a new printable field for rwcut(1), a new sorting field for rwsort(1), a
new grouping field for rwgroup(1), rwstats(1), or rwuniq(1), or a new aggregate value field for rwstats
or rwuniq, you should register those fields in the setup function. (While you can register the fields in a
switch’s callback function, there is usually little reason to do so.)

There are two interfaces to registering a new field:

SiLK-3.23.1 579

silk-plugin(3) The SiLK Reference Guide

1. The advanced interface provides complete control over how the field is defined, and allows (or forces)
you to specify exactly how to map from a SiLK Flow record to a binary representation to a textual
representation. To use the advanced interface you will need to define several functions and fill in a C
structure with pointers to those functions. This interface is described in the Advanced field registration
function section below.

2. The simple interface can be used to define fields that map to an integer value, an IP address, or text
that is index by an integer value. To use this interface, you need to define only one or two functions.
The simple interface should handle many common cases, and it is described in Simple field registration
functions.

Registering command line switches

When you register a switch, the two important pieces of information you must provide are a name for the
switch and a callback function. When the application encounters the command line switch registered by
your plug-in, the application will invoke the callback function with the parameter that the user provided (if
any) to the command line switch.

To register a command line switch, call the skpinRegOption2() function:

skplugin_err_t skpinRegOption2(

const char *option_name,

skplugin_arg_mode_t mode,

const char *option_help_string,

skplugin_help_fn_t option_help_fn,

skplugin_option_fn_t opt_process_fn,

void *opt_callback_data,

int num_fn_mask,

...); /* list of skplugin_fn_mask_t */

The parameters are

option name

Specifies the command line switch to create. Do not include the leading -- characters in the name.

mode

Determines whether the switch takes an argument. It should be one of

NO ARG

when the command line option acts as an on/off switch

OPTIONAL ARG

when the command line option has a default value, or

REQUIRED ARG

when the user of the plug-in must provide an argument to the command line option.

option help string

This parameter specifies the usage string to print when the user requests --help from the application.
This parameter may be NULL. Alternatively, you may instruct the application to generate a help string
by invoking a callback function your plug-in provides, as described next.

580 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

option help fn

This parameter specifies a pointer to a function that the application will to call to print a help message
for the command line switch when the user requests --help from the application. This parameter may
be NULL; if it is not NULL, the option help string value is ignored. The signature of the function
to provide is

void option_help_fn(

FILE *file_handle,

const struct option *option,

void *opt_callback_data);

The file handle argument is where the function should print its help message. The
opt callback data is the value provided to skpinRegOption2() when the option was registered.
The struct option parameter has two members of interest: name contains the number used to regis-
ter the option, and has arg contains the mode that was used when the option was specified.

opt process fn

Specifies the callback function, whose signature is

skplugin_err_t opt_process_fn(

const char *opt_arg,

void *opt_callback_data);

The application will call opt process fn(opt arg,opt callback data) when --option name is seen
as a command line argument. opt arg will be the parameter the user passed to the switch, or it will
be NULL if no parameter was given.

opt callback data

Will be passed back unchanged to the plug-in as a parameter in the opt process fn() and op-
tion help fn() callback functions.

num fn mask

Specifies the number of skplugin fn mask t values specified as the final argument(s) to skpinRe-
gOption2().

...

Specifies a list of skplugin fn mask t values. The length of this list must be specified in the
num fn mask parameter. A plug-in file (e.g., my-plugin.so) can be loaded into any SiLK tool that
supports plug-ins, but you may want a command line switch to appear only in certain applications.
For example, the flowrate(3) plug-in can be used in both rwfilter and rwcut. When used by rw-
filter, flowrate provides a --bytes-per-second switch; when used by rwcut, that switch is not
available, and instead the bytes/sec field becomes available. This list determines in which applica-
tions the switch gets defined, and the list should contain the SKPLUGIN FN * or SKPLUGIN APP * macros
defined in skplugin.h. To make the switch available in all applications, specify SKPLUGIN FN ANY. When
skpinRegOption2() is called in an the application that does not match a value in this list, the func-
tion returns SKPLUGIN ERR DID NOT REGISTER, indicating that this option is not applicable to
the application.

SiLK-3.23.1 581

silk-plugin(3) The SiLK Reference Guide

Registering filter functions

When you register a filter function, you are specifying a function that rwfilter will call for every SiLK Flow
record that rwfilter reads from its input files. If the function returns SKPLUGIN FILTER PASS, rwfilter
writes the record into the stream(s) specified by --pass. The record goes to the --fail streams if the function
returns SKPLUGIN FILTER FAIL.

(The previous paragraph is true only when the plug-in is the only filtering predicate. When multiple tests
are specified on the rwfilter command line, rwfilter will put the record into the fail destination as soon as
any test fails. If there are multiple tests, your plug-in function will only see records that have not yet failed
a test. If a plug-in filter function follows your function, it may fail a record that your filter function passed.)

To register a filter function, call the following function:

skplugin_err_t skpinRegFilter(

skplugin_filter_t **filter_handle,

const skplugin_callbacks_t *regdata,

void *cbdata);

filter handle

When this parameter is not NULL, skpinRegFilter() will set the location it references to the newly
created filter. Currently, no other function accepts the skplugin filter t as an argument.

cbdata

This parameter will be passed back unchanged to the plug-in as a parameter in the various callback
functions. It may be NULL.

regdata

This structure has a member for every possible callback function the SiLK plug-in API supports. When
used by skpinRegFilter(), the following members are supported.

filter

rwfilter invokes this function for each SiLK flow record. If the function returns SKPLU-
GIN FILTER PASS, the record is accepted; if it returns SKPLUGIN FILTER FAIL, the record
is rejected. The type of the function is a skplugin filter fn t, and its signature is:

skplugin_err_t filter(

const rwRec *rec,

void *cbdata,

void **extra);

where rec is the SiLK Flow record, cbdata is the cbdata specified in skpinRegFilter(), and
extra will likely be unused.

init

rwfilter invokes this function for all registered filter predicates. It is called after argument
processing and before reading records. The function’s type is skplugin callback fn t and the
function pointer may be NULL. The callback’s signature is

skplugin_err_t init(

void *cbdata);

cleanup

When this function pointer is non-NULL, rwfilter calls this function after all records have been
processed. This function has the same type and signature as the init function.

582 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

The function’s return value will be SKPLUGIN OK unless the filter member of the regdata structure is
NULL.

If your plug-in registers a filter function and the plug-in is used in an application other that rwfilter, the
call to skpinRegFilter() is a no-op.

Simple field registration functions

Using a plug-in, you can augment the keys available in the --fields switch on rwcut(1), rwgroup(1),
rwsort(1), rwstats(1), and rwuniq(1), and provide new aggregate value fields for the --values switch on
rwstats and rwuniq.

The standard field registration function, skpinRegField(), is powerful---for example, you can control ex-
actly how the value you compute will be printed. However, that power comes with complexity. Many times,
all your plug-in needs to do is to compute a value, and having to write a function to print a number is work
with little reward. The functions in this section handle the registration of common field types.

All of these functions require a name for the new field. The name is used as one of the arguments to the
--fields or --values switch, and the name will also be used as the title when the field is printed (as in
rwcut). Field names are case insensitive, and all field names must be unique within an application. You will
get a run-time error if you attempt to create a field whose name already exists. (In rwuniq and rwstats,
you may have a --fields key and a --values aggregate value with the same name.)

The callback functions dealing with integers use uint64 t for convenience, but internally the value will be
stored in a smaller integer field if possible. Specifying the max parameter to the largest value you actually
use may allow SiLK to use a smaller integer field.

The functions in this section return SKPLUGIN OK unless the callback function is NULL.

Integer key field

The following function is used to register a key field whose value is an unsigned 64 bit integer.

skplugin_err_t skpinRegIntField(

const char *name,

uint64_t min,

uint64_t max,

skplugin_int_field_fn_t rec_to_int,

size_t width);

name

The name of the new key field.

min

A number representing the minimum integer value for the field.

max

A number representing the maximum integer value for the field. If max is 0, a value of UINT64 MAX
is used instead.

rec to int

A callback function that accepts a SiLK Flow record as its sole argument, and returns an unsigned
integer (in host byte order) which represents the value of the name field for the given record. The
signature is

SiLK -3.23.1 583

silk-plugin(3) The SiLK Reference Guide

uint64_t rec_to_int(

const rwRec *rec);

width

The column width to use when displaying the field. If width is 0, it will be computed to be the number
of digits necessary to display the integer max.

IPv4 key field

The following function registers a new key field whose value is an IPv4 address.

skplugin_err_t skpinRegIPv4Field(

const char *name,

skplugin_ipv4_field_fn_t rec_to_ipv4,

size_t width);

name

The name of the new key field.

rec to ipv4

A callback function that accepts a SiLK Flow record as its sole argument, and returns a 32 bit integer
(in host byte order) which represents the IPv4 addresses for the name field for the given record. The
signature is

uint32_t rec_to_ipv4(

const rwRec *rec);

width

The column width to use when displaying the field. If width is 0, it will be set to 15.

IP key field

The following function is used to register a key field whose value is any IP address (an skipaddr t).

skplugin_err_t skpinRegIPAddressField(

const char *name,

skplugin_ip_field_fn_t rec_to_ipaddr,

size_t width);

name

The name of the new key field.

rec to ipaddr

A callback function that accepts a SiLK Flow record and an skipaddr t as arguments. The function
should fill in the IP address as required for the name field. The signature is

void rec_to_ipaddr(

skipaddr_t *dest,

const rwRec *rec);

584 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

width

The column width to use when displaying the field. If width is 0, it will be set to 39 when SiLK has
support for IPv6 addresses, or 15 otherwise.

Text key field (from an integer)

The following function is used to register a key field whose value is an unsigned 64 bit integer (similar to
skpinRegIntField()), but where the printed representation of the field is determined by a second callback
function. This allows the plug-in to create arbitrary text for the field.

skplugin_err_t skpinRegTextField(

const char *name,

uint64_t min,

uint64_t max,

skplugin_int_field_fn_t value_fn,

skplugin_text_field_fn_t text_fn,

size_t width);

name

The name of the new key field.

min

A number representing the minimum integer value for the field.

max

A number representing the maximum integer value for the field. If max is 0, a value of UINT64 MAX
is used instead.

value fn

A callback function that accepts a SiLK Flow record as its sole argument, and returns an unsigned
integer (in host byte order) which represents the value of the name field for the given record. The
signature is

uint64_t rec_to_int(

const rwRec *rec);

text fn

A callback function that provides the textual representation of the value returned by value fn. The
function’s signature is

void text_fn(

char *dest,

size_t dest_len,

uint64_t val);

The callback should fill the character array dest with the printable representation of val. The number
of characters in dest is given by dest len. Note that dest len may be different than the parameter
width passed to skpinRegTextField(), and text fn must NUL-terminate the string.

width

The column width to use when displaying the field.

SiLK-3.23.1 585

silk-plugin(3) The SiLK Reference Guide

Text key field (from a list)

The following function is used to register a field whose value is one of a list of strings. The plug-in provides
the list of strings and a callback that takes a SiLK Flow record and returns an index into the list of strings.

skplugin_err_t skpinRegStringListField(

const char *name,

const char **list,

size_t entries,

const char *default_value,

skplugin_int_field_fn_t rec_to_index,

size_t width);

name

The name of the new key field.

list

List is the list of strings. The list should either be NULL terminated, or entries should have a
non-zero value.

entries

The number of entries in list. If entries is 0, SiLK determines the number of entries by traversing
list until it finds a element whose value is NULL.

default value

The value to use when rec to index returns an invalid value.

rec to index

A callback function that accepts a SiLK Flow record as its sole argument, and returns an unsigned
integer (in host byte order) which represents an index into list. If the return value is beyond the end
of list, default value will be used instead. The signature of this callback function is

uint64_t rec_to_int(

const rwRec *rec);

width

The column width to use when displaying the field. If width is 0, it is defaulted to the width of the
longest string in list and default value.

Integer sum aggregate value field

The following function registers an aggregate value field that maintains a running unsigned integer sum.
That is, the values returned by the callback are summed for every SiLK Flow record that matches a bin’s
key. The sum is printed when the bin is printed.

skplugin_err_t skpinRegIntSumAggregator(

const char *name,

uint64_t max,

skplugin_int_field_fn_t rec_to_int,

size_t width);

586 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

name

The name of the new aggregate value field.

max

A number representing the maximum integer value for the field. If max is 0, a value of UINT64 MAX
is used instead.

rec to int

A callback function that accepts a SiLK Flow record as its sole argument, and returns an unsigned
integer (in host byte order) which represents the value of the name value field for the given record. The
signature is

uint64_t rec_to_int(

const rwRec *rec);

width

The column width to use when displaying the value. If width is 0, it will be computed to be the
number of digits necessary to display the integer max.

Integer minimum or maximum aggregate value field

The following function registers an aggregate value field that maintains the minimum integer value seen
among all values returned by the callback function.

skplugin_err_t skpinRegIntMinAggregator(

const char *name,

uint64_t max,

skplugin_int_field_fn_t rec_to_int,

size_t width);

This function is similar, except it maintains the maximum value.

skplugin_err_t skpinRegIntMaxAggregator(

const char *name,

uint64_t max,

skplugin_int_field_fn_t rec_to_int,

size_t width);

name

The name of the new aggregate value field.

max

A number representing the maximum integer value for the field. If max is 0, a value of UINT64 MAX
is used instead.

rec to int

A callback function that accepts a SiLK Flow record as its sole argument, and returns an unsigned
integer (in host byte order) which represents the value of the name value field for the given record. The
signature is

SiLK-3.23.1 587

silk-plugin(3) The SiLK Reference Guide

uint64_t rec_to_int(

const rwRec *rec);

width

The column width to use when displaying the value. If width is 0, it will be computed to be the
number of digits necessary to display the integer max.

Unsigned integer aggregate value field

The following function registers an aggregate value field that can be represented by a 64 bit integer. The
plug-in must register two callback functions. The first takes a SiLK Flow record and returns an integer
value; the second takes two integer values (as returned by the first callback function) and combines them to
form a new aggregate value.

skplugin_err_t skpinRegIntAggregator(

const char *name,

uint64_t max,

skplugin_int_field_fn_t rec_to_int,

skplugin_agg_fn_t agg,

uint64_t initial,

size_t width);

name

The name of the new aggregate value field.

max

A number representing the maximum integer value for the field. If max is 0, a value of UINT64 MAX
is used instead.

rec to int

A callback function that accepts a SiLK Flow record as its sole argument, and returns an unsigned
integer (in host byte order) which represents the value of the name value field for the given record. The
signature is

uint64_t rec_to_int(

const rwRec *rec);

agg

A callback function that combines (aggregates) two values. For example, if you wanted to create a new
aggregate value that contained a bit-wise OR of the TCP flags seen on every packet, your agg function
would OR the values. The signature is

uint64_t agg(

uint64_t current,

uint64_t operand);

initial

Specifies the initial value for the aggregate value. The first time the agg function is called on a bin,
operand will be the value returned by rec to int, and current will be the value given in initial.
The value in initial must be less than or equal to the value in max.

width

The column width to use when displaying the value. If width is 0, it will be computed to be the
number of digits necessary to display the integer max.

588 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

Advanced field registration function

When the simple field registration functions do not provide what you need, you can use the skpinRegField()
function that gives you complete control over the field.

skpinRegField() registers a new derived field for record processing. The plug-in must supply the name of
the new field. The name is used as one of the arguments to the --fields switch (for key fields) or --values
switch (for aggregate value fields). Field names are case insensitive, and all field names must be unique
within an application. You will get a run-time error if you attempt to create a field whose name already
exists. (In rwuniq and rwstats, you may have a --fields key and a --values aggregate value with the same
name.)

The skpinRegField() function requires you initialize and pass in a structure. In this structure you will
specify the callback functions that the application will call, as well as additional information required by
some applications. Although the structure is complex, not all applications use all members.

If the plug-in is loaded by an application that does not support fields (such as rwfilter), the function is a
no-op.

The advanced field registration function is

skplugin_err_t skpinRegField(

skplugin_field_t **return_field,

const char *name,

const char *description,

const skplugin_callbacks_t *regdata,

void *cbdata);

return field

When this value is not NULL, skpinRegField() will set the location it references to the newly created
field.

name

This sets the primary name of the field, and by default will be the title used when printing the field.

description

The description provides a textual description of the field. Currently this is unused.

regdata

The regdata structure provides the application with the callback functions and additional information
it needs to use the plug-in. The members that must be set vary by application. It is described in more
detail below.

cbdata

This parameter will be passed back unchanged to the plug-in as a parameter in the various callback
functions. It may be NULL.

The structure used by the skpinRegField() (and skpinRegFilter()) functions to specify callback functions
is shown here:

typedef struct skplugin_callbacks_st {

skplugin_callback_fn_t init;

skplugin_callback_fn_t cleanup;

SiLK -3.23.1 589

silk-plugin(3) The SiLK Reference Guide

size_t column_width;

size_t bin_bytes;

skplugin_text_fn_t rec_to_text;

skplugin_bin_fn_t rec_to_bin;

skplugin_bin_fn_t add_rec_to_bin;

skplugin_bin_to_text_fn_t bin_to_text;

skplugin_bin_merge_fn_t bin_merge;

skplugin_bin_cmp_fn_t bin_compare;

skplugin_filter_fn_t filter;

skplugin_transform_fn_t transform;

const uint8_t *initial;

const char **extra;

} skplugin_callbacks_t;

All of the callback functions reference in this structure take cbdata as a parameter, which is the value that
was specified in the call to skpinRegField(). The extra parameter to the callback functions is used in
complex plug-ins and can be ignored.

The members of the structure are:

init

This specifies a callback function which the application will call when it has determined this field
will be used. (In the case of skpinRegFilter(), the function is called for all registered filters.) The
application calls the function before processing data. It may be NULL; the signature of the callback
function is

skplugin_err_t init(

void *cbdata);

cleanup

When this callback function is not NULL, the application will call it after all records have been
processed. It has the same signature as the init function.

column width

The number of characters (not including trailing NUL) required to hold a string representation of the
longest value of the field. This value can be 0 if not used (e.g., rwsort does not print fields), or if it
will be set later using skpinSetFieldWidths().

bin bytes

The number of bytes (octets) required to hold a binary representation of a value of the field. This
value can be 0 if not used (e.g., rwcut does not use binary values), or if it will be set later using
skpinSetFieldWidths().

rec to text

The rwcut application uses this callback function to fetch the textual value for the field given a SiLK
Flow record. The signature of this function is

skplugin_err_t rec_to_text(

const rwRec *rec,

char *dest,

size_t width,

void *cbdata,

void **extra);

590 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

The callback function should fill the character array dest with the textual value, and the value should
be NUL-terminated. width specifies the overall size of dest, and it may not have the same value as
specified by the column width member. For proper formatting, the callback function should write no
more than column width characters into dest. Note that if an application requires a rec to bin func-
tion and rec to bin is NULL, the application will use rec to text if it is provided. The application
will use column width as the width for binary values (zeroing out the destination area before it is
written to).

rec to bin

This callback function is used by the application to fetch the binary value for this field given the SiLK
Flow record. The signature of this function is:

skplugin_err_t rec_to_bin(

const rwRec *rec,

uint8_t *dest,

void *cbdata,

void **extra);

The callback function should write exactly bin bytes of data into dest (where bin bytes was specified
in the call to skpinRegField() or skpinSetFieldWidths()). See also the rec to text member.

add rec to bin

This callback function is used by rwuniq and rwstats when computing aggregate value fields. The
application expects this function to get the binary value for this field from the SiLK Flow record
and merge it (e.g., add it) to the current value. That is, the function should update the value in
current and new value with the value that comes from the current rec. The signature is:

skplugin_err_t add_rec_to_bin(

const rwRec *rec,

uint8_t *current_and_new_value,

void *cbdata,

void **extra);

The callback function should write exactly bin bytes of data into current and new value.

bin to text

This callback function is used to get a textual representation of a binary value that was set by a prior
call to the rec to bin or add rec to bin functions. The function signature is

skplugin_err_t bin_to_text(

const uint8_t *bin,

char *dest,

size_t width,

void *cbdata);

The binary input value is in bin, and it is exactly bin bytes in length. The textual output must
be written to dest. The overall size of dest is given by width, which may be different than the
column width value that was previously specified. For proper formatting, the callback function should
write no more than column width characters into dest.

SiLK-3.23.1 591

silk-plugin(3) The SiLK Reference Guide

bin merge

When rwstats and rwuniq are unable to store all values in memory, the applications write their
current state to temporary files on disk. Once all input data has been processed, the temporary files
are combined to produce the output. When a key appears in multiple temporary files, the aggregate
values must be merged (for example, the byte count for two keys would be added). This callback
function is used to merge aggregate value fields defined by the plug-in. The function signature is
below. The src1 and dest parameter will contain a binary aggregate value from one of the files, and
the src2 parameter a value from the other. These should be combined and the (binary) result written
to src1 and dest. The byte length of both parameters is bin bytes.

skplugin_err_t bin_merge(

uint8_t *src1_and_dest,

const uint8_t *src2,

void *cbdata);

bin compare

This callback function is used by rwstats when determining the top-N (or bottom-N) bins based on
the binary aggregate values. The function accepts two binary values, value a and value b, each of
length bin bytes. The function must set cmp result to an integer less than 0, equal 0, or greater
than 0 to indicate whether value a is less than, equal to, or greater than value b, respectively. If this
function is NULL, memcmp() will be used on the binary values instead.

skplugin_err_t bin_compare(

int *cmp_result,

const uint8_t *value_a,

const uint8_t *value_b,

void *cbdata);

filter

This callback function is only required when the plug-in will be used by rwfilter, as described above.
When defining a field, filter is ignored.

transform

This callback function is only required when the plug-in will be used by rwptoflow. This callback
allows the plug-in to modify the SiLK Flow record, rec, before it is written to the output. The callback
function should modify rec in place; the signature is

skplugin_err_t transform(

rwRec *rec,

void *cbdata,

void **extra);

initial

When the initial member is not NULL, it should point to a value containing at least bin bytes

bytes. These bytes will be used to initialize the binary aggregate value. As an example use case, when
the plug-in is computing a minimum, it may choose to initialize the field to contain the maximum
value. When initial is NULL, binary aggregate values are initialized using bzero().

extra

This member is usually NULL. When not NULL, it points to a NULL-terminated constant array of
strings representing ”extra arguments”. These are not often used, and they will not be discussed in
this manual page.

592 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

Once a field is registered, you may make changes to it by calling the additional functions described below.
In each of these functions, the field parameter is the handle returned when the field was registered.

By default, the name will also be used as the field’s title. To specify a different title, the plug-in may call

skplugin_err_t skpinSetFieldTitle(

skplugin_field_t field,

const char title);

To create an alternate name for the field (that is, a name that can be used in the --fields or --values
switches) call

skplugin_err_t skpinAddFieldAlias(

skplugin_field_t field,

const char alias);

To set or modify the textual and binary widths for a field, use the following function. This function should
called in the field’s init callback function.

skplugin_err_t skpinSetFieldWidths(

skplugin_field_t field,

size_t field_width_text,

size_t field_width_bin);

The following table shows when a member of the skplugin callbacks t structure is required or optional.
(Where the table shows column width and bin bytes as required, the values can be set in the structure or
via the skpinSetFieldWidths() function.)

rwfilter rwcut rwgroup rwsort rwstats rwuniq rwptoflow

init r f f f f,a f,a r

cleanup r f f f f,a f,a r

column_width . F . . F,A F,A .

bin_bytes . . F F F,A F,A .

rec_to_text . F

rec_to_bin . . F F F F .

add_rec_to_bin A A .

bin_to_text F,A F,A .

bin_merge A A .

bin_compare A . .

initial a a .

filter R

transform R

extra r f f f f,a f,a r

The legend is

F

required for a key field

A

required for an aggregate value field

SiLK-3.23.1 593

silk-plugin(3) The SiLK Reference Guide

R

required for a non-field application (e.g., rwfilter)

f

optional for a key field

a

optional for an aggregate value field

r

optional for a non-field application

.

ignored

Miscellaneous functions

The following registers a cleanup function for the plug-in. This function will be called by the application
after any field- or filter-specific cleanup functions are called. Specifically, this is the last callback that the
application will invoke on a plug-in.

skplugin_err_t skpinRegCleanup(

skplugin_cleanup_fn_t cleanup);

The signature of the cleanup function is:

void cleanup(void);

The plug-in author should invoke the following function to tell rwfilter that this plug-in is not thread safe.
Calling this function causes rwfilter not use multiple threads; as such, this function should only be called
when the plug-in has registered an active filter function.

void skpinSetThreadNonSafe(void);

Compiling the plug-in

Once you have finished writing the C code for the plug-in, save it in a file. The following uses the name
my-plugin.c for the name of this file.

In the following, the leading dollar sign ($) followed by a space represents the shell prompt. The text after
the dollar sign represents the command line. Lines have been wrapped for improved readability, and the
back slash (\) is used to indicate a wrapped line.

When compiling a plug-in, you should use the same compiler and compiler-options as when SiLK was
compiled. The silk config(1) utility can be used to obtain that information. To store the compiler used to
compile SiLK into the variable sk cc, specify the following at a shell prompt (note that those are backquotes,
and this assumes a Bourne-compatible shell):

$ sk_cc=‘silk_config --compiler‘

594 SiLK-3.23.1

The SiLK Reference Guide silk-plugin(3)

To get the compiler flags used to compile SiLK:

$ sk_cflags=‘silk_config --cflags‘

Using those two variables, you can now compile the plug-in. The following will work on Linux and Mac OS
X:

$ $sk_cc $sk_cflags -shared -o my-plugin.so my-plugin.c

For Mac OS X:

$ $sk_cc $sk_cflags -bundle -flat_namespace -undefined suppress \

-o my-plugin.so my-plugin.c

If there are compilation errors, fix them and compile again.

Notes: The preceding assumed you were building the plug-in after having installed SiLK. The paths given
by silk config do not work if SiLK has not been installed. To compile the plug-in, you must have access to
the SiLK header files. (If you are using an RPM installation of SiLK, ensure that the silk-devel RPM is
installed.)

Once you have created the my-plugin.so file, you can load it into an application by using the --plugin switch
on the application as shown in the SYNOPSIS. When loading a plug-in from the current directly, it is best
to prefix the filename with ./:

$ rwcut --plugin=./my-plugin.so ...

If there are problems loading the plug-in into the application, you can trace the actions the application is
doing by setting the SILK PLUGIN DEBUG environment variable:

$ SILK_PLUGIN_DEBUG=1 rwcut --plugin=./my-plugin.so ...

EXAMPLES

rwfilter

Suppose you want to find traffic destined to a particular host, 10.0.0.23, that is either ICMP or coming from
1434/udp. If you attempt to use:

$ rwfilter --daddr=10.0.0.23 --proto=1,17 --sport=1434 \

--pass=outfile.rw flowrec.rw

the --sport option will not match any of the ICMP traffic, and your result will not contain ICMP records.
To avoid having to use two invocations of rwfilter, you can create the following plug-in to do the entire
check in a single pass:

#include <silk/silk.h>

#include <silk/rwrec.h>

#include <silk/skipaddr.h>

#include <silk/skplugin.h>

#include <silk/utils.h>

SiLK -3.23.1 595

silk-plugin(3) The SiLK Reference Guide

/* These variables specify the version of the SiLK plug-in API. */

#define PLUGIN_API_VERSION_MAJOR 1

#define PLUGIN_API_VERSION_MINOR 0

/* ip to search for */

static skipaddr_t ipaddr;

/*

* status = filter(rwrec, reg_data, extra);

*

* The function should examine the SiLK flow record and return

* SKPLUGIN_FILTER_PASS to write the rwRec to the

* pass-destination(s) or SKPLUGIN_FILTER_FAIL to write it to the

* fail-destination(s).

*/

static skplugin_err_t filter(

const rwRec *rwrec,

void *reg_data,

void **extra)

{

skipaddr_t dip;

rwRecMemGetDIP(rwrec, &dip);

if (0 == skipaddrCompare(&dip, &ipaddr)

&& (rwRecGetProto(rwrec) == 1

|| (rwRecGetProto(rwrec) == 17

&& rwRecGetSPort(rwrec) == 1434)))

{

return SKPLUGIN_FILTER_PASS;

}

return SKPLUGIN_FILTER_FAIL;

}

/* The set-up function that the application will call. */

skplugin_err_t SKPLUGIN_SETUP_FN(

uint16_t major_version,

uint16_t minor_version,

void *plug_in_data)

{

uint32_t ipv4;

skplugin_err_t rv;

skplugin_callbacks_t regdata;

/* Check the plug-in API version */

rv = skpinSimpleCheckVersion(major_version, minor_version,

PLUGIN_API_VERSION_MAJOR,

PLUGIN_API_VERSION_MINOR,

skAppPrintErr);

if (rv != SKPLUGIN_OK) {

return rv;

}

596 SiLK -3.23.1

The SiLK Reference Guide silk-plugin(3)

/* set global ipaddr */

ipv4 = ((10 << 24) | 23);

skipaddrSetV4(&ipaddr, &ipv4);

/* register the filter */

memset(®data, 0, sizeof(regdata));

regdata.filter = filter;

return skpinRegFilter(NULL, ®data, NULL);

}

Once this file is created and compiled, you can use it from rwfilter as shown here:

$ rwfilter --plugin=./my-plugin.so --pass=outfile.rw flowrec.rw

Additional examples

For additional examples, see the source files in silk-VERSION/src/plugins.

ENVIRONMENT

SILK PATH

This environment variable gives the root of the install tree. When searching for plug-ins, a SiLK
application may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, the SiLK applications print status messages to the standard error as they attempt
to find and open each plug-in. In addition, when an attempt to register a field fails, the application
prints a message specifying the additional function(s) that must be defined to register the field in the
application. Be aware that the output can be rather verbose.

FILES

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

/usr/local/lib/

Directories that a SiLK application checks when attempting to load a plug-in.

SEE ALSO

rwfilter(1), rwcut(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), silk config(1), rwptoflow(1),
pysilk(3), silkpython(3), flowrate(3), silk(7), pcap(3)

SiLK-3.23.1 597

silkpython(3) The SiLK Reference Guide

silkpython

SiLK Python plug-in

SYNOPSIS

rwfilter --python-file=FILENAME [--python-file=FILENAME ...] ...

rwfilter --python-expr=PYTHON_EXPRESSION ...

rwcut --python-file=FILENAME [--python-file=FILENAME ...]

--fields=FIELDS ...

rwgroup --python-file=FILENAME [--python-file=FILENAME ...]

--id-fields=FIELDS ...

rwsort --python-file=FILENAME [--python-file=FILENAME ...]

--fields=FIELDS ...

rwstats --python-file=FILENAME [--python-file=FILENAME ...]

--fields=FIELDS --values=VALUES ...

rwuniq --python-file=FILENAME [--python-file=FILENAME ...]

--fields=FIELDS --values=VALUES ...

DESCRIPTION

The SiLK Python plug-in provides a way to use PySiLK (the SiLK extension for python(1) described in
pysilk(3)) to extend the capability of several SiLK tools.

• In rwfilter(1), new partitioning rules can be defined in PySiLK to determine whether a SiLK Flow
record is written to the --pass-destination or --fail-destination.

• In rwcut(1), new fields can be defined in PySiLK and displayed for each record.

• New fields can also be defined in rwgroup(1) and rwsort(1). These fields are used as part of the key
when grouping or sorting the records.

• For rwstats(1) and rwuniq(1), two types of fields can be defined: Key fields are used to categorize
the SiLK Flow records into bins, and aggregate value fields compute a value across all the SiLK Flow
records that are categorized into a bin. (An example of a built-in aggregate value field is the number
of packets that were seen for all flow records that match a particular key.)

To extend the SiLK tools using PySiLK, the user writes a Python file that calls Python functions defined in
the silk.plugin Python module and described in this manual page. When the user specifies the --python-
file switch to a SiLK application, the application loads the Python file and makes the new functionality
available.

The following sections will describe

598 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

• how to create a command line switch with PySiLK that allows one to modify the run-time behavior
of their PySiLK code

• how to use PySiLK with rwfilter

• a simple API for creating fields in rwcut, rwgroup, rwsort, rwstats, and rwuniq

• the advanced API for creating fields in those applications

Typically you will not need to explicitly import the silk.plugin module, since the --python-file switch does
this for you. In a module used by a Python plug-in, the module can gain access to the functions defined in
this manual page by importing them from silk.plugin:

from silk.plugin import *

Hint: If you want to check whether the Python code in FILENAME is defining the switches and fields you
expect, you can load the Python file and examine the output of --help, for example:

rwcut --python-file=FILENAME --help

User-defined command line switches

Command line switches can be added and handled from within a SiLK Python plug-in. In order to add a
new switch, use the following function:

register switch(switch name, handler=handler func, [arg=needs arg], [help=help string])

switch name

Provides the name of the switch you are registering, a string. Do not include the leading -- in the
name. If a switch already exists with the name switch name, the application will exit with an error
message.

handler func

handler func([string]). Names a function that will be called by the application while it is processing
its command line if and only if the command line includes the switch --switch name. (If the switch
is not given, the handler func function will not be called.) When the arg parameter is specified
and its value is False, the handler func function will be called with no arguments. Otherwise, the
handler func function will be called with a single argument: a string representing the value the user
passed to the --switch name switch. The return value from this function is ignored. Note that the
register switch() function requires a handler argument which must be passed by keyword.

needs arg

Specifies a boolean value that determines whether the user must specify an argument to --
switch name, and determines whether the handler func function should expect an argument. When
arg is not specified or needs arg is True, the user must specify an argument to --switch name and
the handler func function will be called with a single argument. When needs arg is False, it is an error
to specify an argument to --switch name and handler func will be called with no arguments.

help string

Provides the usage text to print describing this switch when the user runs the application with the
--help switch. This argument is optional; when it is not provided, a simple ”No help for this switch”
message is printed.

SiLK-3.23.1 599

silkpython(3) The SiLK Reference Guide

rwfilter usage

When used in conjunction with rwfilter(1), the SiLK Python plug-in allows users to define arbitrary
partitioning criteria using the SiLK extension to the Python programming language. To use this capability,
the user creates a Python file and specifies its name with the --python-file switch in rwfilter. The file
should call the register filter() function for each filter that it wants to create:

register filter(filter func, [finalize=finalize func], [initialize=initialize func])

filter func

Boolean = filter func(silk.RWRec). Names a function that must accept a single argument, a
silk.RWRec object (see pysilk(3)). When the rwfilter program is run, it finds the records that
match the selection options, and hands each record to the built-in partitioning switches. A record that
passes all of the built-in switches is handed to the first Python filter func() function as an RWRec
object. The return value of the function determines what happens to the record. The record fails the
filter func() function (and the record is immediately written to the --fail-destination, if specified)
when the function returns one of the following: False, None, numeric zero of any type, an empty
string, or an empty container (including strings, tuples, lists, dictionaries, sets, and frozensets). If the
function returns any other value, the record passes the first filter func() function, and the record
is handed to the next Python filter func() function. If all filter func() functions pass the record,
the record is written to the --pass-destination, if specified. (Note that when the --plugin switch is
present, the code it specifies will be called after the PySiLK code.)

initialize func

initialize func(). Names a function that takes no arguments. When this function is specified, is will
be called after rwfilter has completed its argument processing, and just before rwfilter opens the
first input file. The return value of this function is ignored.

finalize func

finalize func(). Names a function that takes no arguments. When this function is specified, it will be
called after all flow records have been processed. One use of the these functions is to print any statistics
that the filter func() function was computing. The return value from this function is ignored.

If register filter() is called multiple times, the filter func(), initialize func(), and finalize func() func-
tions will be invoked in the order in which the register filter() functions were seen.

NOTE: For backwards compatibility, when the file named by --python-file does not call register filter(),
rwfilter will search the Python file for functions named rwfilter() and finalize(). If it finds the rwfilter()
function, rwfilter will act as if the file contained:

register_filter(rwfilter, finalize=finalize)

The --python-file switch requires the user to create a file containing Python code. To allow the user to write
a small filtering check in Python, rwfilter supports the --python-expr switch. The value of the switch
should be a Python expression whose result determines whether a given record passes or fails, using the same
criterion as the filter func() function described above. In the expression, the variable rec is bound to the
current silk.RWRec object. There is no support for the initialize func() and finalize func() functions.
The user may consider --python-expr=PYTHON EXPRESSION as being implemented by

from silk import *

def temp_filter(rec):

return (PYTHON_EXPRESSION)

600 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

register_filter(temp_filter)

The --python-file and --python-expr switches allow for much flexibility but at the cost of speed: converting
a SiLK Flow record into an RWRec is expensive relative to most operations in rwfilter. The user should
use rwfilter’s built-in partitioning switches to whittle down the input as much as possible, and only use the
Python code to do what is difficult or impossible to do otherwise.

Simple field registration functions

The silk.plugin module defines a function that can be used to define fields for use in rwcut, rwgroup,
rwsort, rwstats, and rwuniq. That function is powerful, but it is also complex. To make it easy to define
fields for the common cases, the silk.plugin provides the functions described in this section that create a
key field or an aggregate value field. The advanced function is described later in this manual page (Advanced
field registration function).

Once you have created a key field or aggregate value field, you must include the field’s name in the argument
to the --fields or --values switch to tell the application to use the field.

Integer key field

The following function is used to create a key field whose value is an unsigned integer.

register int field(field name, int function, min, max , [width])

field name

The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

int function

int = int function(silk.RWRec). A function that accepts a silk.RWRec object as its sole argument,
and returns an unsigned integer which represents the value of this field for the given record.

min

A number representing the minimum integer value for the field. If int function returns a value less
than min, an error is raised.

max

A number representing the maximum integer value for the field. If int function returns a value greater
than max, an error is raised.

width

The column width to use when displaying the field. This parameter is optional; the default is the
number of digits necessary to display the integer max.

IPv4 address key field

This function is used to create a key field whose value is an IPv4 address. (See also register ip field()).

register ipv4 field(field name, ipv4 function, [width])

field name

The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

SiLK-3.23.1 601

silkpython(3) The SiLK Reference Guide

ipv4 function

silk.IPv4Addr = ipv4 function(silk.RWRec). A function that accepts a silk.RWRec object as its
sole argument, and returns a silk.IPv4Addr object. This IPv4Addr object will be the IPv4 address
that represents the value of this field for the given record.

width

The column width to use when displaying the field. This parameter is optional, and it defaults to 15.

IP address key field

The next function is used to create a key field whose value is an IPv4 or IPv6 address.

register ip field(field name, ip function, [width])

field name

The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

ip function

silk.IPAddr = ip function(silk.RWRec). A function that accepts a silk.RWRec object as its sole
argument, and returns a silk.IPAddr object which represents the value of this field for the given
record.

width

The column width to use when displaying the field. This parameter is optional. The default width is
39.

This key field requires more memory internally than fields registered by the register ipv4 field() function.
If SiLK is compiled without IPv6 support, register ip field() works exactly like register ipv4 field(),
including the default width of 15.

Enumerated object key field

The following function is used to create a key field whose value is any Python object. The maximum number
of different objects that can be represented is 4,294,967,296, or 2ˆ32.

register enum field(field name, enum function, width, [ordering])

field name

The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

enum function

object = enum function(silk.RWRec). A function that accepts a silk.RWRec object as its sole
argument, and returns a Python object which represents the value of this field for the given record.
For typical usage, the Python objects returned by the enum function will be strings representing some
categorical value.

width

The column width to use when displaying this field. The parameter is required.

602 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

ordering

A list of objects used to determine ordering for rwsort and rwuniq. This parameter is optional. If
specified, it lists the objects in the order in which they should be sorted. If the enum function returns
a object that is not in ordering, the object will be sorted after all the objects in ordering.

Integer sum aggregate value field

This function is used to create an aggregate value field that maintains a running unsigned integer sum.

register int sum aggregator(agg value name, int function, [max sum], [width])

agg value name

The name of the new aggregate value field, a string. The agg value name must be unique among all
aggregate values, but an aggregate value field and key field can have the same name.

int function

int = int function(silk.RWRec). A function that accepts a silk.RWRec object as its sole argument,
and returns an unsigned integer which represents the value that should be added to the running sum
for the current bin.

max sum

The maximum possible sum. This parameter is optional; if not specified, the default is 2ˆ64-1
(18,446,744,073,709,551,615).

width

The column width to use when displaying the aggregate value. This parameter is optional. The default
is the number of digits necessary to display max sum.

Integer maximum aggregate value field

The following function is used to create an aggregate value field that maintains the maximum unsigned
integer value.

register int max aggregator(agg value name, int function, [max max], [width])

agg value name

The name of the new aggregate value field, a string. The agg value name must be unique among all
aggregate values, but an aggregate value field and key field can have the same name.

int function

int = int function(silk.RWRec). A function that accepts a silk.RWRec object as its sole argument,
and returns an integer which represents the value that should be considered for the current highest
value for the current bin.

max max

The maximum possible value for the maximum. This parameter is optional; if not specified, the default
is 2ˆ64-1 (18,446,744,073,709,551,615).

width

The column width to use when displaying the aggregate value. This parameter is optional. The default
is the number of digits necessary to display max max.

SiLK-3.23.1 603

silkpython(3) The SiLK Reference Guide

Integer minimum aggregate value field

This function is used to create an aggregate value field that maintains the minimum unsigned integer value.

register int min aggregator(agg value name, int function, [max min], [width])

agg value name

The name of the new aggregate value field, a string. The agg value name must be unique among all
aggregate values, but an aggregate value field and key field can have the same name.

int function

int = int function(silk.RWRec). A function that accepts a silk.RWRec object as its sole argument,
and returns an integer which represents the value that should be considered for the current lowest value
for the current bin.

max min

The maximum possible value for the minimum. When this optional parameter is not specified, the
default is 2ˆ64-1 (18,446,744,073,709,551,615).

width

The column width to use when displaying the aggregate value. This parameter is optional. The default
is the number of digits necessary to display max min.

Advanced field registration function

The previous section provided functions to register a key field or an aggregate value field when dealing with
common objects. When you need to use a complex object, or you want more control over how the object is
handled in PySiLK, you can use the register field() function described in this section.

Many of the arguments to the register field() function are callback functions that you must create and
that the application will invoke. (The simple registration functions above have already taken care of defining
these callback functions.)

Often the callback functions for handling fields will either take (as a parameter) or return a representation
of a numeric value that can be processed from C. The most efficient way to handle these representations is
as a string containing binary characters, including the null byte. We will use the term ”byte sequence” for
these representations; other possible terms include ”array of bytes”, ”byte strings”, or ”binary values”. For
hints on creating byte sequences from Python, see the Byte sequences section below.

To define a new field or aggregate value, the user calls:

register field(field name, [add rec to bin=add rec to bin func,] [bin compare=bin compare func,]
[bin bytes=bin bytes value,] [bin merge=bin merge func,] [bin to text=bin to text func,]
[column width=column width value,] [description=description string,] [initial value=initial value,]
[initialize=initialize func,] [rec to bin=rec to bin func,] [rec to text=rec to text func])

Although the keyword arguments to register field() are all optional from Python’s perspective, certain
keyword arguments must be present before an application will define the key or aggregate value. The
following table summarizes the keyword arguments used by each application. An F means the argument is
required for a key field, an A means the argument is required for an aggregate value field, f and a mean the
application will use the argument for a key field or an aggregate value if the argument is present, and a dot
means the application completely ignores the argument.

604 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

rwcut rwgroup rwsort rwstats rwuniq

add_rec_to_bin . . . A A

bin_compare . . . A .

bin_bytes . F F F,A F,A

bin_merge . . . A A

bin_to_text . . . F,A F,A

column_width F . . F,A F,A

description f f f f,a f,a

initial_value . . . a a

initialize f f f f,a f,a

rec_to_bin . F F F F

rec_to_text F

The following sections describe how to use register field() in each application.

rwcut usage

The purpose of rwcut(1) is to print attributes of (or attributes derived from) every SiLK record it reads as
input. A plug-in used by rwcut must produce a printable (textual) attribute from a SiLK record. To define
a new attribute, the register field() method should be called as shown:

register field(field name, column width=column width value, rec to text=rec to text func,
[description=description string,] [initialize=initialize func])

field name

Names the field being defined, a string. If you attempt to add a field that already exists, you will get
an an error message. To display the field, include field name in the argument to the --fields switch.

column width value

Specifies the length of the longest printable representation. rwcut will use it as the width for the
field name column when columnar output is selected.

rec to text func

string = rec to text func(silk.RWRec). Names a callback function that takes a silk.RWRec object
as its sole argument and produces a printable representation of the field being defined. The length
of the returned text should not be greater than column width value. If the value returned from this
function is not a string, the returned value is converted to a string by the Python str() function.

description string

Provides a string giving a brief description of the field, suitable for printing in --help-fields output.
This argument is optional.

initialize func

initialize func(). Names a callback function that will be invoked after the application has completed
its argument processing, and just before it opens the first input file. This function is only called when
--fields includes field name. The function takes no arguments and its return value is ignored. This
argument is optional.

If the rec to text argument is not present, the register field() function will do nothing when called from
rwcut. If the column width argument is missing, rwcut will complain that the textual width of the
plug-in field is 0.

SiLK-3.23.1 605

silkpython(3) The SiLK Reference Guide

rwgroup and rwsort usage

The rwsort(1) tool sorts SiLK records by their attributes or attributes derived from them. rwgroup(1)
reads sorted SiLK records and writes a common value into the next hop IP field of all records that have
common attributes. The output from both of these tools is a stream of SiLK records (the output typically
includes every record that was read as input). A plug-in used by these tools must return a value that the
application can use internally to compare records. To define a new field that may be included in the --id-
fields switch to rwgroup or the --fields switch to rwsort, the register field() method should be invoked
as follows:

register field(field name, bin bytes=bin bytes value, rec to bin=rec to bin func,
[description=description string,] [initialize=initialize func])

field name

Names the field being defined, a string. If you attempt to add a field that already exists, you will get
an an error message. To have rwgroup or rwsort use this field, include field name in the argument
to --id-fields or --fields.

bin bytes value

Specifies a positive integer giving the length, in bytes, of the byte sequence that the rec to bin func()
function produces; the byte sequence must be exactly this length.

rec to bin func

byte-sequence = rec to bin func(silk.RWRec). Names a callback function that takes a silk.RWRec
object and returns a byte sequence that represents the field being defined. The returned value should
be exactly bin bytes value bytes long. For proper grouping or sorting, the byte sequence should be
returned in network byte order (i.e., big endian).

description string

Provides a string giving a brief description of the field, suitable for printing in --help-fields output.
This argument is optional.

initialize func

initialize func(). Names a callback function that will be invoked after the application has completed
its argument processing, and just before it opens the first input file. This function is only called when
field name is included in the list of fields. The function takes no arguments and its return value is
ignored. This argument is optional.

If the rec to bin argument is not present, the register field() function will do nothing when called from
rwgroup or rwsort. If the bin bytes argument is missing, rwgroup or rwsort will complain that the
binary width of the plug-in field is 0.

rwstats and rwuniq usage

rwstats(1) and rwuniq(1) group SiLK records into bins based on key fields. Once a record is matched to
a bin, the record is used to update the aggregate values (e.g., the sum of bytes) that are being computed,
and the record is discarded. Once all records have been processed, the key fields and the aggregate values
are printed.

Key Field

606 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

A plug-in used by rwstats or rwuniq for creating a new key field must return a value that the application
can use internally to compare records, and there must be a function that converts that value to a printable
representation. The following invocation of register field() will produce a key field that can be used in the
--fields switch of rwstats or rwuniq:

register field(field name, bin bytes=bin bytes value, bin to text=bin to text func, col-
umn width=column width value, rec to bin=rec to bin func, [description=description string,]
[initialize=initialize func])

The arguments are:

field name

Contains the name of the field being defined, a string. If you attempt to add a field that already
exists, you will get an an error message. The field will only be active when field name is specified as
an argument to --fields.

bin bytes value

Contains a positive integer giving the length, in bytes, of the byte sequence that the rec to bin func()
function produces and that the bin to text func() function accepts. The byte sequences must be
exactly this length.

bin to text func

string = bin to text func(byte-sequence). Names a callback function that takes a byte sequence,
of length bin bytes value, as produced by the rec to bin func() function and returns a printable
representation of the byte sequence. The length of the text should be no longer than the value specified
by column width. If the value returned from this function is not a string, the returned value is
converted to a string by the Python str() function.

column width value

Contains a positive integer specifying the length of the longest textual field that the
bin to text func() callback function returns. This length will used as the column width when colum-
nar output is requested.

rec to bin func

byte-sequence = rec to bin func(silk.RWRec). Names a callback function that takes a silk.RWRec
object and returns a byte sequence that represents the field being defined. The returned value should
be exactly bin bytes value bytes long. For proper sorting, the byte sequence should be returned in
network byte order (i.e., big endian).

description string

Provides a string giving a brief description of the field, suitable for printing in --help-fields output.
This argument is optional.

initialize func

initialize func(). Names a callback function that is called after the command line arguments have
been processed, and before opening the first file. This function is only called when --fields includes
field name. The function takes no arguments and its return value is ignored. This argument is optional.

Aggregate Value

A plug-in used by rwstats or rwuniq for creating a new aggregate value must be able to use a SiLK record
to update an aggregate value, take two aggregate values and merge them to a new value, and convert that
aggregate value to a printable representation. To use an aggregate value for ordering the bins in rwstats, the

SiLK-3.23.1 607

silkpython(3) The SiLK Reference Guide

plug-in must also define a function to compare two aggregate values. The aggregate values are represented
as byte sequences.

To define a new aggregate value in rwstats, the user calls:

register field(agg value name, add rec to bin=add rec to bin func, bin bytes=bin bytes value,
bin merge=bin merge func, bin to text=bin to text func, column width=column width value,
[bin compare=bin compare func,] [description=description string,] [initial value=initial value,]
[initialize=initialize func])

The call to define a new aggregate value in rwuniq is nearly identical:

register field(agg value name, add rec to bin=add rec to bin func, bin bytes=bin bytes value,
bin merge=bin merge func, bin to text=bin to text func, column width=column width value,
[description=description string,] [initial value=initial value,] [initialize=initialize func])

The arguments are:

agg value name

Contains the name of the aggregate value field being defined, a string. The name of value must be
unique among all aggregate values, but an aggregate value field and key field can have the same name.
The value will only be active when agg value name is specified as an argument to --values.

add rec to bin func

byte-sequence = add rec to bin func(silk.RWRec, byte-sequence). Names a callback function whose
two arguments are a silk.RWRec object and an aggregate value. The function updates the aggre-
gate value with data from the record and returns a new aggregate value. Both aggregate values are
represented as byte sequences of exactly bin bytes value bytes.

bin bytes value

Contains a positive integer representing the length, in bytes, of the binary aggregate value used by the
various callback functions. Every byte sequence for this field must be exactly this length, and it also
governs the length of the byte sequence specified by initial value.

bin merge func

byte-sequence = bin merge func(byte-sequence, byte-sequence). Names a callback function which
returns the result of merging two binary aggregate values into a new binary aggregate value. This
merge function will often be addition; however, if the aggregate value is a bitmap, the result of merge
function could be the union of the bitmaps. The function should take two byte sequence arguments
and return a byte sequence, where all byte sequences are exactly bin bytes value bytes in length. If
merging the aggregate values is not possible, the function should throw an exception. This function
is used when the data structure used by rwstats or rwuniq runs out memory. When that happens,
the application writes its current state to a temporary file, empties its buffers, and continues reading
records. Once all records have been processed, the application needs to merge the temporary files
to produce the final output. The bin merge func() function is used when merging these binary
aggregate values.

bin to text func

string = bin to text func(byte-sequence). Names a callback function that takes a byte sequence
representing an aggregate value as an argument and returns a printable representation of that aggregate
value. The byte sequence input to bin to text func() will be exactly bin bytes value bytes long. The
length of the text should be no longer than the value specified by column width. If the value
returned from this function is not a string, the returned value is converted to a string by the Python
str() function.

608 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

column width value

Contains a positive integer specifying the length of the longest textual field that the
bin to text func() callback function returns. This length will used as the column width when colum-
nar output is requested.

bin compare func

int = bin compare func(byte-sequence, byte-sequence). Names a callback function that is called
with two aggregate values, each represented as a byte sequence of exactly bin bytes value bytes. The
function returns (1) an integer less than 0 if the first argument is less than the second, (2) an integer
greater than 0 if the first is greater than the second, or (3) 0 if the two values are equal. This function
is used by rwstats to sort the bins into top-N order.

description string

Provides a string giving a brief description of the aggregate value, suitable for printing in --help-fields
output. This argument is optional.

initial value

Specifies a byte sequence representing the initial state of the binary aggregate value. This byte sequence
must be of length bin bytes value bytes. If this argument is not specified, the aggregate value is set to
a byte sequence containing bin bytes value null bytes.

initialize func

initialize func(). Names a callback function that is called after the command line arguments have
been processed, and before opening the first file. This function is only called when --values includes
agg value name. The function takes no arguments and its return value is ignored. This argument is
optional.

Byte sequences

The rwgroup, rwsort, rwstats, and rwuniq programs make extensive use of ”byte sequences” (a.k.a.,
”array of bytes”, ”byte strings”, or ”binary values”) in their plug-in functions. The byte sequences are used
in both key fields and aggregate values.

When used as key fields, the values can represent uniqueness or indicate sort order. Two records with the
same byte sequence for a field will be considered identical with respect to that field. When sorting, the byte
sequences are compared in network byte order. That is, the most significant byte is compared first, followed
by the next-most-significant byte, etc. This equates to string comparison starting with the left-hand side of
the string.

When used as an aggregate field, the byte sequences are expected to behave more like numbers, with the
ability to take binary record and add a value to it, or to merge (e.g., add) two byte sequences outside the
context of a SiLK record.

Every byte sequence has an associated length, which is passed into the register field() function in the
bin bytes argument. The length determines how many values the byte sequence can represent. A byte
sequence with a length of 1 can represent up to 256 unique values (from 0 to 255 inclusive). A byte sequence
with a length of 2 can represent up to 65536 unique values (0 to 65535). To generalize, a byte sequence with
a length of n can represent up to 2ˆ(8n) unique values (0 to 2ˆ(8n)-1).

How byte sequences are represented in Python depends on the version of Python. Python represents a
sequence of characters using either the bytes type (introduced in 2.6) or the unicode type. The bytes type
can encode byte sequences while the unicode type cannot. In Python 2, the str (string) type was an alias

SiLK-3.23.1 609

silkpython(3) The SiLK Reference Guide

for bytes, so that any Python 2 string is in effect a byte sequence. In Python 3, str is an alias for unicode,
thus Python 3 strings are unicode objects and cannot represent byte sequences.

Python does not make conversions between integers and byte sequences particularly natural. As a result,
here are some pointers on how to do these conversions:

Use the bytes() and ord() methods

If you converting a single integer value that is less than 256, the easiest way to convert it to a byte sequence
is to use the bytes() function; to convert it back, use the ord() function.

seq = bytes([num])

num = ord(seq)

The bytes() function takes a list of integers between 0 and 255 inclusive, and returns a bytes sequence of
the length of that list. To convert a single byte, use a list of a single element. The ord() function takes a
byte sequence of a single byte and returns an integer between 0 and 255.

Note: In versions of Python earlier than 2.6, use the chr() function instead of the bytes() function. It takes
a single number as its argument. chr() will work in Python 2.6 and 2.7 as well, but there are compatibility
problems in Python 3.x.

Use the struct module

When the value you are converting to a byte sequence is 255 or greater, you have to go with another option.
One of the simpler options is to use Python’s built-in struct module. With this module, you can encode a
number or a set of numbers into a byte sequence and convert the result back using a struct.Struct object.
Encoding the numbers to a byte sequence uses the object’s pack() method. To convert that byte sequence
back to the number or set of numbers, use the object’s unpack() method. The length of the resulting byte
sequences can be found in the size attribute of the struct.Struct() object. A formatting string is used to
indicate how the numbers are encoded into binary. For example:

import struct

Set up the format for two 64-bit numbers

two64 = struct.Struct("!QQ)

Encode two 64-bit numbers as a byte sequence

seq = two64.pack(num1, num2)

#Unpack a byte sequence back into two 64-bit numbers

(num1, num2) = two64.unpack(seq)

#Length of the encoded byte sequence

bin_bytes = two64.size

In the above, Q represents a single unsigned 64-bit number (an unsigned long long or quad). The ! at the
beginning of the string forces network byte order. (For sort comparison purposes, always pack in network
byte order.)

Here is another example, which encodes a signed 16-bit integer and a floating point number:

import struct

Set up the format for a 16-bit signed integer and a float

obj = struct.Struct("!hf")

610 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

#Encode a 16-bit signed integer and a float as a byte sequence

seq = obj.pack(intval, floatval)

#Unpack a byte sequence back into a 16-bit signed integer and a float

(intval, floatval) = obj.unpack(seq)

#Length of the encoded byte sequence

bin_bytes = obj.size

Note that unpack() returns a sequence. When unpacking a single value, assign the result of unpack to
(variable name,), as shown:

import struct

u32 = struct.Struct("!I")

#Encode an unsigned 32-bit integer as a byte sequence

seq = u32.pack(num1)

#Unpack a byte sequence back into a unsigned 32-bit integer

(num1,) = struct.unpack(seq)

#Length of the encoded byte sequence

bin_bytes = u32.size

The full list of codes can be found in the Python library documentation for the struct module, http:
//docs.python.org/library/struct.html.

Note: Python versions prior to 2.5 do not include support for the struct.Struct object. For older versions
of Python, you have to use struct’s functional interface. For example:

import struct

#Encode a 16-bit signed integer and a float as a byte sequence

seq = struct.pack("!hf", intval, floatval)

#Unpack a byte sequence back into a 16-bit signed integer and a float

(intval, floatval) = struct.unpack("!hf", seq)

#Length of the encoded byte sequence

bin_bytes = struct.calcsize("!hf")

This method works in Python 2.5 and above as well, but is inherently slower, as it requires re-evaluation of
the format string for each packing and unpacking operation. Only use this if there is a need to inter-operate
with older versions of Python.

Use the array module

The Python array module provides another way to create byte sequences. Beware that the array module
does not provide an automatic way to encode the values in network byte order.

OPTIONS

The following options are available when the SiLK Python plug-in is used from rwfilter.

--python-file=FILENAME

Load the Python file FILENAME. The Python code may call register filter() multiple times to de-
fine new partitioning functions that takes a silk.RWRec object as an argument. The return value

SiLK-3.23.1 611

http://docs.python.org/library/struct.html
http://docs.python.org/library/struct.html

silkpython(3) The SiLK Reference Guide

of the function determines whether the record passes the filter. For backwards compatibility, if reg-
ister filter() is not called and a function named rwfilter() exists, that function is automatically
registered as the filtering function. Multiple --python-file switches may be used to load multiple
plug-ins.

--python-expr=PYTHON EXPRESSION

Pass the SiLK Flow record if the result of the processing the record with the specified
PYTHON EXPRESSION is true. The expression is evaluated in the following context:

• The record is represented by the variable named rec, which is a silk.RWRec object.

• There is an implicit from silk import * in effect.

The following options are available when the SiLK Python plug-in is used from rwcut, rwgroup, rwsort,
rwstats, or rwuniq:

--python-file=FILENAME

Load the Python file FILENAME. The Python code may call register field() multiple times to define
new fields for use by the application. When used with rwstats or rwuniq, the Python code may call
register field() multiple times to create new aggregate fields. Multiple --python-file switches may
be used to load multiple plug-ins.

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

rwfilter --python-expr

Suppose you want to find traffic destined to a particular host, 10.0.0.23, that is either ICMP or coming from
1434/udp. If you attempt to use:

$ rwfilter --daddr=10.0.0.23 --proto=1,17 --sport=1434 \

--pass=outfile.rw flowrec.rw

the --sport option will not match any of the ICMP traffic, and your result will not contain ICMP records.
To avoid having to use two invocations of rwfilter, you can use the SiLK Python plugin to do the check in
a single pass:

$ rwfilter --daddr=10.0.0.23 --proto=1,17 \

--python-expr ’rec.protocol==1 or rec.sport==1434’ \

--pass=outfile.rw flowrec.rw

Since the Python code is slower than the C code used internally by rwfilter, we want to limit the number
of records processed in Python as much as possible. We use the rwfilter switches to do the address check
and protocol check, and in Python we only need to check whether the record is ICMP or if the source port
is 1434 (if the record is not ICMP we know it is UDP because of the --proto switch).

612 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

rwfilter --python-file

To see all records whose protocol is different from the preceding record, use the following Python code. The
code also prints a message to the standard output on completion.

import sys

def filter(rec):

global lastproto

if rec.protocol != lastproto:

lastproto = rec.protocol

return True

return False

def initialize():

global lastproto

lastproto = None

def finalize():

sys.stdout.write("Finished processing records.\n")

register_filter(filter, initialize = initialize, finalize = finalize)

The preceding file, if called lastproto.py, can be used like this:

$ rwfilter --python-file lastproto.py --pass=outfile.rw flowrec.rw

Note: Be careful when using a Python plug-in to write to the standard output, since the Python output
could get intermingled with the output from --pass=stdout and corrupt the SiLK output file. In general,
printing to the standard error is safer.

Command line switch

The following code registers the command line switch count-protocols. This switch is similar to the
standard --protocol switch on rwfilter, in that it passes records whose protocol matches a value specified
in a list. In addition, when rwfilter exits, the plug-in prints a count of the number of records that matched
each specified protocol.

import sys

from silk.plugin import *

pro_count = {}

def proto_count(rec):

global pro_count

if rec.protocol in pro_count.keys():

pro_count[rec.protocol] += 1

return True

return False

SiLK -3.23.1 613

silkpython(3) The SiLK Reference Guide

def print_counts():

for p,c in pro_count.iteritems():

sys.stderr.write("%3d|%10d|\n" % (p, c))

def parse_protocols(protocols):

global pro_count

for p in protocols.split(","):

pro_count[int(p)] = 0

register_filter(proto_count, finalize = print_counts)

register_switch("count-protocols", handler=parse_protocols,

help="Like --proto, but prints count of flow records")

When this code is saved to the file count-proto.py, it can be used with rwfilter as shown to get a count of
TCP and UDP flow records:

$ rwfilter --start-date=2008/08/08 --type=out \

--python-file=count-proto.py --count-proto=6,17 \

--print-statistics=/dev/null

rwfilter does not know that the plug-in will be generating output, and rwfilter will complain unless an
output switch is given, such as --pass or --print-statistics. Since our plug-in is printing the data we want,
we send the output to /dev/null.

Create integer key field with simple API

This example creates a field that contains the sum of the source and destination port. While this value may
not be interesting to display in rwcut, it provides a way to sort fields so traffic between two low ports will
usually be sorted before traffic between a low port and a high port.

def port_sum(rec):

return rec.sport + rec.dport

register_int_field("port-sum", port_sum)

If the above code is saved in a file named portsum.py, it can be used to sort traffic prior to printing it
(low-port to low-port will appear first):

$ rwfilter --start-date=2008/08/08 --type=out,outweb \

--proto=6,17 --pass=stdout \

| rwsort --python-file=portsum.py --fields=port-sum \

| rwcut

To see high-port to high-port traffic first, reverse the sort:

$ rwfilter --start-date=2008/08/08 --type=out,outweb \

--proto=6,17 --pass=stdout \

| rwsort --python-file=portsum.py --fields=port-sum \

--reverse \

| rwcut

614 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

Create IP key field with simple API

SiLK stores uni-directional flows. For network conversations that cross the network border, the source and
destination hosts are swapped depending on the direction of the flow. For analysis, you often want to know
the internal and external hosts.

The following Python plug-in file defines two new fields: internal-ip will display the destination IP for an
incoming flow, and the source IP for an outgoing flow, and external-ip field shows the reverse.

import silk

for convenience, create lists of the types

in_types = [’in’, ’inweb’, ’innull’, ’inicmp’]

out_types = [’out’, ’outweb’, ’outnull’, ’outicmp’]

def internal(rec):

"Returns the IP Address of the internal side of the connection"

if rec.typename in out_types:

return rec.sip

else:

return rec.dip

def external(rec):

"Returns the IP Address of the external side of the connection"

if rec.typename in in_types:

return rec.sip

else:

return rec.dip

register_ip_field("internal-ip", internal)

register_ip_field("external-ip", external)

If the above code is saved in a file named direction.py, it can be used to show the internal and external IP
addresses and flow direction for all traffic on 1434/udp from Aug 8, 2008.

$ rwfilter --start-date=2008/08/08 --type=all \

--proto=17 --aport=1434 --pass=stdout \

| rwcut --python-file direction.py \

--fields internal-ip,external-ip,3-12

Create enumerated key field with simple API

This example expands the previous example. Suppose instead of printing the internal and external IP address,
you wanted to group by the label associated with the internal and external addresses in a prefix map file.
The pmapfilter(3) manual page specifies how to print labels for source and destination IP addresses, but
it does not support internal and external IPs.

Here we take the previous example, add a command line switch to specify the path to a prefix map file, and
have the internal and external functions return the label.

import silk

SiLK -3.23.1 615

silkpython(3) The SiLK Reference Guide

for convenience, create lists of the types

in_types = [’in’, ’inweb’, ’innull’, ’inicmp’]

out_types = [’out’, ’outweb’, ’outnull’, ’outicmp’]

handler for the --int-ext-pmap command line switch

def set_pmap(arg):

global pmap

pmap = silk.PrefixMap(arg)

labels = pmap.values()

width = max(len(x) for x in labels)

register_enum_field("internal-label", internal, width, labels)

register_enum_field("external-label", external, width, labels)

def internal(rec):

"Returns the label for the internal side of the connection"

global pmap

if rec.typename in out_types:

return pmap[rec.sip]

else:

return pmap[rec.dip]

def external(rec):

"Returns the label for the external side of the connection"

global pmap

if rec.typename in in_types:

return pmap[rec.sip]

else:

return pmap[rec.dip]

register_switch("int-ext-pmap", handler=set_pmap,

help="Prefix map file for internal-label, external-label")

Assuming the above is saved in the file int-ext-pmap.py, the following will group the flows by the internal
and external labels contained in the file ip-map.pmap.

$ rwfilter --start-date=2008/08/08 --type=all \

--proto=17 --aport=1434 --pass=stdout \

| rwuniq --python-file int-ext-pmap.py \

--int-ext-pmap ip-map.pmap \

--fields internal-label,external-label

Create minimum/maximum integer value field with simple API

The following example will create new aggregate fields to print the minimum and maximum byte values:

register_int_min_aggregator("min-bytes", lambda rec: rec.bytes,

(1 << 32) - 1)

register_int_max_aggregator("max-bytes", lambda rec: rec.bytes,

(1 << 32) - 1)

616 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

The lambda expression allows one to create an anonymous function. In this code, we need to return the
number of bytes for the given record, and we can easily do that with the anonymous function. Since the
SiLK bytes field is 32 bits, the maximum 32-bit number is passed the registration functions.

Assuming the code is stored in a file bytes.py, it can be used with rwuniq to see the minimum and maximum
byte counts for each source IP address:

$ rwuniq --python-file=bytes.py --fields=sip \

--values=records,bytes,min-bytes,max-bytes

Create IP key for rwcut with advanced API

This example is similar to the simple IP example above, but it uses the advanced API. It also creates another
field to indicate the direction of the flow, and it does not print the IPs when the traffic does not cross the
border. Note that this code has to determine the column width itself.

import silk, os

for convenience, create lists of the types

in_types = [’in’, ’inweb’, ’innull’, ’inicmp’]

out_types = [’out’, ’outweb’, ’outnull’, ’outicmp’]

internal_only = [’int2int’]

external_only = [’ext2ext’]

determine the width of the IP field depending on whether SiLK

was compiled with IPv6 support, and allow the IP_WIDTH environment

variable to override that width.

ip_len = 15

if silk.ipv6_enabled():

ip_len = 39

ip_len = int(os.getenv("IP_WIDTH", ip_len))

def cut_internal(rec):

"Returns the IP Address of the internal side of the connection"

if rec.typename in in_types:

return rec.dip

if rec.typename in out_types:

return rec.sip

if rec.typename in internal_only:

return "both"

if rec.typename in external_only:

return "neither"

return "unknown"

def cut_external(rec):

"Returns the IP Address of the external side of the connection"

if rec.typename in in_types:

return rec.sip

if rec.typename in out_types:

return rec.dip

SiLK -3.23.1 617

silkpython(3) The SiLK Reference Guide

if rec.typename in internal_only:

return "neither"

if rec.typename in external_only:

return "both"

return "unknown"

def internal_external_direction(rec):

"""Generates a string pointing from the sip to the dip, assuming

internal is on the left, and external is on the right."""

if rec.typename in in_types:

return "<---"

if rec.typename in out_types:

return "--->"

if rec.typename in internal_only:

return "-><-"

if rec.typename in external_only:

return "<-->"

return "????"

register_field("internal-ip", column_width = ip_len,

rec_to_text = cut_internal)

register_field("external-ip", column_width = ip_len,

rec_to_text = cut_external)

register_field("int_to_ext", column_width = 4,

rec_to_text = internal_external_direction)

The cut internal() and cut external() functions may return an IPAddr object instead of a string. For
those cases, the Python str() function is invoked automatically to convert the IPAddr to a string.

If the above code is saved in a file named direction.py, it can be used to show the internal and external IP
addresses and flow direction for all traffic on 1434/udp from Aug 8, 2008.

$ rwfilter --start-date=2008/08/08 --type=all \

--proto=17 --aport=1434 --pass=stdout \

| rwcut --python-file direction.py \

--fields internal-ip,int_to_ext,external-ip,3-12

Create integer key field for rwsort with the advanced API

The following example Python plug-in creates one new field, lowest port, for use in rwsort. Using this
field will sort records based on the lesser of the source port or destination port; for example, flows where
either the source or destination port is 22 will occur before flows where either port is 25. This example shows
using the Python struct module with multiple record attributes.

import struct

portpair = struct.Struct("!HH")

def lowest_port(rec):

if rec.sport < rec.dport:

618 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

return portpair.pack(rec.sport, rec.dport)

else:

return portpair.pack(rec.dport, rec.sport)

register_field("lowest_port", bin_bytes = portpair.size,

rec_to_bin = lowest_port)

To use this example to sort the records in flowrec.rw, one saves the code to the file sort.py and uses it as
shown:

$ rwsort --python-file=sort.py --fields=lowest_port \

flowrec.rw > outfile.rw

Create integer key for rwstats and rwuniq with advanced API

The following example defines two key fields for use by rwstats or rwuniq: prefixed-sip and
prefixed-dip. Using these fields, the user can count flow records based on the source and/or destina-
tion IPv4 address blocks (CIDR blocks). The default CIDR prefix is 16, but it can be changed by specifying
the --prefix switch that the example creates. This example uses the Python struct module to convert
between the IP address and a binary string.

import os, struct

from silk import *

default_prefix = 16

u32 = struct.Struct("!L")

def set_mask(prefix):

global mask

mask = 0xFFFFFFFF

the value we are handed is a string

prefix = int(prefix)

if 0 < prefix < 32:

mask = mask ^ (mask >> prefix)

Convert from an IPv4Addr to a byte sequence

def cidr_to_bin(ip):

if ip.is_ipv6():

raise ValueError, "Does not support IPv6"

return u32.pack(int(ip) & mask)

Convert from a byte sequence to an IPv4Addr

def cidr_bin_to_text(string):

(num,) = u32.unpack(string)

return IPv4Addr(num)

register_field("prefixed-sip", column_width = 15,

rec_to_bin = lambda rec: cidr_to_bin(rec.sip),

bin_to_text = cidr_bin_to_text,

bin_bytes = u32.size)

SiLK -3.23.1 619

silkpython(3) The SiLK Reference Guide

register_field("prefixed-dip", column_width = 15,

rec_to_bin = lambda rec: cidr_to_bin(rec.dip),

bin_to_text = cidr_bin_to_text,

bin_bytes = u32.size)

register_switch("prefix", handler=set_mask,

help="Set prefix for prefixed-sip/prefixed-dip fields")

set_mask(default_prefix)

The lambda expression allows one to create an anonymous function. In this code, the lambda function
is used to pass the appropriate IP address into the cidr to bin() function. To write the code without the
lambda would require separate functions for the source and destination IP addresses:

def sip_cidr_to_bin(rec):

return cidr_to_bin(rec.sip)

def dip_cidr_to_bin(rec):

return cidr_to_bin(rec.dip)

The lambda expression helps to simplify the code.

If the code is saved in the file mask.py, it can be used as follows to count the number of flow records seen
in the /8 of each source IP address. The flow records are read from flowrec.rw. The --ipv6-policy=ignore
switch is used to restrict processing to IPv4 addresses.

$ rwuniq --ipv6-policy=ignore --python-file mask.py \

--prefix 8 --fields prefixed-sip flowrec.rw

Create new average bytes value field for rwstats and rwuniq

The following example creates a new aggregate value that can be used by rwstats and rwuniq. The value
is avg-bytes, a value that calculates the average number of bytes seen across all flows that match the key.
It does this by maintaining running totals of the byte count and number of flows.

import struct

fmt = struct.Struct("QQ")

initial = fmt.pack(0, 0)

textsize = 15

textformat = "%%%d.2f" % textsize

add byte and flow count from ’rec’ to ’current’

def avg_bytes(rec, current):

(total, count) = fmt.unpack(current)

return fmt.pack(total + rec.bytes, count + 1)

return printable representation

def avg_to_text(bin):

(total, count) = fmt.unpack(bin)

return textformat % (float(total) / count)

620 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

merge two encoded values.

def avg_merge(rec1, rec2):

(total1, count1) = fmt.unpack(rec1)

(total2, count2) = fmt.unpack(rec2)

return fmt.pack(total1 + total2, count1 + count2)

compare two encoded values

def avg_compare(rec1, rec2):

(total1, count1) = fmt.unpack(rec1)

(total2, count2) = fmt.unpack(rec2)

Python 2:

#return cmp((float(total1) / count1), (float(total2) / count2))

Python 3:

avg1 = float(total1) / count1

avg2 = float(total2) / count2

if avg1 < avg2:

return -1

return avg1 > avg2

register_field("avg-bytes",

column_width = textsize,

bin_bytes = fmt.size,

add_rec_to_bin = avg_bytes,

bin_to_text = avg_to_text,

bin_merge = avg_merge,

bin_compare = avg_compare,

initial_value = initial)

To use this code, save it as avg-bytes.py, specify the name of the Python file in the --python-file switch,
and list the field in the --values switch:

$ rwuniq --python-file=avg-bytes.py --fields=sip \

--values=avg-bytes infile.rw

This particular example will compute the average number of bytes per flow for each distinct source IP address
in the file infile.rw.

Create integer key field for all tools that use fields

The following example Python plug-in file defines two fields, sport-service and dport-service. These
fields convert the source port and destination port to the name of the ”service” as defined in the file
/etc/services; for example, port 80 is converted to ”http”. This plug-in can be used by any of rwcut,
rwgroup, rwsort, rwstats, or rwuniq.

import os,socket,struct

u16 = struct.Struct("!H")

SiLK -3.23.1 621

silkpython(3) The SiLK Reference Guide

utility function to convert number to a service name,

or to a string if no service is defined

def num_to_service(num):

try:

serv = socket.getservbyport(num)

except socket.error:

serv = "%d" % num

return serv

convert the encoded port to a service name

def bin_to_service(bin):

(port,) = u16.unpack(bin)

return num_to_service(port)

width of service columns can be specified with the

SERVICE_WIDTH environment variable; default is 12

col_width = int(os.getenv("SERVICE_WIDTH", 12))

register_field("sport-service", bin_bytes = u16.size,

column_width = col_width,

rec_to_text = lambda rec: num_to_service(rec.sport),

rec_to_bin = lambda rec: u16.pack(rec.sport),

bin_to_text = bin_to_service)

register_field("dport-service", bin_bytes = u16.size,

column_width = col_width,

rec_to_text = lambda rec: num_to_service(rec.dport),

rec_to_bin = lambda rec: u16.pack(rec.dport),

bin_to_text = bin_to_service)

If this file is named service.py, it can be used by rwcut to print the source port and its service:

$ rwcut --python-file service.py \

--fields sport,sport-service flowrec.rw

Although the plug-in can be used with rwsort, the records will be sorted in the same order as the numerical
source port or destination port.

$ rwsort --python-file service.py \

--fields sport-service flowrec.rw > outfile.rw

When used with rwuniq, it can count flows, bytes, and packets indexed by the service of the destination
port:

$ rwuniq --python-file service.py --fields dport-service \

--values=flows,bytes,packets flowrec.rw

622 SiLK-3.23.1

The SiLK Reference Guide silkpython(3)

Create human-readable fields for all tools that use fields

The following example adds two fields, hu-bytes and hu-packets, which can be used as either key fields
or aggregate value fields. The example uses the formatting capabilities of netsa-python (http://tools.netsa.
cert.org/netsa-python/index.html) to present the bytes and packets fields in a more human-friendly manner.

When used as a key, the hu-bytes field presents the value 1234567 as 1205.6Ki or as 1234.6k when the
HUMAN USE BINARY environment variable is set to False.

When used as a key, the hu-packets field adds a comma (or the character specified by the HU-
MAN THOUSANDS SEP environment variable) to the display of the packets field. The value 1234567
becomes 1,234,567.

The hu-bytes and hu-packets fields can also be used as aggregate value fields, in which case they compute
the sum of the bytes and packets, respectively, and display it as for the key field.

The code for the plug-in is shown here, and an example of using the plug-in follows the code.

import silk, silk.plugin

import os, struct

from netsa.data.format import num_prefix, num_fixed

Whether the use Base-2 (True) or Base-10 (False) values for

Kibi/Mebi/Gibi/Tebi/... vs Kilo/Mega/Giga/Tera/...

use_binary = True

if (os.getenv("HUMAN_USE_BINARY")):

if (os.getenv("HUMAN_USE_BINARY").lower() == "false"

or os.getenv("HUMAN_USE_BINARY") == "0"):

use_binary = False

else:

use_binary = True

Character to use for Thousands separator

thousands_sep = ’,’

if (os.getenv("HUMAN_THOUSANDS_SEP")):

thousands_sep = os.getenv("HUMAN_THOUSANDS_SEP")

Number of significant digits

sig_fig=5

Use a 64-bit number for packing the bytes or packets data

fmt = struct.Struct("Q")

initial = fmt.pack(0)

Bytes functions

add_rec_to_bin

def hu_ar2b_bytes(rec, current):

global fmt

(cur,) = fmt.unpack(current)

return fmt.pack(cur + rec.bytes)

rec_to_binary

SiLK -3.23.1 623

http://tools.netsa.cert.org/netsa-python/index.html
http://tools.netsa.cert.org/netsa-python/index.html

silkpython(3) The SiLK Reference Guide

def hu_r2b_bytes(rec):

global fmt

return fmt.pack(rec.bytes)

bin_to_text

def hu_b2t_bytes(current):

global use_binary, sig_fig, fmt

(cur,) = fmt.unpack(current)

return num_prefix(cur, use_binary=use_binary, sig_fig=sig_fig)

rec_to_text

def hu_r2t_bytes(rec):

global use_binary, sig_fig

return num_prefix(rec.bytes, use_binary=use_binary, sig_fig=sig_fig)

Packets functions

add_rec_to_bin

def hu_ar2b_packets(rec, current):

global fmt

(cur,) = fmt.unpack(current)

return fmt.pack(cur + rec.packets)

rec_to_binary

def hu_r2b_packets(rec):

global fmt

return fmt.pack(rec.packets)

bin_to_text

def hu_b2t_packets(current):

global thousands_sep, fmt

(cur,) = fmt.unpack(current)

return num_fixed(cur, dec_fig=0, thousands_sep=thousands_sep)

rec_to_text

def hu_r2t_packets(rec):

global thousands_sep

return num_fixed(rec.packets, dec_fig=0, thousands_sep=thousands_sep)

Non-specific functions

bin_compare

def hu_bin_compare(cur1, cur2):

if (cur1 < cur2):

return -1

return (cur1 > cur2)

bin_merge

def hu_bin_merge(current1, current2):

global fmt

(cur1,) = fmt.unpack(current1)

(cur2,) = fmt.unpack(current2)

return fmt.pack(cur1 + cur2)

624 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

Register the fields

register_field("hu-bytes", column_width=10, bin_bytes=fmt.size,

rec_to_text=hu_r2t_bytes, rec_to_bin=hu_r2b_bytes,

bin_to_text=hu_b2t_bytes, add_rec_to_bin=hu_ar2b_bytes,

bin_merge=hu_bin_merge, bin_compare=hu_bin_compare,

initial_value=initial)

register_field("hu-packets", column_width=10, bin_bytes=fmt.size,

rec_to_text=hu_r2t_packets, rec_to_bin=hu_r2b_packets,

bin_to_text=hu_b2t_packets, add_rec_to_bin=hu_ar2b_packets,

bin_merge=hu_bin_merge, bin_compare=hu_bin_compare,

initial_value=initial)

This shows an example of the plug-in’s invocation and output when the code below is stored in the file
human.py.

$ rwstats --count=5 --no-percent --python-file=human.py \

--fields=proto,hu-bytes,hu-packets \

--values=records,hu-bytes,hu-packets data.rw

INPUT: 501876 Records for 305417 Bins and 501876 Total Records

OUTPUT: Top 5 Bins by Records

pro| hu-bytes|hu-packets| Records| hu-bytes|hu-packets|

17| 328| 1| 15922| 4.98Mi| 15,922|

17| 76.0| 1| 15482| 1.12Mi| 15,482|

1| 840| 10| 5895| 4.72Mi| 58,950|

17| 68.0| 1| 4249| 282Ki| 4,249|

17| 67.0| 1| 4203| 275Ki| 4,203|

Identifying SMTP Servers

To demonstrate the use of --python-file in rwfilter(1), we walk through a Python plug-in script that
evaluates the behavior of a set of IP addresses and determines if the host is likely to be an SMTP server
or relay. We expect (based on traffic studies) that more than 85% of a legitimate SMTP server’s activity
is devoted to sending or providing mail. If we find that the host exhibits this behavior, we include the IP
address in a set called SMTP.set. Regardless of if the IP address is included in the set, we pass all records
that appear to be legitimate mail flows.

We run the rwfilter command as follows:

$ rwfilter --start-date=2008/4/21 --end-date=2008/4/21 \

--type=out,outweb --sipset=possible_SMTP_servers.set \

--python-file=SMTP.py --print-statistics

This command first collects all records of type out and outweb that have a start date on April 21, 2008. Since
there are no additional command line options to filter records, all records are passed to the rwfilter(rec)
function in SMTP.py. rec is an instance of the object RWRec, which represent the record being passed.

The function rwfilter(rec) in SMTP.py begins by importing the global variable counts and smtpports.
counts is a dictionary indexed by source IP address and contains an array of size two, where the first element
is the total number of bytes that the IP address has transferred and the second element is the number of
bytes that the source address has transferred that are likely to be related to mail delivery.

SiLK-3.23.1 625

silkpython(3) The SiLK Reference Guide

Using the source IP address from the record, the function retrieves the current byte counts from the counts
dictionary. If this is the first occurrence of the IP address, a new entry is added. The function then adds the
byte count of this record to the total byte count and determines if the record is a mail delivery message. If
it is a mail message, the function adds the bytes to the total of bytes transferred as mail and returns True.
Otherwise, a value of False is returned.

After rwfilter processes all records it calls the finalize() function, which evaluates the collection of IP
addresses. If the percentage of bytes that the host transferred in mail operations is greater than 85% of the
total bytes transferred, the IP address is added to a final set of SMTP servers. The final set of SMTP servers
is then saved to the SMTP.set file, and rwfilter exits.

from silk import *

Collection of ports commonly used by SMTP servers

smtpports = set([25, 109, 110, 143, 220, 273, 993, 995, 113])

Minimum percentage of mail traffic before being considered a mail server

threshold = 0.85

Collection of byte counts

counts = dict()

This function is run over all records.

Input: An instance of the RWRec class representing the

current record being processesed

Output: True or false value indicating if the record passes

or fails the filter

def rwfilter(rec):

Import the global variables needed for processing the record

global smtpports, counts

Pull data from the record

sip = rec.sip

bytes = rec.bytes

Get a reference to the current data on the IP address in question

data = counts.setdefault(sip, [0, 0])

Update the total byte count for the IP address

data[0] += bytes

Is the flow mail related? If so add the byte count to the mail bytes

if (rec.protocol == 6 and rec.sport in smtpports and

rec.packets > 3 and rec.bytes > 120):

data[1] += bytes

return True

If not mail related, fail the record

return False

626 SiLK -3.23.1

The SiLK Reference Guide silkpython(3)

This is run after all records have been processed

def finalize():

Import the global vriables needed to evaluate the results

global counts, threshold

The IP set of SMTP servers

smtp = IPSet()

Iterate through all of the IP addresses.

for ip, data in counts.iteritems():

if (float(data[1]) / data[0]) > threshold:

smtp.add(ip)

Generate the IPset of all smtp servers.

smtp.save(’smtp.set’)

Register these functions with rwfilter

register_filter(rwfilter, finalize=finalize)

UPGRADING LEGACY PLUGINS

Some functions were marked as deprecated in SiLK 2.0, and have been removed in SiLK 3.0.

Prior to SiLK 2.0, the register field() function was called register plugin field(), and it had the following
signature:

register plugin field(field name, [bin len=bin bytes value,] [bin to text=bin to text func,]
[text len=column width value,] [rec to bin=rec to bin func,] [rec to text=rec to text func])

To convert from register plugin field to register field, change text len to column width, and change
bin len to bin bytes. (Even older code may use field len; this should be changed to column width as
well.)

The register filter() function was introduced in SiLK 2.0. In versions of SiLK prior to SiLK 3.0, when
rwfilter was invoked with --python-file and the named Python file did not call register filter(), rwfilter
would search the Python input for functions named rwfilter() and finalize(). If it found the rwfilter()
function, rwfilter would act as if the file contained:

register_filter(rwfilter, finalize=finalize)

To update your pre-SiLK 2.0 rwfilter plug-ins, simply add the above line to your Python file.

ENVIRONMENT

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file or --python-
expr is specified, the application must load the Python files that comprise the PySiLK package, such
as silk/ init .py. If this silk/ directory is located outside Python’s normal search path (for example,
in the SiLK installation tree), it may be necessary to set or modify the PYTHONPATH environment
variable to include the parent directory of silk/ so that Python can find the PySiLK module.

SiLK-3.23.1 627

silkpython(3) The SiLK Reference Guide

PYTHONVERBOSE

If the SiLK Python extension or plug-in fails to load, setting this environment variable to a non-empty
string may help you debug the issue.

SILK PYTHON TRACEBACK

When set, Python plug-ins will output trace back information regarding Python errors to the standard
error.

SEE ALSO

pysilk(3), rwfilter(1), rwcut(1), rwgroup(1), rwsort(1), rwstats(1), rwuniq(1), pmapfilter(3),
silk(7), python(1), http://docs.python.org/

628 SiLK-3.23.1

http://docs.python.org/

5

SiLK File Formats

The formats of some SiLK files are described in this section.

629

sensor.conf(5) The SiLK Reference Guide

sensor.conf

Sensor Configuration file for rwflowpack and flowcap

DESCRIPTION

As part of collecting flow data, the rwflowpack(8) and flowcap(8) daemons need to know what type of
data they are collecting and how to collect it (e.g., listen on 10000/udp for NetFlow v5; listen on 4740/tcp for
IPFIX). In addition, the rwflowpack daemon needs information on how to categorize the flow: for example,
to label the flows collected at a border router as incoming or outgoing. The Sensor Configuration file,
sensor.conf, contains this information, and this manual page describes the syntax of the file (see SYNTAX
below) and provides some example configurations (see EXAMPLES).

The sensor.conf file may have any name, and it may reside in any location. The name and location of the
file is specified by the --sensor-configuration switch to rwflowpack and flowcap.

The Sensor Configuration File defines the following concepts:

probe

A probe specifies a source for flow data. The source could be a port on which flowcap or rwflowpack
collects NetFlow or IPFIX data from a flow generator such as a router or the yaf software (http:
//tools.netsa.cert.org/yaf/). In rwflowpack, the source can be a directory to periodically poll for files
containing NetFlow v5 PDUs, IPFIX records, or SiLK Flow records. When defining a probe, you must
specify a unique name for the probe and the probe’s type.

group

A group is a named list that contains one of the following: CIDR blocks, the names of IPset files, or
integers representing SNMP interfaces or VLAN identifiers. The use of groups is optional; the primary
purpose of a group is to allow the administrator to specify a commonly used list (such as the IP space
of the network being monitored) in a single location.

sensor

A sensor represents a logical collection point for the purposes of analysis. The sensor contains configu-
ration values that rwflowpack uses to categorize each flow record depending on how the record moves
between networks at the collection point. Since the sensors and the categories (known as flowtypes or as
class/type pairs) are also used for analysis, they are defined in the Site Configuration file, described in
silk.conf(5). The Sensor Configuration file maps sensors to probes and specifies the rules required to
categorize the data. Usually one sensor corresponds to one probe; however, a sensor may be comprised
of multiple probes, or the flow data collected at a single probe may be handled by multiple sensors.

The next section of this manual page describes the syntax of the sensor.conf file.

Using the syntax to configure a sensor requires knowledge of the packing logic that rwflowpack is using.
The packing logic is the set of rules that rwflowpack uses to assign a flowtype to each record it processes.
The default packing logic is for the twoway site, which is described in the packlogic-twoway(3) manual
page. Additional packing logic rules are available (e.g., packlogic-generic(3)).

The last major section of this document is EXAMPLES where several common configurations are shown.
These examples assume rwflowpack is using the packing logic from the twoway site.

630 SiLK-3.23.1

http://tools.netsa.cert.org/yaf/
http://tools.netsa.cert.org/yaf/

The SiLK Reference Guide sensor.conf(5)

SYNTAX

When parsing the Sensor Configuration file, blank lines are ignored. At any location in a line, the character
indicates the beginning of a comment, which continues to the end of the line. These comments are ignored.

All other lines begin with optional leading whitespace, a command name, and one or more arguments to
the command. Command names are a sequence of non-whitespace characters, not including the character
#. Arguments are textual atoms: any sequence of non-whitespace, non-# characters, including numerals and
punctuation.

There are four contexts for commands: top-level, probe block, group block, and sensor block. The probe
block, group block, and sensor block contexts are used to describe individual features of probes, groups, and
sensors, respectively.

The valid commands for each context are described below.

Top-Level Commands

In addition to the commands to begin a probe, group, or sensor block, the top-level context supports the
following command:

include ”path”

The include command is used to include the contents of another file whose location is path. This
may be used to separate large configurations into logical units. The argument to include must be a
double-quoted string.

Probe Block

With the exception of the probe command, the commands listed below are accepted within the probe
context. Within a probe block, one and only one of the following must be specified: listen-on-port to listen
on a network socket, poll-directory to poll a directory for files, read-from-file to read a single file, or
listen-on-unix-socket to listen on a UNIX domain socket. These commands are described below.

probe probe-name probe-type

The probe command is used in the top-level context to begin a new probe block which continues to
the end probe command. The arguments to the probe command are the name of the probe being
defined and the probe type. The probe-name must be unique among all probes. It must begin with
a letter, and it may not contain whitespace characters or the slash character (/). When a probe is
associated with a single sensor, it is good practice to give the probe the same name as the sensor. The
probe-type must be one of the following:

netflow-v5

This probe processes NetFlow v5 protocol data units (PDU) that the daemon reads from a UDP
port or from a file. NetFlow may be generated by a router or by software that reads packet
capture (pcap(3)) data and generates NetFlow v5 records.

netflow

This is an alias for netflow-v5 for backwards compatibility. This alias is deprecated, and it may
be removed in a future release.

SiLK-3.23.1 631

sensor.conf(5) The SiLK Reference Guide

ipfix

An IPFIX probe processes Internal Protocol Flow Information eXchange records that the daemon
reads over the network from an IPFIX source such as yaf(1). An IPFIX probe can also poll a
directory for files generated by the yaf program. To support IPFIX probes, SiLK must be built
with support for the external library libfixbuf, version 1.7.0 or later. Both yaf and libfixbuf are
available from http://tools.netsa.cert.org/.

netflow-v9

This probe processes NetFlow v9 protocol data units (PDU) that the daemon reads from a UDP
port from a router. To support NetFlow v9 probes, SiLK must be built with support for the
external library libfixbuf, version 1.7.0 or later.

sflow

This probe processes sFlow v5 records that the daemon reads from a UDP port. To support sFlow
probes, SiLK must be built with support for the external library libfixbuf, version 1.7.0 or later.
Since SiLK 3.9.0.

silk

A SiLK probe processes the records contained in SiLK Flow files created by previous invocations
of rwflowpack. The flows will be completely re-packed, as if they were just received over the
network. The sensor and flowtype values in each flow will be ignored. Note that SiLK usually
removes the SNMP interfaces from its flow records, and it is likely that you will be unable to use
the SNMP interfaces to pack the flows.

end probe

The end probe command ends the definition of a probe. Following an end probe command, top-level
commands are again accepted.

listen-on-port port

This command configures the probe to accept flow records over the network, and port specifies the
network port number where the probe should listen for flow data. The protocol command is required
when listen-on-port is specified, and the listen-as-host and accept-from-host commands are op-
tional. Multiple probes may use the same value for port as long as the probes are the same type
and the accept-from-host command is specified in each probe block. Probes of different types may
not bind to the same port, meaning the combination of the following three values must be different:
listen-on-port, protocol, and listen-as-host. When listening to IPFIX data from yaf, this is the
value specified to yaf ’s --ipfix-port switch. When listening to NetFlow from a Cisco router, this is
the port that was specified to the Cisco IOS command

ip flow-export [ip-address] [port]

protocol { tcp | udp }
This command, required when listen-on-port is given, specifies whether the port is a tcp or udp port.
IPFIX probes support both types; the only permitted value for all other probe types is udp. When
listening to IPFIX data from yaf, this is the value specified to yaf ’s --ipfix switch.

accept-from-host host-name [host-name...]

This optional command specifies the hosts that are allowed to connect to the port where the probe is
listening. The argument is a list of IP addresses and/or hostnames separated by whitespace and/or
a comma. When this command is not present, any host may connect. The command may only be
specified when the listen-on-port command is also present. When multiple probes use the same
listen-on-port, protocol, and listen-as-host values, the accept-from-host switch must be used
so that rwflowpack may assign incoming records to a specified probe. When listening for NetFlow,

632 SiLK-3.23.1

http://tools.netsa.cert.org/

The SiLK Reference Guide sensor.conf(5)

this attribute would be the IP address of the router as seen from the machine running rwflowpack or
flowcap. (Prior to SiLK 3.10.1, the accept-from-host command accepted only a single argument.)

listen-as-host host-name

This optional command is used on a multi-homed machine to specify the address the probe should
listen on (bind(2) to). Its value is the name of the host or its IP address. If not present, the program
will listen on all the machine’s addresses. The command may only be specified when the listen-on-
port command is also present. For listening to NetFlow, the value would be the ip-address that was
specified to the Cisco IOS command

ip flow-export [ip-address] [port]

listen-on-unix-socket path-to-unix-socket

The value contains the path name to a UNIX domain socket where the flow generator writes its data.
The parent directory of path-to-unix-socket must exist. Multiple probes may not use the same path-
to-unix-socket.

poll-directory directory-path

When this command is given, rwflowpack will periodically poll the directory-path to look for files to
process. flowcap will exit with an error if you attempt to use probes that contain this command since
flowcap does not support reading data from files. Multiple probes may not use the same directory-
path. When polling the directory, zero length files and files whose name begin with a dot (.) are
ignored. This command may be used with the following probe types:

• For SiLK probes, each file must be a valid SiLK Flow file.

• IPFIX probes can process files created by the yaf program.

• A NetFlow v5 probe will process files containing NetFlow v5 PDUs. The format of these files is
specified in the description of the read-from-file command.

read-from-file dummy-value

When this command is given, rwflowpack will read NetFlow v5 records from the file specified by
the --netflow-file command line switch. The value to the read-from-file command is completely
ignored, and we recommend you use /dev/null as the value. flowcap will exit with an error if you
attempt to use probes that contain this command since flowcap does not support reading data from
files. The format of a NetFlow v5 file is that the file’s length should be an integer multiple of 1464
bytes, where 1464 is the maximum length of the NetFlow v5 PDU. Each 1464 block should contain the
24-byte NetFlow v5 header and space for thirty 48-byte flow records, even if fewer NetFlow records are
valid. rwflowpack will accept NetFlow v5 files that have been compressed with the gzip(1) program.

log-flags { none | { all | bad | default | firewall-event | missing | record-timestamps | sampling | show-templates | ... } }

This optional command accepts a comma- and/or space-separated list of names that specify which
messages to log for this probe. If not specified, the default is default, which is equivalent to bad,
missing, sampling. The possible values are:

all

Log everything.

bad

Write messages about an individual NetFlow v5 record where the packet or octet count is zero,
the packet count is larger than the octet count, or the duration of the flow is larger than 45 days.

SiLK-3.23.1 633

sensor.conf(5) The SiLK Reference Guide

default

Enable the following values: bad, missing, sampling. This is the default value. Since SiLK
3.10.0. (Prior to SiLK 3.10.0, all was the default.)

firewall-event

When the firewall-event quirks flag is set and the probe is processing NetFlow v9 or IPFIX,
write messages about records that are ignored because the firewall event information element on
the record is something other than flow deleted or flow denied. Since SiLK 3.8.1.

missing

Examine the sequence numbers of NetFlow v5 packets and write messages about missing and out-
of-sequence packets. (You may suppress messages regarding out-of-sequence NetFlow v9 or IPFIX
packets for all probes by setting the SILK LIBFIXBUF SUPPRESS WARNINGS environment
variable.)

none

Log nothing. It is an error to combine this value with any other.

record-timestamps

Log the timestamps that appear on each record. This produces a lot of output, and it is primarily
used for debugging. Since SiLK 3.10.0.

sampling

Write messages constructed by parsing the NetFlow v9 Options Templates that specify the sam-
pling algorithm (when samplingAlgorithm and samplingInterval IEs are present) or flow sampler
mode (when flowSamplerMode and flowSamplerRandomInterval IEs are present). Since SiLK
3.8.0.

show-templates

Write messages to the log file describing each IPFIX template that is read by this file-base or
TCP probe. (UDP probes must still rely on the SILK IPFIX PRINT TEMPLATES environment
variable.) The message contains embedded new lines, with the template ID and domain on the
first line, and each of the template’s elements on the following lines. Each element is described by
its name, its IE number with the private enterprise number if any, and its length in the template.
Scope elements in options templates are marked. The format is that described in Section 10.2 of
RFC7013. Since SiLK 3.19.0.

interface-values { snmp | vlan }
This optional command specifies the values that should be stored in the input and output fields of the
SiLK Flow records that are read from the probe. If this command is not given, the default is snmp.
Note that NetFlow v5 probes only support snmp.

snmp

Store the index of the network interface card (ifIndex) where the flows entered and left the router,
respectively.

vlan

Store the VLAN identifier for the source and destination networks, respectively. If only one VLAN
ID is available, input is set to that value and output is set to 0.

This setting does not affect whether rwflowpack(8) stores the input and output fields to its output
files. Storage of those fields is controlled by rwflowpack’s --pack-interfaces switch.

quirks { none | { firewall-event | missing-ips | nf9-out-is-reverse | nf9-sysuptime-seconds | zero-packets ... } }

634 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

This optional command is used to indicate that special (or quirky) handling of the incoming data is
desired. The value none disables all quirks, and that is the default setting. If the value is not none, it
may be a list of one or more of the values specified below separated by commas and/or spaces. Since
SiLK 3.8.0.

firewall-event

Enable checking for firewall event information elements (IEs) when processing IPFIX or Net-
Flow v9 flow records. This quirk must be enabled when collecting data from a Cisco ASA.
The IPFIX firewallEvent IE is 233. The Cisco elements are NF F FW EVENT (IE 40005) and
NF F FW EXT EVENT (IE 33002). When this quirk is active, firewall events that match the
value 2 (flow deleted) are categorized as normal flows, firewall events that match the value 3
(flow denied) are usually put into one of non-routed types (e.g., innull, outnull, see packlogic-
twoway(3) and packlogic-generic(3) for details), and all other firewall events values are
dropped. (Note that a log message is generated for these dropped records; to suppress these
messages, use the log-flags command.) When this quirk is not provided, SiLK handles these
records normally, which may result in duplicate flow records. (Prior to SiLK 3.8, SiLK dropped
all flow records that contained a firewall event IE.) Since SiLK 3.8.0.

missing-ips

Store a flow record even when the record’s NetFlow v9/IPFIX template does not contain IP
addresses. One change in SiLK 3.8.0 was to ignore flow records that do not have a source and/or
destination IP address; this quirk allows one to undo the effect of that change. Since SiLK 3.8.1.

nf9-out-is-reverse

Change handling of the OUT BYTES and OUT PKTS information elements to match that in
libfixbuf prior to 1.8.0. Specifically, treat information elements 23 and 24 (OUT BYTES and
OUT PKTS in RFC3954) as reverseOctetDeltaCount and reversePacketDeltaCount, respectively.
Starting with libfixbuf-1.8.0, those NetFlow v9 elements are mapped to postOctetDeltaCount and
postPacketDeltaCount, respectively. Since SiLK 3.17.2.

nf9-sysuptime-seconds

Work around an issue with NetFlow v9 records created by some middleboxes (e.g., SonicWall)
where the sysUpTime field in the packet header is reported in seconds instead of in milliseconds.
The incorrect units cause the time stamps on flow records to be future dated. In addition, adjust
the time fields on single packet flow records. Since SiLK 3.14.0.

none

Do not enable any quirks.

zero-packets

Enable support for flow records either that do not contain a valid packets field, such as those from
the Cisco ASA series of routers, or that have an unusually large bytes-per-packet ratio. When
this quirk is active, SiLK sets the packet count to 1 when the incoming IPFIX or NetFlow v9 flow
record has a the packet count if 0. This quirk may modify the file format used by rwflowpack
for IPv4 records in order to support large byte-per-packet ratios. Since SiLK 3.8.0.

priority value

This optional command is deprecated. It exists for backwards compatibility and will be removed in
the next major release.

To summarize the probe types and the input they can accept:

Probe Type Berkeley Directory UnixDomain Single

Socket Polling Socket File

SiLK -3.23.1 635

sensor.conf(5) The SiLK Reference Guide

========== ========== ========== ========== ==========

ipfix tcp/udp yes

netflow-v5 udp yes yes

netflow-v9 udp

sflow udp

silk yes

Lists of CIDR Blocks, IPsets, or Integers

This subsection describes the syntax of a list of CIDR blocks, a list of IPset file names, and a list of integers.
These lists are used in the sensor block and group block commands described below.

A group block (see Group Block) allows you to assign names to these lists. Once the name is defined, it may
be referenced in other lists of the same type by prepending the ”at” character (@) to the group’s name.

The lists are:

cidr-block-list

A cidr-block-list (or ipblock-list) contains one or more CIDR blocks or group references that represent
an address space. Adjacent values in the list may be separated by multiple whitespace (space or tab)
characters and/or a single comma. When IPv4 and IPv6 addresses combined, IPv4 addresses are
mapped into the ::ffff:0:0/96 netblock. For lists containing more than a few CIDR blocks, consider
using an IPset list instead.

ipset-list

An ipset-list contains the path names of one or more binary IPset files or group references. To create an
IPset file, use the rwsetbuild(1) tool. Each path name may be a double-quoted string ("example");
the quote characters are not necessary if the path name does not contain whitespace or any special
characters (single-quote ’, double-quote ", comma ,, or pound #). Adjacent values in the list may be
separated by multiple whitespace (space or tab) characters and/or a single comma. When multiple
IPset files are specified, a new IPset is created in memory and the contents of the files are merged
into it. rwflowpack(8) exits with an error if the IPset file does not exist or does not contain any IP
addresses. Since SiLK 3.10.0.

interface-list

An interface-list contains one or more integers between 0 and 65535, inclusive, or group references
or that represent SNMP interface indexes or VLAN identifiers. Adjacent values in the list may be
separated by multiple whitespace (space or tab) characters and/or a single comma.

Group Block

The use of group blocks is optional. They are a convenience to define and give a name to a list of commonly
used CIDR blocks, IPset files, or integer values that are treated as SNMP interfaces or VLAN identifiers.
Groups may be used in sensor blocks (Sensor Block) as described in the descriptions for the discard-when,
discard-unless, network-name-ipblocks, network-name-ipsets and network-name-interfaces commands,
below.

The commands in a group definition must all be of the same type. For example, you cannot mix ipblocks
and ipsets commands in a single group definition, even though both contain IP addresses.

The contents of an existing group may be added to the current group block by using a group reference after
the appropriate keyword as long as both groups are the same type. A group reference is the name of the

636 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

group prefixed by the ”at” character (@). When a group reference is used, the contents of the existing groups
are copied into the current group.

For examples of group blocks, see Group definitions below.

The group command is used at top-level to begin a group definition block, and the remaining commands
are accepted within the group block.

group group-name

The group command begins a new group definition block which continues to the end group command.
The argument to the group command is the name of the group being defined. The group-name must
be unique among all groups. It must begin with a letter, and it may not contain whitespace characters
or the slash character (/).

end group

The end group command ends the definition of a group. Following an end group command, top-level
commands are again accepted.

interfaces interface-list

The interfaces command adds integer values to a group, where each integer is treated as an SNMP
interface number or VLAN identifier. An interface-list is a list of integers or group references as defined
above (Lists of CIDR Blocks, IPsets, or Integers). The interfaces command may appear multiple times
in a group block.

ipblocks cidr-block-list

The ipblocks command adds CIDR block values to a group. The cidr-block-list is described above.
The ipblocks command may appear multiple times in a group block.

ipsets ipset-list

The ipset command adds the IP addresses specified in an IPset file to a group. The ipsets command
may appear multiple times in a group block. Since SiLK 3.10.0.

Sensor Block

The information from the sensor block is used by rwflowpack to determine how to categorize a flow; that is,
in which file the flow record is stored. The packlogic-twoway(3) manual page describes how rwflowpack
may use the sensor blocks to determine a record’s category.

When the Sensor Configuration file is used with flowcap, no sensors need to be defined. In fact, flowcap
completely ignores all text inside each sensor block.

The sensor block works with the packing logic to determine where rwflowpack stores flow records. The
packing logic plug-in specifies a list of network names, and you will refer to these networks when you configure
the sensor block. Most plug-ins provide the external, internal, and null names, where internal refers to
network being monitored, null are flows that were blocked by the router’s access control list, and external is
everything else.

Several of the commands described below that categorize flow records require as an argument a list of CIDR
blocks, a list of IPset files, or a list of integers. The syntax of these lists is described in the Lists of CIDR
Blocks, IPsets, or Integers section above.

As part of determining how to process a flow record, rwflowpack may check a record’s source or destination
IP address against a cidr-block-list or an ipset-set. Note the following:

SiLK-3.23.1 637

sensor.conf(5) The SiLK Reference Guide

• for a cidr-block-list, the IP address is sequentially compared to each element of the list, stopping once
a match is made

• when comparing an IPv4 address to an IPv6 list, the IPv4 address is converted to IPv6 by mapping it
into the ::ffff:0:0/96 prefix for purposes of the comparison

• when comparing an IPv6 address to an IPv4 list, an IPv6 address in the ::ffff:0:0/96 prefix is converted
to IPv4 for purposes of the comparison and any other IPv6 address fails the comparison

As part of determining how to process a flow record, rwflowpack may check whether the record’s input or
output fields are an interface-list. Whether the input and output fields contain SNMP interfaces or VLAN
identifiers is determined by the interface-values command in the probe block (c.f. Probe Block).

The sensor command is used in the top-level context to begin a sensor configuration block, and the remaining
commands are accepted within the sensor block.

sensor sensor-name

The sensor command begins a new sensor configuration block. It takes as an argument the name
of the sensor being configured, and that sensor must be defined in the Site Configuration file (see
silk.conf(5)). A sensor block is closed with the end sensor command. You may have multiple sensor
blocks that have the same sensor-name.

end sensor

The end sensor command ends the configuration of a sensor. Following an end sensor command,
top-level commands are again accepted.

probe-type-probes probe-name [probe-name ...]

This command associates the listed probe names of the given probe type with the sensor. The probes
do not have to be defined before they are used. (Note this also means that a mistyped probe-name will
not be detected.) For example, netflow-v5-probes S1 says that S1 is a netflow-v5 probe; whenever flow
data arrives on the S1 probe, the sensor associated with the probe notices that data is available and
processes it. Adjacent probe names in the argument list may be separated by space or tab characters
and/or a single comma.

source-network network-name

This command causes the sensor to assume that all flows originated from the network named network-
name. For example, if a sensor is associated a probe that only monitors incoming traffic, you could
use source-network external to specify that all traffic originated from the external network.

destination-network network-name

This command causes the sensor to assume that all flows were sent to the network named network-
name.

network-name-ipblocks {cidr-block-list | remainder}
This command specifies the IP-space that is assigned to the network named network-name. The value
of the command can be the keyword remainder or a cidr-block-list as defined above. When the value
is the keyword remainder, the IP-space for network-name is conceptually all IPs not assigned to other
networks on this sensor. The remainder keyword may only appear one time within a sensor block.

network-name-ipsets {ipset-list | remainder}
This command specifies the IP-space that is assigned to the network named network-name. The value
of the command can be the keyword remainder or an ipset-list as defined above. When the value is
the keyword remainder, the IP-space for network-name is conceptually all IPs not assigned to other
networks on this sensor. The remainder keyword may only appear one time within a sensor block.

638 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

network-name-interfaces {interface-list | remainder}
This command specifies the SNMP interface index(es) or VLAN identifiers that are assigned to the
network named network-name. The value of the command may be the keyword remainder or an
interface-list as defined above. When the value is the keyword remainder, the interface list is computed
by finding all interface values not assigned to other networks on this sensor. The remainder keyword
may only appear one time within a sensor block.

isp-ip ip-address [ip-address ...]

This optional command may be used for a sensor that processes NetFlow data. The value to the
command is a list of IP addresses in dotted-decimal notation, where the IPs are the addresses of the
NICs on the router. For traffic that doesn’t leave the router (and thus was sent to the router’s null-
interface), some packing-logic plug-ins use these IPs to distinguish legitimate traffic for the router (e.g.,
routing protocol traffic, whose destination address would be in this list) from traffic that violated the
router’s access control list (ACL).

The following optional sensor block commands provide a way to filter the flow records that rwflowpack
packs for a sensor. Each filter begins with either discard-when or discard-unless, mentions a flow record
field, and ends with a list of values.

The discard-when command causes the sensor to ignore the flow record if the property matches any of the
elements in the list. When a match is found, rwflowpack immediately stops processing the record for the
current sensor and the flow is not packed for this sensor.

The discard-unless command causes the sensor to ignore the flow record unless the property matches one
of the elements in the list. That is, the flow record is packed only if its property matches one of the values
specified in the list, and, when multiple discard-unless commands are present, if the flow record matches
the values specified in each.

For each individual property, only one of discard-when or discard-unless may be specified.

discard-when source-interfaces interface-list

Instructs rwflowpack to discard a flow record for this sensor if the value in the flow’s input field
is listed in interface-list. When paired with VLAN tagging (see the interface-values command in
the probe block), this allows the administrator to discard flows that have a specific VLAN tag. The
commands discard-when source-interfaces and discard-unless source-interfaces may not be
specified on the same sensor, but other discard- commands are permitted.

discard-unless source-interfaces interface-list

Instructs rwflowpack to discard the flow record for this sensor unless the flow’s input field is in
interface-list. That is, the flow record may be packed only if its input field matches one of the values
specified in interface-list. When paired with VLAN tagging, this allows one to discard flows that
do not have a specific VLAN tag. The commands discard-when source-interfaces and discard-
unless source-interfaces may not be specified on the same sensor, but other discard- commands
are permitted.

discard-when destination-interfaces interface-list

Discards a flow for this sensor when the flow’s output field matches a value in interface-list. May not
appear in the same sensor block with discard-unless destination-interfaces.

discard-unless destination-interfaces interface-list

Discards a flow for this sensor unless the flow’s output field matches a value in interface-list. May not
appear in the same sensor block with discard-when destination-interfaces.

SiLK-3.23.1 639

sensor.conf(5) The SiLK Reference Guide

discard-when any-interfaces interface-list

Discards a flow for this sensor when either the flow’s input or its output field matches a value in
interface-list. May not appear in the same sensor block with discard-unless any-interfaces.

discard-unless any-interfaces interface-list

Discards a flow for this sensor unless either the flow’s input or its output field matches a value in
interface-list. May not appear in the same sensor block with discard-unless any-interfaces.

discard-when source-ipblocks cidr-block-list

Discards a flow for this sensor when the flow’s source IP address, sIP, matches one of the CIDR blocks
in cidr-block-list. May not appear in the same sensor block with discard-unless source-ipblocks.

discard-unless source-ipblocks cidr-block-list

Discards a flow for this sensor unless the flow’s source IP address, sIP, matches one of the CIDR blocks
in cidr-block-list. May not appear in the same sensor block with discard-when source-ipblocks.

discard-when destination-ipblocks cidr-block-list

Discards a flow for this sensor when the flow’s destination IP address, dIP, matches one of the CIDR
blocks in cidr-block-list. May not appear in the same sensor block with discard-unless destination-
ipblocks.

discard-unless destination-ipblocks cidr-block-list

Discards a flow for this sensor unless the flow’s destination IP address, dIP, matches one of the CIDR
blocks in cidr-block-list. May not appear in the same sensor block with discard-when destination-
ipblocks.

discard-when any-ipblocks cidr-block-list

Discards a flow for this sensor when either the flow’s source IP or its destination IP address matches one
of the CIDR blocks in cidr-block-list. May not appear in the same sensor block with discard-unless
any-ipblocks.

discard-unless any-ipblocks cidr-block-list

Discards a flow for this sensor unless either the flow’s source IP or its destination IP address matches
one of the CIDR blocks in cidr-block-list. May not appear in the same sensor block with discard-when
any-ipblocks.

discard-when source-ipsets ipset-list

Discards a flow for this sensor when the flow’s source IP address, sIP, is in one of IPset files in ipset-list.
May not appear in the same sensor block with discard-unless source-ipsets. Since SiLK 3.10.0.

discard-unless source-ipsets ipset-list

Discards a flow for this sensor unless the flow’s source IP address, sIP, is in one of IPset files in
ipset-list. May not appear in the same sensor block with discard-when source-ipsets. Since SiLK
3.10.0.

discard-when destination-ipsets ipset-list

Discards a flow for this sensor when the flow’s destination IP address, dIP, is in one of the IPset files in
ipset-list. May not appear in the same sensor block with discard-unless destination-ipsets. Since
SiLK 3.10.0.

640 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

discard-unless destination-ipsets ipset-list

Discards a flow for this sensor unless the flow’s destination IP address, dIP, is in one of the IPset files
in ipset-list. May not appear in the same sensor block with discard-when destination-ipsets. Since
SiLK 3.10.0.

discard-when any-ipsets ipset-list

Discards a flow for this sensor when either the flow’s source IP or its destination IP address is in one of
the IPset files in ipset-list. May not appear in the same sensor block with discard-unless any-ipsets.
Since SiLK 3.10.0.

discard-unless any-ipsets ipset-list

Discards a flow for this sensor unless either the flow’s source IP or its destination IP address is in one of
the IPset files in ipset-list. May not appear in the same sensor block with discard-when any-ipsets.
Since SiLK 3.10.0.

EXAMPLES

All these examples assume you are using the packlogic-twoway(3) packing logic plug-in to rwflowpack(8).

Group definitions

The following shows how to create groups that can be used in other group blocks or in certain commands
within a sensor block.

group G01

interfaces 1 2, 3

interfaces 4

end group

group G02

interfaces 5 @G01

end group

group G03

interfaces @G02

interfaces 6

end group

group G11

ipblocks 192.0.2.0/27 192.0.2.32/27, 192.0.2.64/26

ipblocks 192.0.2.128/25

end group

group G12

ipblocks 198.51.100.0/24 @G11

end group

SiLK -3.23.1 641

sensor.conf(5) The SiLK Reference Guide

group G13

ipblocks @G12

ipblocks 203.0.113.0/24

end group

group G21

ipsets /var/sets/ip1.set /var/sets/ip2.set, /var/sets/ip3.set

ipsets /var/sets/ip4.set

end group

group G22

ipsets /var/sets/ip5.set @G21

end group

group G23

ipsets @G22

ipsets /var/sets/ip6.set

end group

NetFlow v5 Categorized by SNMP Interface

The following two blocks define a probe that listens on 9900/udp for NetFlow v5 from a router. The probe
only accepts traffic originating from 172.16.22.22 or 172.16.33.33. The associated sensor uses the SNMP
interfaces to categorize the flows, where traffic that enters the router on interface 1 and leaves on interface 8
is in, traffic entering on 8 and leaving on 1 is out, traffic from 1 to 0 is innull, traffic from 8 to 8 is int2int,
etc.

probe S1 netflow-v5

listen-on-port 9901

protocol udp

accept-from-host 172.16.22.22 172.16.33.33

end probe

sensor S1

netflow-v5-probes S1

external-interfaces 1

internal-interfaces 8

null-interfaces 0

end sensor

NetFlow v5 Categorized by IP Address

The probe in this example is the same as above, except the administrator has chosen to log only messages
about bad packets (messages about missing packets will be ignored). The sensor is categorizing flows by the
source and destination IP address in the flow record. The internal network is defined as 128.2.0.0/16, and
all other IPs are defined as external. For example, HTTP traffic whose source is 128.2.0.1 and destination
is google.com will be categorized as outweb; the reply (source of google.com and destination 128.2.0.1) will
be inweb.

642 SiLK -3.23.1

The SiLK Reference Guide sensor.conf(5)

probe S2 netflow-v5

listen-on-port 9902

protocol udp

accept-from-host 172.16.22.22 172.16.33.33

log-flags bad # ignore missing pkts

end probe

sensor S2

netflow-v5-probes S2

internal-ipblocks 128.2.0.0/16

external-ipblocks remainder

end sensor

IPFIX Categorized by IP Address

This example uses an IPFIX probe to collect the flows on port 9903/tcp, where the probe binds to address
192.168.1.92. The sensor configuration is the same as in the previous example, but a group definition is used
to define the internal network.

probe S3 ipfix

listen-on-port 9903

protocol tcp

listen-as-host 192.168.1.92

end probe

group my-network

ipblocks 128.2.0.0/16

end group

sensor S3

ipfix-probes S3

internal-ipblocks @my-network

external-ipblocks remainder

end sensor

IPFIX Read from Files

This example uses the same sensor configuration as above. The probe processes files that have been created
by yaf(1) and stored in the directory /tmp/var/yaf/.

probe S4 ipfix

poll-directory /tmp/var/yaf

end probe

sensor S4

ipfix-probes S4

internal-ipblock 128.2.0.0/16

external-ipblock remainder

end sensor

SiLK-3.23.1 643

sensor.conf(5) The SiLK Reference Guide

NetFlow v9 Categorized by IP Address

This example uses a NetFlow v9 probe to collect the flows on port 9905/udp, where the probe binds to
address 192.168.1.92. The sensor configuration uses an IPset file to define the internal network.

probe S5 netflow-v9

listen-on-port 9905

protocol udp

listen-as-host 192.168.1.92

end probe

sensor S5

netflow-v9-probes S5

internal-ipsets /var/sets/my-network.set

external-ipsets remainder

end sensor

sFlow v5 Categorized by IP Address

This example uses an sFlow probe to collect the flows on port 9906/udp, where the probe binds to the IPv6
address ::1. The sensor configuration uses an IPset file to define the internal network.

probe S19 sflow

listen-on-port 9906

protocol udp

listen-as-host ::1

end probe

sensor S19

sflow-probes S19

internal-ipsets /var/sets/my-network.set

external-ipsets remainder

end sensor

NetFlow v9 from a Cisco ASA Router

When collecting NetFlow v9 data from a Cisco ASA (Adaptive Security Appliance), specify the quirks
statement as shown in this example to enable special handling of the NetFlow data.

probe S20 netflow-v9

listen-on-port 9988

protocol udp

quirks firewall-event zero-packets

end probe

sensor S20

netflow-v9-probes S20

internal-ipsets /var/sets/my-network.set

external-ipsets remainder

end sensor

644 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

Multiple Sources Becoming One Sensor (One Port)

Consider a scenario where there are multiple input streams that need to be treated as a single sensor. For
example, you use multiple routers for load-balancing but you want them treated as a single logical sensor.
In this configuration, you send all the input streams to a single port, and you define a single probe listening
on that port. As long as the streams have a unique source IP, the streams will be treated distinctly.

The following sensor and probe blocks accept any number of TCP-based IPFIX connections to port 9907
and any number of NetFlow v5 connections to 9908. This configuration works for all types of input as SiLK
3.4.0 when using libfixbuf-1.2.0. See the configuration in the following example for a alternate approach.

probe S7 ipfix

listen-on-port 9907

protocol tcp

end probe

sensor S7

ipfix-probes S7

internal-ipblocks 128.2.0.0/16

external-ipblocks remainder

end sensor

probe S8 netflow-v5

listen-on-port 9908

protocol udp

log-flags bad

end probe

sensor S8

netflow-v5-probes S8

internal-ipblocks 128.2.0.0/16

external-ipblocks remainder

end sensor

Multiple Sources Becoming One Sensor (Multiple Ports)

Like the previous example, this example configuration causes multiple input streams to be treated as a single
sensor. In this solution, each stream arrives on a separate port where it is collected by a separate probe.
The sensor block combines the probes into one sensor. This type of approach works with all types of input
for all releases of SiLK.

probe S6-p1 netflow-v9

listen-on-port 9961

protocol udp

end probe

probe S6-p2 netflow-v9

listen-on-port 9962

protocol udp

end probe

SiLK -3.23.1 645

sensor.conf(5) The SiLK Reference Guide

probe S6-p3 netflow-v9

listen-on-port 9963

protocol udp

end probe

sensor S6

netflow-v9-probes S6-p1, S6-p2, S6-p3

internal-ipblocks 128.2.0.0/16

external-ipblocks remainder

end sensor

Multiple Sources Becoming One Sensor (Specific Directions)

Consider the case of using yaf on a monitor at the border of a network where all traffic entering the network
arrives at the monitor on one network interface card (NIC) and all traffic leaving the network arrives at
the monitor on a different NIC. Since yaf does not support multiple interfaces yet, you must run two yaf
processes, one for each NIC. The sensor configuration for this monitor would list two probes, each listening
on a different port, and two sensor blocks both packing to the same sensor. Each sensor block packs the
traffic as incoming or outgoing depending on which probe received the traffic.

probe S9-in ipfix

listen-on-port 9991

protocol tcp

end probe

probe S9-out ipfix

listen-on-port 9992

protocol tcp

end probe

sensor S9

ipfix-probes S9-in

source-network external

destination-network internal

end sensor

sensor S9

ipfix-probes S9-out

source-network internal

destination-network external

end sensor

Multiple Sources to Multiple Sensors (Same Port)

Suppose your network has multiple flow generators that you wish to treat as separate sensors, but you would
like to minimize the number of open ports on your firewall. To support this configuration, configure the
probes to distinguish the traffic based on the source address. Specifically, create a separate probe for each
sensor where the probes of the same type use the same listen-on-port value but different accept-from-host
values. (Different probe types may not bind the same port; the combination of listen-on-port, protocol,

646 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

and listen-as-host must be unique for different probe types.) The following configuration uses a NetFlow
v5 probe, which works for all versions of SiLK. A similar configuration works for any type of input as of
SiLK 3.4.0 and libfixbuf-1.2.0.

probe S10 netflow-v5

listen-on-port 9910

accept-from-host 172.16.22.10

protocol udp

end probe

probe S11 netflow-v5

listen-on-port 9910

accept-from-host 172.16.22.11

protocol udp

end probe

group my-network2

ipblocks 128.2.0.0/16

end group

sensor S10

netflow-v5-probes S10

internal-ipblocks @my-network2

external-ipblocks remainder

end sensor

sensor S11

netflow-v5-probes S11

internal-ipblocks @my-network2

external-ipblocks remainder

end sensor

Single Source Becoming Multiple Sensors

Suppose you have instrumented a single router but you wish to split the traffic into two sensors, where
one part of the network (monitored by sensor S12) is defined as 128.2.0.0/17, and the other (sensor S13)
as 128.2.128.0/17. Traffic between 128.2.0.1 and google.com will be assigned to sensor S12, but it will so
appear as ext2ext traffic for sensor S13 unless you explicitly discard that traffic using the discard-unless
command.

probe S12-S13 ipfix

listen-on-port 9912

protocol tcp

end probe

group S12-space

ipblocks 128.2.0.0/17

end group

SiLK -3.23.1 647

sensor.conf(5) The SiLK Reference Guide

group S13-space

ipblocks 128.2.128.0/17

end group

sensor S12

ipfix-probes S12-S13

discard-unless any-ipblock @S12-space

internal-ipblocks @S12-space

external-ipblocks remainder

end sensor

sensor S13

ipfix-probes S12-S13

discard-unless any-ipblock @S13-space

internal-ipblocks @S13-space

external-ipblocks remainder

end sensor

Discarding Flows Using VLAN Tags

You can configure rwflowpack to discard flows that do not have a particular VLAN tag. First, specify the
interface-values command to instruct the probe to put the VLAN id into the fields that typically store
the SNMP interfaces. On the sensor, use the discard-unless command to discard flows that do not have
the desired VLAN tag (114 in this example). Often you will not use the VLAN tags to determine a flow’s
direction (category) since there is a single VLAN tag on each flow; instead, you specify the IP space of the
monitored network in the sensor block. (However, see the next example.)

probe S14 ipfix

listen-on-port 9914

protocol tcp

interface-values vlan

end probe

sensor S14

ipfix-probes S14

discard-unless any-interface 114

internal-ipblocks 128.2.0.0/16

external-ipblocks remainder

end sensor

Categorizing Flows Using VLAN Tags

By repeating a sensor block and using different discard-unless commands in each block, you may configure
rwflowpack to categorize flow records based on VLAN tags. Suppose yaf is monitoring a connection where
incoming flows are marked with VLAN tag 151 and outgoing flows are marked with 152. You simply discard
any traffic that does not have the wanted VLAN tag, and use the source-network and destination-
network commands to assign the direction to the flow. In this example, any flow record that does not
have one of the expected VLAN tags has its source-network set to null, but since rwflowpack does not
expect a flow record to originate from the null network, it stores the record in the other category for later
analysis/debugging. (This example requires SiLK 3.1 or later.)

648 SiLK -3.23.1

The SiLK Reference Guide sensor.conf(5)

probe S15 ipfix

listen-on-port 9915

protocol tcp

interface-values vlan

end probe

sensor S15

vlan ID 151 is incoming

ipfix-probes S15

discard-unless source-interface 151

source-network external

destination-network internal

end sensor

sensor S15

vlan ID 152 is outgoing

ipfix-probes S15

discard-unless source-interface 152

source-network internal

destination-network external

end sensor

sensor S15

discard flows that have known IDs

force unknown IDs into the "other" category

ipfix-probes S15

discard-when source-interface 151,152

source-network null

destination-network internal

end sensor

IPFIX Collected by a DAG Card

When yaf generates flow records from a multi-port Endace DAG card, it is possible to use the port where
the traffic was seen to categorize the traffic in rwflowpack.

To do this, include the --dag-interface switch on the yaf command line. This switch causes yaf to store
the DAG port where the packet was collected into the equivalent of the SNMP input field, and yaf sets the
SNMP output field to an offset of the port, specifically the port plus 256 (0x100|port).

Assume DAG port 0 is connected to the external side of the network (so it sees incoming traffic), and assume
DAG port 1 is on the internal side. For incoming traffic, yaf sets the input and output values to 0 and 256,
respectively. For outgoing traffic, the values are 1 and 257.

The sensor.conf configuration file for rwflowpack would be:

probe S16-dag ipfix

listen-on-port 9916

protocol tcp

end probe

SiLK -3.23.1 649

sensor.conf(5) The SiLK Reference Guide

sensor S16

ipfix-probes S16-dag

external-interface 0,257

internal-interface 1,256

end sensor

When rwflowpack processes the IPFIX flow records, it treats flow records having an input of 0 and an
output of 256 as traffic moving from an external interface to an internal interface, and rwflowpack packs
those records as incoming. Similarly for the outgoing flow records.

Repacking of SiLK Flows by IP Address

A probe whose type is silk must get its flows by polling a directory of SiLK Flow files. The flows can
be re-categorized based on the IP addresses or based on the SNMP interfaces (beware: often the SNMP
interface values are 0 in SiLK Flow data). In this example, the files in the directory /var/tmp/old-data/ are
processed. The internal network is defined as 128.2.0.0/16, and all other IPs are defined as external.

probe S17 silk

poll-directory /var/tmp/old-data

end probe

sensor S17

silk-probes S17

internal-ipblock 128.2.0.0/16

external-ipblock remainder

end sensor

NetFlow From a File Categorized by SNMP Interfaces

Instead of listening on a UDP port for NetFlow traffic, you can configure the probe to process a single
file containing NetFlow v5 PDUs. This example assumes you are running rwflowpack with the switches
--input-mode=file --netflow-file=FILENAME. The --netflow-file switch overrides the read-from-file
command on the probe. rwflowpack will exit once it processes that single file.

probe S18 netflow-v5

log-flags bad # ignore missing pkts

read-from-file /dev/null # use --netflow-file=<file>

end probe

sensor S18

netflow-v5-probes S18

external-interface 182

internal-interface 189

null-interface 0

end sensor

SEE ALSO

rwflowpack(8), flowcap(8), packlogic-twoway(3), packlogic-generic(3), rwsetbuild(1),
silk.conf(5), silk(7), SiLK Installation Handbook, pcap(3), yaf(1), gzip(1)

650 SiLK-3.23.1

The SiLK Reference Guide sensor.conf(5)

NOTES

Support for using double-quoted strings for IPset path names was added in SiLK 3.17.2.

The accept-from-host command began to accept a list of arguments in SiLK 3.10.1.

SiLK 3.10.0 added IPset file support to the group block and to some commands in the sensor block.

Support for collecting sFlow records was added in SiLK 3.9.0.

The quirks command was introduced in SiLK 3.8.0.

SiLK-3.23.1 651

silk.conf(5) The SiLK Reference Guide

silk.conf

SiLK site configuration file

DESCRIPTION

The silk.conf SiLK site configuration file is used to associate symbolic names with flow collection information
stored in SiLK Flow records.

In addition to the information contained in the NetFlow or IPFIX flow record (e.g., source and destination
addresses and ports, IP protocol, time stamps, data volume), every SiLK Flow record has two additional
pieces of information that is added when rwflowpack(8) converts the NetFlow or IPFIX record to the SiLK
format:

• The sensor typically denotes the location where the flow data was collected; e.g., an organization that
is instrumenting its border routers would create a sensor to represent each router. Each sensor has a
unique name and numeric ID.

• The flowtype represents information about how the flow was routed (e.g., as incoming or outgoing) or
other information about the flow (e.g., web or non-web). The packing process categorizes each flow
into a flowtype. Each flowtype has a unique name and numeric ID.

Note that the binary form of SiLK flow records represent the sensor and flowtype by their numeric IDs, not
by their names.

For historic reasons, one rarely speaks of the flowtype of a SiLK Flow record, but instead refers to its class
and type. Every flowtype maps to a unique class/type pair. The classes and types have names only; they
do not have numeric IDs. Note that flowtype and type are different concepts despite the similarity of their
names.

A class is generally used to represent topological features of the network with different collections of sensors,
since every active sensor must belong by one or more classes. Every class must have a unique name.

A type is used to distinguish traffic within a single topological area based on some other dimension. For
example, incoming and outgoing traffic is generally distinguished into different types. Web traffic is also
frequently split into a separate type from normal traffic in order to partition the data better. The type
names within a class must be unique, but multiple classes may have a type with the same name.

As stated above, each class/type pair maps to a unique flowtype.

The silk.conf file defines

• the mapping between sensor names and sensor IDs

• optional named collections of sensors called sensor-groups

• the names of the available classes

• the sensors that belong to each class

• the names of the types in each class

• the mapping from a class/type pair to a flowtype ID

• the mapping between a flowtype name and a flowtype ID

652 SiLK-3.23.1

The SiLK Reference Guide silk.conf(5)

• the default class to use for rwfilter(1) and rwfglob(1) queries

• for each class, the default types to use for rwfilter and rwfglob

• the layout of the directory tree for the SiLK archive (flow data repository) relative to the root directory

• a default value for the --packing-logic switch to rwflowpack(8)

In normal usage, the silk.conf file will be located at the root of the SiLK data spool referenced by the
SILK DATA ROOTDIR environment variable, or specified on the command line using the --data-rootdir
flag. This ensures that the sensor and class definitions in the site configuration match the data in the flow
records you retrieve.

If you cannot place the site configuration file in the data root directory, or the file in that location is incorrect,
you can use the SILK CONFIG FILE environment variable to specify the location of your configuration file
(including the file name). Many SiLK commands provide the --site-config-file switch which allows you to
specify the name of the site configuration file on the command line.

By having the site configuration information outside of the SiLK tools, a single SiLK installation can be used
to query different data stores (though each invocation of a command may only query one storage location).

Any additions or modifications to the silk.conf file will be seen by all SiLK applications upon their next
invocation. There are some important things to keep in mind when modifying the silk.conf file:

• Once data has been collected for a sensor or a flowtype, the sensor or flowtype should never be
removed or renumbered. SiLK Flow files store the sensor ID and flowtype ID as integers; removing
or renumbering a sensor or flowtype breaks this mapping. In order to keep the mapping consistent,
old sensor and flowtype definitions should remain indefinitely. Completely unused sensors or flowtypes
may be removed, but the IDs of the remaining sensors and flowtypes must not be modified.

• The path to the files in the SiLK data store often involve the sensor name, flowtype name, class name,
and/or type name. If any of those names are changed, it will be necessary to rename all the previously
packed data files that have the former name as part of their path.

• If the SiLK installation at your site is distributed across multiple hosts (for example, if packing occurs
on a machine separate from analysis), it is important to synchronize changes to the silk.conf files.

• The packing logic plug-in file, packlogic-*.so (e.g., packlogic-twoway(3), packlogic-generic(3)),
used by rwflowpack(8) checks for specific class names, type names, and flowtype names at start up,
and it will exit with an error if the names it expects do not exist. In addition, it checks that the flowtype
IDs it has match with those in the silk.conf file. When new flowtypes are added, the packlogic-*.so file
will need to be updated if rwflowpack is to generate SiLK Flow records with the new flowtype.

• When rwflowpack reads incoming flow records, those records are associated with a sensor name as
determined by the sensor.conf(5) file. rwflowpack uses the silk.conf file to map the sensor name to
the sensor ID, and it stores the sensor ID in the SiLK records it creates. Changes to the silk.conf and
sensor.conf files may need to be coordinated.

SYNTAX

When parsing the site configuration file, blank lines are ignored. Comments are also ignored and may begin
at any location on a line by specifying the character # outside of a quoted string. The comment continues
to the end of the line.

SiLK-3.23.1 653

silk.conf(5) The SiLK Reference Guide

Each non-empty line begins with a command name followed by one or more arguments. Whitespace (one or
more space and/or tab characters) may appear before the command and is required to separate the command
and its arguments. Command names are textual atoms, while arguments may either be textual atoms or
quoted strings.

• A textual atom may contain the alphanumeric characters (A-Z, a-z, 0-9), period (.), hyphen (-),
underscore (), at (@), and forward slash (/). To use any other character as part of an argument, a
quoted string must be used.

• Quoted strings begin and end with the double-quote character " which must appear on a single line.
Quoted strings may contain ASCII characters and support C-style backslash-escapes. The character #
inside a quoted string does not begin a comment.

For the commands supported by silk.conf and described below, unless a command explicitly states that it
is used by particular applications, it should be considered used by all of the SiLK analysis tools and the
packing tools flowcap(8), rwflowpack(8), and rwflowappend(8).

There are three contexts for commands: top-level, class block, and group block contexts. The class block and
group block contexts are used to describe individual features of classes and groups, while top-level commands
are used to describe the entire configuration and to define sensors.

The valid commands for each context are described below.

Top-Level Commands

class class-name

The class command begins a new class block. It takes as an argument the name of the class being
defined. Each class must have a unique name. A class block is closed with the end class command.
See the Class Block Commands section below for a list of commands valid inside class blocks.

The class name must begin with a letter, must not be longer than 32 characters, and may not contain
whitespace characters or these characters: forward slash (/), backward slash (\), double quote ("),
single quote (’), and comma (,).

A site that does not use multiple classes should define a single class with a name like all or default.

To be valid, a configuration file must contain at least one class definition.

Example: class all

default-class class-name

rwfilter(1) and rwfglob(1) will use a default class when the user does not specify an explicit --class
or --flowtype. This command specifies that default class; the class must have been created prior to
this command. If more than one default class is set, the last definition encountered is used.

Example: default-class all

group group-name

The group command begins a sensor group blocks and takes as an argument the name of the group to
be defined. Sensor groups are a convenient way of defining named collections of sensors for inclusion
in classes. As of SiLK 3.21.0, sensor group names are accepted by the --sensors option of rwfilter,
rwfglob, and rwsiteinfo(1). A group block is closed using the end group command. See the Group
Block Commands section below for details on valid commands within group blocks.

Example: group test-sensors

654 SiLK-3.23.1

The SiLK Reference Guide silk.conf(5)

include ”file-name”

The include command is used to include the contents of another file. This may be used to separate
large configurations into logical units. An analyst may wish to create their own site configure file to
augment the default one with additional sensor groups or to change the default-class. (Note that all
sensors, classes, groups, and types must be declared before they may be referenced.)

Example: include ”silk-2.conf”

packing-logic ”file-name”

The packing-logic command provides a default value for the --packing-logic switch on rwflow-
pack(8). The value is the path to a plug-in that rwflowpack loads; the plug-in provides functions
that determine into which class and type a flow record will be categorized. The path specified here
will be ignored when the --packing-logic switch is explicitly specified to rwflowpack or when SiLK
has been configured with hard-coded packing logic.

Example: packing-logic ”packlogic-twoway.so”

path-format ”format-string”

File and directory locations relative to the SILK DATA ROOTDIR may be defined using the
path-format command. The path-format is used by rwflowpack and rwflowappend(8) when
writing data to the data repository, and it is used by rwfilter and rwfglob when reading or list-
ing files in the data repository. This command takes a format string specification that supports the
following %-conversions:

%C

The textual class name

%d

The day of the month as a two-digit, zero-padded number

%F

The textual flowtype name for this class/type pair (see also %f)

%f

The flowtype ID, as an unpadded number (see also %F)

%H

The hour (24-hour clock) as a two-digit, zero-padded number

%m

The month of the year as a two-digit, zero-padded number

%N

The textual sensor name (see also %n)

%n

The sensor ID, as an unpadded number (see also %N)

%T

The textual type name

%x

The default file name, which is equivalent to %F-%N %Y%m%d.%H

%Y

The year as a four-digit, zero-padded number

%%

A literal % character

SiLK-3.23.1 655

silk.conf(5) The SiLK Reference Guide

A % followed by any other character is an error.

For example, to place all spooled files directly in the data root directory, the path format %x could be
used. To use two levels of hierarchy, the first containing the year and month, and the second containing
the day and sensor name, like 2006-01/23-alpha/..., the format would be %Y-%m/%d-%N/%x.

If no path format is set by the configuration file, the default path format of %T/%Y/%m/%d/%x is used.

All path formats are currently required to end in /%x so that information may be extracted from the
file name. This requirement may be lifted in the future.

Example: %C/%T/%Y/%m/%d/%x

sensor sensor-id sensor-name

sensor sensor-id sensor-name ”sensor-description”

Individual sensor definitions are created with the sensor command. This command creates a new
sensor with the given name and numeric ID. Sensor names must begin with a letter, must not be
longer than 64 characters, and may not contain whitespace characters or these characters: forward
slash (/), backward slash (\), double quote ("), single quote (’), comma (,), and underscore ().

The sensor line may may also provide an optional description of the sensor, enclosed in double quotes.
The description can be used however your installation chooses to use it. The description may be viewed
by specifying the describe-sensor field to rwsiteinfo(1). (When using sensor descriptions, the file’s
version must be 2.)

It is an error to define two different sensors with the same sensor ID or the same sensor name.

A sensor may be associated with multiple classes.

NOTE: It is extremely important not to change the sensor-id or sensor-name for a given sensor once
that sensor is in use. The sensor-id field is stored numerically in SiLK data files, and the sensor-name
field is used to construct file names within the data root directory.

Example: sensor 0 S001

Example: sensor 0 S001 ”Primary connection to ISP”

version version-number

The version command declares that this configuration file conforms to a given version of the config-
uration file format. If the tools do not support this version of the configuration file, they will report
an error. Currently, versions 1 and 2 of the format is defined, where version 2 indicates that sensor
descriptions are present.

It is a recommended practice to include the version number at the beginning of all configuration files
for compatibility with future versions.

Example: version 1

Class Block Commands

As stated above, a class block begins with the command class followed by the name of the class. Each class
must have a unique name not longer than 32 characters.

The commands inside a class block define the sensors associated with it, the class’s types, the mapping from
the class/type pair to the flowtype name and flowtype ID, and the default types for the class.

end class

The end class command ends the definition of a class. Following an end class command, top-level
commands are again accepted.

Example: end class

656 SiLK-3.23.1

The SiLK Reference Guide silk.conf(5)

default-types type-name ...

When no types are specified for the rwfilter or rwfglob commands, the default set of types for the
selected class is used. Each of the types listed in this command is included as a default type of the
class.

Example: default-types in inweb

sensors sensor-name-or-group-ref ...

The sensors command is used to associate sensors with a class. In short, to declare that these sensors
have data for this class. Each item in the list must be either the name of a sensor or the name of a
sensor group preceded by an at (@) character. (If the group name is a quoted string, include the @

within the quote characters.) When you add a sensor group, it is equivalent to adding each individual
sensor in that group to the class; nothing records that the group has been added to the class. Since
no record is kept, adding sensors to the group after the class block does not add those sensors to this
class.

Example: sensors my-sensor-1 my-sensor-2 @my-group-1

type flowtype-id type-name [flowtype-name]

The type command defines a type name within the current class and it specifies the flowtype ID to use
for that class/type pair. In addition, the type command may specify a flowtype name. The flowtype
ID and flowtype name must be unique across the entire silk.conf file (and any included files). If a
flowtype name is not specified, a default flowtype name is constructed by concatenating the name of
the class and the name of the type. (e.g. the type in in the class all would have a flowtype name
of allin.) Within a class, each type must have a unique name, but multiple classes may use the
same type name. The type name and flowtype name must begin with a letter, must not be longer
than 32 characters, and may not contain whitespace characters or these characters: forward slash (/),
backward slash (\), double quote ("), single quote (’), and comma (,).

As with sensors, it is important to be careful when renumbering flowtype IDs or renaming types or
flowtypes because the numeric IDs are stored in data files, and the textual names are used as portions
of file and path names.

Example: type 0 in

Example: type 1 out out

Group Block Commands

A group block is a convenience used to define a collection of sensors. These collections may be used when
adding the same group of sensors to multiple classes. As of SiLK 3.21.0, sensor groups may also be used as
arguments to the --sensors option of rwfilter(1), rwfglob(1), and rwsiteinfo(1).

A sensor group block begins with the command group followed by the name of the group. If multiple groups
blocks use the same name, the resulting group is the union of the sensors specified in all blocks. Note that
uses of @GROUP-NAME expand only to the sensors that have been specified in any group GROUP-NAME blocks
seen before that use.

A group may have the same name as a sensor and the silk.conf file can distinguish between them. However,
the name only refers to the sensor when it is used in the --sensors switch of rwfilter, rwfglob, and
rwsiteinfo.

end group

Close a group block by using the end group command. Following this command, top-level commands
are again accepted.

SiLK-3.23.1 657

silk.conf(5) The SiLK Reference Guide

Example: end group

sensors sensor-name-or-group-ref ...

Sensors are associated with a sensor group by means of the sensors command within a group block.
Each item in the list must be either the name of a sensor or the name of a sensor group preceded by
an at (@) character. (If the group name is a quoted string, include the @ within the quote characters.)
When you add a sensor group named A to group B, it is equivalent to adding each individual sensor in
A to group B; nothing records that A has been added to B. Since no record of is kept, adding sensors
to A after this group block does not add those sensors to B. (Though another group B block could
be opened to re-add A which would update B with those sensors.)

Example: sensors my-sensor-1 my-sensor-2 @my-group-1

SEE ALSO

rwfilter(1), rwfglob(1), rwsiteinfo(1), sensor.conf(5), flowcap(8), rwflowpack(8), packlogic-
twoway(3), packlogic-generic(3), rwflowappend(8), silk(7), SiLK Installation Handbook

658 SiLK-3.23.1

7

SiLK Miscellaneous Information

Miscellaneous manual pages are grouped in this section.

659

silk(7) The SiLK Reference Guide

SiLK

The System for Internet-Level Knowledge

DESCRIPTION

SiLK is a collection of traffic analysis tools developed by the CERT Network Situational Awareness Team
(CERT NetSA) to facilitate security analysis of large networks. The SiLK tool suite supports the efficient
collection, storage, and analysis of network flow data, enabling network security analysts to rapidly query
large historical traffic data sets. SiLK is ideally suited for analyzing traffic on the backbone or border of a
large, distributed enterprise or mid-sized ISP.

A SiLK installation consists of two categories of applications: the analysis suite and the packing system.

Analysis Suite

The SiLK analysis suite is a collection of command-line tools for processing SiLK Flow records created by
the SiLK packing system. These tools read binary files containing SiLK Flow records and partition, sort, and
count these records. The most important analysis tool is rwfilter(1), an application for querying the central
data repository for SiLK Flow records that satisfy a set of filtering options. The tools are intended to be
combined in various ways to perform an analysis task. A typical analysis uses UNIX pipes and intermediate
data files to share data between invocations of tools.

The tools, configuration files, and plug-in modules that make up the analysis tools are listed below, roughly
grouped by functionality.

Filtering, Sorting, and Display

rwfilter(1) partitions SiLK Flow records into one or more ’pass’ and/or ’fail’ output streams. rwfilter is
the primary tool for pulling flows from the data store.

silk.conf(5) is the configuration file naming the Classes, Types, and Sensors available at your installation.

rwsort(1) sorts SiLK Flow records using a user-specified key comprised of record attributes, and writes the
records to the named output path or to the standard output. Users may define new key fields using plug-ins
written in C or PySiLK.

rwcut(1) prints the attributes of SiLK Flow records in a delimited, columnar, human-readable format.
Users may define new printable attributes using plug-ins written in C or PySiLK.

SiLK Python Extension

pysilk(3). PySiLK, the SiLK Python extension, allows one to read, manipulate, and write SiLK Flow
records, IPsets, and Bags from within Python. PySiLK may be used in a stand-alone Python program or to
write plug-ins for several SiLK applications. This document describes the objects, methods, and functions
that PySiLK provides. The next entry describes using PySiLK from within a plug-in.

silkpython(3). The SiLK Python plug-in provides a way to use PySiLK to define new partitioning rules
for rwfilter(1), new key fields for rwcut(1), rwgroup(1), and rwsort(1), and new key or value fields for
rwstats(1) and rwuniq(1).

Counting, Grouping, and Mating

rwuniq(1) bins (groups) SiLK Flow records by a user-specified key comprised of record attributes and
prints the total byte, packet, and/or flow counts for each bin. rwuniq may also print distinct source IP

660 SiLK-3.23.1

The SiLK Reference Guide silk(7)

and destination IP counts. Users may define new key fields and value fields using plug-ins written in C or
PySiLK.

rwcount(1) summarizes SiLK Flow records across time, producing textual output with counts of bytes,
packets, and flow records for each time bin.

rwstats(1) summarizes SiLK Flow records by a user-specified key comprised of record attributes, computes
values from the flow records that match each key, sorts the results by the value to generate a Top-N or
Bottom-N list, and prints the results. Users may define new key fields and value fields using plug-ins written
in C or PySiLK.

rwtotal(1) summarizes SiLK Flow records by a specified key and prints the sum of the byte, packet, and
flow counts for flows matching the key.

rwaddrcount(1) summarizes SiLK flow records by the source or destination IP and prints the byte, packet,
and flow counts for each IP.

rwgroup(1) groups SiLK flow records by a user-specified key comprised of record attributes, labels the
records with a group ID that is stored in the next-hop IP field, and writes the resulting flows to the specified
output path or to the standard output. rwgroup requires that its input is sorted.

rwmatch(1) matches (mates) records as queries and responses and marks mated records with an ID that
is stored in the next-hop IP field. rwmatch requires that its input is sorted.

IPsets, Bags, Aggregate Bags, and Prefix Maps

An IPset is a data structure and a binary file format that contains a list of IP addresses where each IP
appears once (a mathematical set).

A Bag is a data structure and a binary file format where a key is mapped to a counter (similar to a hash
table or Python dictionary). The key is either a 32-bit number or an IPv6 address, and the counter is a
64-bit number. Usually the key represents an aspect of a flow record (an IP address, a port number, the
protocol) and the counter is a volume (the number of flow records, the sum of the packet counts) for the
flow records that match that key.

An Aggregate Bag is similar to a Bag except the key and/or the counter may be comprised of multiple fields.
Aggregate Bags were introduced in SiLK 3.15.0.

A prefix map is a data structure and file format that maps every IP address to string. An example prefix
map gives the two-letter country code for any IP address.

rwset(1) reads SiLK Flow records and generates binary IPset file(s) containing the source IP addresses or
destination IP addresses seen on the flow records.

rwsetbuild(1) reads (textual) IP addresses in dotted-quad or CIDR notation from an input file or from the
standard input and writes a binary IPset file.

rwsetcat(1) prints the contents of a binary IPset file as text. Additional information about the IPset file
may be printed.

rwsettool(1) performs union, intersection, difference, and sampling functions on the input IPset files,
generating a new IPset file.

rwsetmember(1) determines whether the IP address specified on the command line is contained in an
IPset.

rwbag(1) reads SiLK Flow records and builds binary Bag(s) containing key-count pairs. An example is a
Bag containing the sum of the byte counts for each source port seen on the flow records.

rwbagbuild(1) creates a binary Bag file from a binary IPset file or from a textual input file.

SiLK-3.23.1 661

silk(7) The SiLK Reference Guide

rwbagcat(1) prints binary Bag files as text.

rwbagtool(1) performs operations (e.g., addition, subtraction) on binary Bag files and produces a new Bag
file.

rwaggbag(1) reads SiLK Flow records and builds a binary Aggregate Bag containing key-count pairs. An
example is a Aggregate Bag containing the sum of the byte counts for each source port seen on the flow
records. Since SiLK 3.15.0.

rwaggbagbuild(1) creates a binary Aggregate Bag file from a textual input file. Since SiLK 3.15.0.

rwaggbagcat(1) prints binary Aggregate Bag files as text. Since SiLK 3.15.0.

rwaggbagtool(1) performs operations (e.g., addition, subtraction) on binary Aggregate Bag files and pro-
duces a new Aggregate Bag file. Since SiLK 3.15.0.

rwpmapbuild(1) reads textual input and creates a binary prefix map file for use with the Address Type
(addrtype(3)) and Prefix Map (pmapfilter(3)) utilities.

rwpmapcat(1) prints information about a prefix map file as text. By default, prints each IP range in the
prefix map and its label.

rwpmaplookup(1) finds information about specific IP address(es) or protocol/port pair(s) in a binary
prefix map file and prints the result as text.

rwipaimport(1) imports a SiLK IPset, Bag, or Prefix Map file into the IP Address Association (IPA
http://tools.netsa.cert.org/ipa/) library.

rwipaexport(1) exports a set of IP addresses from the IP Address Association (IPA) library to a SiLK
IPset, Bag, or Prefix Map.

IP and Port Labeling Files

addrtype(3). The Address Type file provides a way to map an IPv4 address to an integer denoting the IP
as internal, external, or non-routable.

ccfilter(3). The Country Code file provides a mapping from an IP address to two-letter, lowercase ab-
breviation of the country what that IP address is located. The abbreviations used by the Country Code
utility are those defined by ISO 3166-1 (see for example https://www.iso.org/iso-3166-country-codes.html
or https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2).

pmapfilter(3). Prefix map files provide a way to map field values to string labels based on a user-defined
map file. The map file is created by rwpmapbuild(1).

Run Time Plug-Ins

To use most of these plug-ins, the plug-in must be explicitly loaded into an application by using the applica-
tion’s --plugin switch and giving the plug-in’s library name or path as the argument. For a plug-in named
NAME, the library is typically named NAME.so.

app-mismatch(3). The application-mismatch plug-in helps to find services running on unusual or non-
typical ports by causing rwfilter(1) to only pass a flow record when the record’s application field is non-zero
and its value is different than that in the source port and destination port fields.

conficker-c(3). The conficker-c plug-in was written in March 2009 to detect traffic that matches the
signature of the .C variant of the Conficker worm.

cutmatch(3). The cutmatch plug-in creates a field in rwcut(1) that provides a more user-friendly rep-
resentation of the match parameter value that rwmatch(1) writes into a SiLK Flow record’s next hop IP
field.

662 SiLK-3.23.1

http://tools.netsa.cert.org/ipa/
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

The SiLK Reference Guide silk(7)

flowkey(3). The flowkey plug-in adds a switch and a field that computes a 32-bit hash for a flow record
using the same algorithm as YAF uses for its flow key utility getFlowKeyHash(1). Since SiLK 3.15.0.

flowrate(3). The flowrate plug-in adds switches and fields to compute packets/second, bytes/second,
bytes/packet, payload-bytes, and payload-bytes/second.

int-ext-fields(3). The internal/external plug-in makes available fields containing internal and external IPs
and ports (int-ip, ext-ip, int-port, and ext-port). It can be used to print, sort by, or group by the internal or
external IP or port, which is useful when a single flow file contains flows in multiple directions. Since SiLK
3.0.0.

ipafilter(3). The IPA (IP Association) plug-in works with rwfilter to partition flows based on data in an
IPA data store. rwfilter will automatically load this plug-in if it is available. The plug-in requires that
SiLK be compiled with IPA support (http://tools.netsa.cert.org/ipa/).

silk-plugin(3) describes how to create and compile a new SiLK plug-in using C.

Packet and IPFIX Processing

These tools operate on packet capture (pcap(3)) files, IPFIX files, or files of NetFlow v5 data.

rwp2yaf2silk(1) converts a packet capture (pcap(3)) file---such as a file produced by tcpdump(1)---to a
single file of SiLK Flow records. rwp2yaf2silk assumes that the yaf(1) (http://tools.netsa.cert.org/yaf/)
and rwipfix2silk(1) commands are available on your system as it is a simple Perl wrapper around those
commands.

rwipfix2silk(1) converts a stream of IPFIX (Internet Protocol Flow Information eXport) records to the
SiLK Flow record format.

rwsilk2ipfix(1) converts a stream of SiLK Flow records to an IPFIX (Internet Protocol Flow Information
eXport) format.

rwpcut(1) reads a packet capture file and print its contents in a textual form similar to that produced by
rwcut.

rwpdedupe(1) detects and eliminates duplicate records from multiple packet capture input files. See also
rwdedupe(1).

rwpmatch(1) filters a packet capture file by writing only packets whose five-tuple and timestamp match
corresponding records in a SiLK Flow file.

rwptoflow(1) reads a packet capture file and generates a SiLK Flow record for every packet.

rwpdu2silk(1) creates a stream of SiLK Flow records from a file containing NetFlow v5 PDU records.

Scan Detection

rwscan(1) attempts to detect scanning activity from SiLK Flow records. rwscan can produce files that
may be loaded into a database and queried with rwscanquery.

rwscanquery(1) queries the scan database which has been populated from database load files generated
by rwscan.

Flow File Utilities

These utility applications operate on SiLK Flow files.

rwcat(1) reads SiLK Flow records from the files named on the command line, or from the standard input
when no files are provided, and writes the SiLK records to the specified output file or to the standard output
if it is not connected to a terminal.

SiLK-3.23.1 663

http://tools.netsa.cert.org/ipa/
http://tools.netsa.cert.org/yaf/

silk(7) The SiLK Reference Guide

rwappend(1) appends the SiLK Flow records contained in the second through final file name arguments
to the records contained in the first file name argument.

rwcombine(1) reads SiLK Flow records from files named on the command line or from the standard
input. For records where the attributes field contains the flow timed-out flag, rwcombine attempts to
find the record with the corresponding continuation flag set and combine those records into a single flow.
rwcombine writes the results to the named output file or to the standard output. Since SiLK 3.9.0.

rwcompare(1) determines whether two SiLK Flow files contain the same flow records.

rwdedupe(1) reads SiLK Flow records from files named on the command line or from the standard input
and writes the records to the named output path or to the standard output, removing any duplicate flow
records. Note that rwdedupe will reorder the records as part of its processing.

rwnetmask(1) reads SiLK Flow records, zeroes the least significant bits of the source-, destination-, and/or
next-hop-IP address(es), and writes the resulting records to the named output path or to the standard output.

rwrandomizeip(1) generates a new SiLK Flow file by substituting a pseudo-random IP address for the
source and destination IP addresses in given input file.

rwrecgenerator(1) generates SiLK Flow records using a pseudo-random number generator; these records
may be used to test SiLK applications. Since SiLK 3.6.0.

rwsplit(1) reads SiLK Flow records and generates a set of sub-files from the input. The sub-files may be
limited by flow-, byte-, or packet-counts, or by unique IP count. In addition, the sub-file may contain all the
flows or only a sample of them.

rwswapbytes(1) generates a new SiLK Flow file by changing the byte order of the records in a given input
SiLK Flow file.

Utilities

rwfileinfo(1) prints information (type, version, etc.) about a SiLK Flow, IPset, Bag, or Prefix Map file.

rwsiteinfo(1) prints information about the sensors, classes, and types specified in the silk.conf(5) file.

rwtuc(1) generates SiLK flow records from textual input; the input should be in a form similar to what
rwcut(1) generates.

rwfglob(1) prints to the standard output the list of files that rwfilter would normally process for a given
set of file selection switches.

num2dot(1) reads delimited text from the standard input, converts integer values in the specified column(s)
(default first column) to dotted-decimal IP address, and prints the result to the standard output.

rwgeoip2ccmap(1) reads the MaxMind GeoIP database and creates the country code mapping file that
may be used by SiLK (see ccfilter(3)).

rwidsquery(1) invokes rwfilter to find flow records matching Snort signatures.

rwresolve(1) reads delimited text from the standard input, attempts to resolve the IP addresses in the
specified column(s) to host names, and prints the result to the standard output.

silk config(1) prints information about how SiLK was compiled; this information may be used to compile
and link other files and programs against the SiLK header files and libraries.

Deprecated Tools

These tools are deprecated. Their functionality is available in other applications.

mapsid(1) maps between sensor names and sensor IDs using the values specified in the silk.conf(5) file.
mapsid is deprecated as of SiLK 3.0.0, and it will be removed in the SiLK 4.0 release. This functionality is

664 SiLK-3.23.1

The SiLK Reference Guide silk(7)

available in rwsiteinfo(1).

rwguess(8) reads a file containing NetFlow v5 PDU records and prints the SNMP interfaces that are used
most often and the number of records seen for each interface. rwguess is deprecated as of SiLK 3.8.3,
and it will be removed in the SiLK 4.0 release. Similar functionality is available using a combination of
rwpdu2silk(1), rwstats(1), and rwuniq(1).

rwip2cc(1) maps a (textual) list of IP addresses to their country code. rwip2cc is deprecated as of SiLK
3.0.0, and it will be removed in the SiLK 4.0 release. This functionality is available in rwpmaplookup(1).

Packing System

The SiLK Packing System is comprised of daemon applications that collect flow records (IPFIX flows from
yaf(1) or NetFlow v5 or v9 PDUs from a router), convert the records to the SiLK flow format, categorize
the flows as incoming or outgoing, and write the records to their final destination in binary flat files for use
by the analysis suite. Files are organized in a time-based directory hierarchy with files covering each hour
at the leaves.

The tools, configuration files, and plug-ins that comprise the SiLK Packing System are:

flowcap(8) listens to flow generators (devices which produce network flow data) and stores the data in
temporary files prior to transferring the files to a remote machine for processing by rwflowpack.

rwflowpack(8) reads flow data either directly from a flow generator or from files generated by flowcap,
converts the data to the SiLK flow record format, categorizes the flow records according to rules loaded from
a packing-logic plug-in, and writes the records either to hourly flat-files organized in a time-based directory
structure or to files for transfer to a remote machine for processing by rwflowappend.

rwflowappend(8) watches a directory for files containing small numbers of SiLK flow records and appends
those records to hourly files organized in a time-based directory tree.

rwsender(8) watches an incoming directory for files, moves the files into a processing directory, and transfers
the files to one or more rwreceiver processes. Either rwsender or rwreceiver may act as the server (i.e.,
listen for incoming network connections) with the other acting as the client.

rwreceiver(8) accepts files transferred from one or more rwsender processes and stores them in a des-
tination directory. Either rwsender or rwreceiver may act as the server with the other acting as the
client.

rwpollexec(8) monitors a directory for incoming files and runs a user-specified command on each file.

rwpackchecker(8) reads SiLK Flow records and checks for unusual patterns that may indicate data file
corruption.

sensor.conf(5) is a configuration file for sensors and probes used by rwflowpack and flowcap.

packlogic-twoway(3) is one of the plug-ins available that describe a set of rules (the packing-logic) that
rwflowpack may use when categorizing flow records as incoming or output.

packlogic-generic(3) is one of the plug-ins available that describe a set of rules (the packing-logic) that
rwflowpack may use when categorizing flow records as incoming or output.

ENVIRONMENT

The following environment variables affect the tools in the SiLK tool suite. The variables are listed alpha-
betically. (Additional environment variables that are specific to a tool are documented on the tool’s manual
page.)

SiLK-3.23.1 665

silk(7) The SiLK Reference Guide

PAGER

The applications that support paging their output use the value in this environment variable when the
SILK PAGER environment variable is not set and the application’s --pager switch is not used.

PYTHONPATH

The Python modules and library files required to use PySiLK from rwfilter(1), rwcut(1), rwsort(1),
and rwuniq(1) as well as from Python itself are installed under SiLK’s installation tree by default. It
may be necessary to set or modify the PYTHONPATH environment variable so Python can find these
files. For information on using the PySiLK module, see silkpython(3) as well as the SiLK in Python
handbook.

PYTHONVERBOSE

If the SiLK Python extension or plug-in fails to load, setting this environment variable to a non-empty
string may help you debug the issue.

RWRECEIVER TLS PASSWORD

Used by rwreceiver(8), this variable specifies the password to use to decrypt the PKCS#12 file
specified in the --tls-pkcs12 switch.

RWSENDER TLS PASSWORD

Used by rwsender(8), this variable specifies the password to use to decrypt the PKCS#12 file specified
in the --tls-pkcs12 switch.

SILK ADDRESS TYPES

This environment variable allows the user to specify the address types mapping file used by the fields
and switches specified in the addrtype(3) manual page. The value may be a complete path or a file
relative to SILK PATH. See the FILES section for standard locations of this file.

SILK CLOBBER

The SiLK tools normally refuse to overwrite existing files. Setting SILK CLOBBER to a non-empty
value (other than 0) removes this restriction.

SILK COMPRESSION METHOD

For most tools that implement the --compression-method switch, this environment variable is used
as the value for that switch when it is not provided. Since SiLK 3.13.0.

SILK CONFIG FILE

This environment variable contains the location of the site configuration file, silk.conf(5). This
variable has precedence over all methods of finding the site file except for the --site-config-file switch
on an application. For additional locations where site configuration file may reside, see the FILES
section.

SILK COUNTRY CODES

This environment variable allows the user to specify the country code mapping file used by the fields
and switches specified in the ccfilter(3) manual page. The value may be a complete path or a file
relative to SILK PATH. See the FILES section for standard locations of this file.

SILK DATA ROOTDIR

This variable gives the root of directory tree where the data store of SiLK Flow files is maintained,
overriding the location that is compiled into the tools (/data). The rwfilter(1) and rwfglob(1) tools
use this value when selecting which flow files to process unless the user passes the --data-rootdir
switch to the application. In addition, the SiLK tools search for the site configuration file, silk.conf, in
this directory.

666 SiLK-3.23.1

The SiLK Reference Guide silk(7)

SILK ICMP SPORT HANDLER

Modifies how ”buggy” ICMP SiLK flow records are handled. ICMP type and code are normally
encoded in the destination port field. Prior to SiLK 3.4.0, a bug existed when processing IPFIX bi-
flow ICMP records where the type and code of the second records were stored in the source port.
SiLK 3.4.0 attempts to work-around this bad encoding by modifying the buggy ICMP SiLK Flow
records as they are initially read. However, the change in SiLK 3.4.0 removes a previous work-around
designed to fix issues with SiLK Flow records collected prior to SiLK 0.8.0 that originated as NetFlow
v5 PDUs from some types of Cisco routers. The ICMP records from these Cisco routers encoded
the type and code in the source port, but the bytes were swapped from the normal encoding. When
the SILK ICMP SPORT HANDLER environment variable is set to none, all work-arounds for buggy
ICMP records are disabled and the source and destination ports remain unchanged.

SILK IPSET RECORD VERSION

For the IPset family of tools, this environment variable is used as the default value for the --record-
version switch when the switch is not provided on the command line. The variable is also used by
rwbagtool(1) and rwaggbagtool(1) when writing an IPset file. Since SiLK 3.7.0.

SILK IPV6 POLICY

For tools that implement the --ipv6-policy switch, this environment variable is used as the value for
that switch when it is not provided.

SILK IP FORMAT

For tools that implement the --ip-format switch, this environment variable is used as the value for
that switch when it is not provided. Since SiLK 3.11.0.

SILK LOGSTATS

This environment variable is currently an alias for the SILK LOGSTATS RWFILTER environment
variable described below. The ability to log invocations may be extended to other SiLK tools in future
releases.

SILK LOGSTATS DEBUG

If the environment variable is set to a non-empty value, rwfilter(1) prints messages to the standard
error about the SILK LOGSTATS value being used and either the reason why the value cannot be
used or the arguments to the external program being executed.

SILK LOGSTATS RWFILTER

When set to a non-empty value, rwfilter(1) treats the value as the path to a program to execute with
information about this rwfilter invocation. Its purpose is to provide the SiLK administrator with
information on how the SiLK tool set is being used.

SILK PAGER

When this variable is set to a non-empty string, most of the applications that produce textual output
(e.g., rwcut(1)) automatically invoke this program to display their output a screen at a time. If set
to an empty string, no paging of the output is performed. The PAGER variable is checked when this
variable is not set. The --pager switch on an application overrides this value.

SILK PATH

This environment variable gives the root of the directory tree where the tools are installed. As part of
its search for configuration files and plug-ins, a SiLK application may use this variable. See the FILES
section for details.

SiLK-3.23.1 667

silk(7) The SiLK Reference Guide

SILK PLUGIN DEBUG

When this variable is set to a non-empty value, an application that supports plug-ins prints status
messages to the standard error as it tries to locate and open each of its plug-ins.

SILK PYTHON TRACEBACK

If a Python plug-in encounters a Python-related error and this environment variable is set to a non-
empty value, the application prints the error’s traceback information to the standard error.

SILK RWFILTER THREADS

This variable sets the number of threads rwfilter(1) uses while reading input files or files selected
from the data store.

SILK TEMPFILE DEBUG

When set to 1, the library that manages temporary files for rwcombine(1), rwdedupe(1), rw-
sort(1), rwstats(1), and rwuniq(1) prints debugging messages to the standard error as it creates,
re-opens, and removes temporary files.

SILK TIMESTAMP FORMAT

For tools that implement the --timestamp-format switch, this environment variable is used as the
value for that switch when it is not provided. Since SiLK 3.11.0.

SILK TMPDIR

This variable is used by tools that write temporary files (e.g., rwsort(1)) as the directory in which
to store those files. When this variable is not set, the value of the TMPDIR variable is checked. The
--temp-directory switch on an application overrides this value.

SILK UNIQUE DEBUG

When set to 1, the binning engine used by rwstats(1) and rwuniq(1) prints debugging messages to
the standard error.

TMPDIR

When this variable is set and SILK TMPDIR is not set, temporary files are created in this directory.
The value given to an application’s --temp-directory switch takes precedence over both variables.

TZ

When a SiLK installation is built to use the local timezone (to determine if this is the case, check
the Timezone support value in the output from the --version switch on most SiLK applications),
the value of the TZ environment variable determines the timezone in which timestamps are displayed
and parsed. If the TZ environment variable is not set, the default timezone is used. Setting TZ to
0 or to the empty string causes timestamps to be displayed in and parsed as UTC. The value of the
TZ environment variable is ignored when the SiLK installation uses UTC unless the user requests use
of the local timezone via a tool’s --timestamp-format switch. For system information on the TZ
variable, see tzset(3) or environ(7).

FILES

The following file and directory locations are used by SiLK tools. A dollar sign preceding a name enclosed
in braces (e.g., ${SILK PATH}), refers to the value of the named environment variable.

${SILK ADDRESS TYPES}

668 SiLK-3.23.1

The SiLK Reference Guide silk(7)

${SILK PATH}/share/silk/address types.pmap

${SILK PATH}/share/address types.pmap

/usr/local/share/silk/address types.pmap

/usr/local/share/address types.pmap

Locations that applications check when searching for the address types mapping file used by addr-
type(3), rwpmapcat(1), and rwpmaplookup(1).

${SILK CONFIG FILE}

ROOT DIRECTORY/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided. The value of ROOT DIRECTORY/ is the root directory of the SiLK repos-
itory; that directory may be specified by a command line switch (e.g., the --data-rootdir switch on
rwfilter(1)), by the SILK DATA ROOTDIR environment variable, or by the default location compiled
into the SiLK tools (/data).

${SILK COUNTRY CODES}

${SILK PATH}/share/silk/country codes.pmap

${SILK PATH}/share/country codes.pmap

/usr/local/share/silk/country codes.pmap

/usr/local/share/country codes.pmap

Locations that applications check when searching for the country code mapping file used by ccfilter(3),
rwbag(1), rwpmapcat(1), rwpmaplookup(1), and other SiLK tools.

${SILK DATA ROOTDIR}/

/data/

Locations for the root directory of the data repository. Some applications provide a command line
switch to specify this value (for example, the --data-rootdir switch on rwfilter(1), rwfglob(1), and
rwsiteinfo(1)).

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

SiLK-3.23.1 669

silk(7) The SiLK Reference Guide

/usr/local/lib/

Directories that a SiLK application checks when attempting to load a plug-in.

${SILK TMPDIR}/

${TMPDIR}/

/tmp/

Directory in which to create temporary files when a directory was not specified using the application’s
--temp-directory switch.

SEE ALSO

Analysts’ Handbook: Using SiLK for Network Traffic Analysis, The SiLK Reference Guide, SiLK Installation
Handbook, http://tools.netsa.cert.org/silk/

670 SiLK-3.23.1

http://tools.netsa.cert.org/silk/

8

SiLK Administrator’s Tools

Tools used by SiLK’s packing system are described in this section.

671

flowcap(8) The SiLK Reference Guide

flowcap

Capture network flow data and write it to temporary files

SYNOPSIS

flowcap --destination-directory=DIR_PATH

--sensor-configuration=FILENAME [--probes=NAME[,NAME...]]

--max-file-size=SIZE [--fc-version=NUM]

[--timeout=TIMEOUT] [--clock-time[=OFFSET]]

[--freespace-minimum=SIZE] [--space-maximum-percent=NUM]

[--compression-method=COMP_METHOD]

{ --log-destination=DESTINATION

| --log-pathname=FILE_PATH

| --log-directory=DIR_PATH [--log-basename=LOG_BASENAME]

[--log-post-rotate=COMMAND] }

[--log-level=LEVEL] [--log-sysfacility=NUMBER]

[--pidfile=FILE_PATH] [--no-chdir] [--no-daemon]

Help options:

flowcap --sensor-configuration=FILE_PATH

{ --verify-sensor-config | --verify-sensor-config=VERBOSE }

flowcap --help

flowcap --version

DESCRIPTION

flowcap is a daemon that collects records from routers, flow meters, and devices that produce network flow
data. The records are written in the SiLK Flow record format to temporary files on disk. flowcap may
collect NetFlow records (versions 5 or 9), IPFIX records (Internet Protocol Flow Information eXport) such
as those generated by yaf(1), or sFlow records.

The SiLK Flow files produced by flowcap are meant to be used only for temporary storage. For longer-term
storage, the records should processed by the rwflowpack(8) daemon which assigns values to each record
depending on where it was collected and writes the record to an hourly file that is stored in a directory tree.

As flowcap receives flow records, it stores them in files in the location specified by the --destination-
directory switch. These files are closed on quantum boundaries, with one file per flow source per quantum.
A quantum is either the amount of time represented by the --timeout switch or the file size represented by
the --max-file-size switch, whichever is reached first.

To transfer the files to rwflowpack, flowcap works in tandem with the rwsender(8) program. rwsender
polls the storage directory and sends the files it finds there to an rwreceiver(8) process for processing by
rwflowpack.

flowcap produces files that are named PROBE YYYYMMDDhhmmss.XXXXXX, where PROBE is the
name of the probe, YYYY is the current year, MM is the current month, DD is the current day, hh is the
current hour, mm is the current minute, ss is the current second, and XXXXXX is a random six-character
string.

672 SiLK-3.23.1

The SiLK Reference Guide flowcap(8)

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

For the following options, a SIZE may be given as an ordinary integer, or as a real number followed by
a suffix K, M, G, or T, which represents the numerical value multiplied by 1,024 (kilo), 1,048,576 (mega),
1,073,741,824 (giga), and 1,099,511,627,776 (tera), respectively. For example, 1.5K represents 1,536 bytes,
or one and one-half kilobytes.

General Configuration Switches

--destination-directory=DIR PATH

Store aggregated packed flow files in this directory for processing by rwsender. DIR PATH must be
a complete directory path. This switch is required.

--sensor-configuration=FILENAME

Give the path to the configuration file that flowcap consults to determine how to collect flow records.
The complete syntax of the configuration file is described in the sensor.conf(5) manual page; see also
the SiLK Installation Handbook. This switch is required.

--probes=NAME[,NAME...]

Choose which of the probes described in the sensor configuration file will be used by flowcap. The
default is to use all of the probes defined in the configuration file. This switch instructs flowcap to
only use the specifically named probes.

--max-file-size=SIZE

Set the approximate maximum size of flowcap files to SIZE bytes. If a flowcap file exceeds SIZE
bytes, it is closed and a new file will be created and used. In addition, before opening an output file,
flowcap ensures there are SIZE bytes of free space available, and exits if there is not. This switch is
required.

--timeout=TIMEOUT

Set the maximum duration that a flowcap output file remains open to TIMEOUT seconds. When the
--clock-time switch is given, the first duration may be less than TIMEOUT seconds. If the --timeout
switch is not specified, flowcap uses a default of 60 seconds.

--clock-time[=OFFSET]

Force flowcap to close its files at predictable times. When this switch is provided, flowcap closes its
output files at OFFSET seconds after midnight (UTC of the current day) and at every TIMEOUT
seconds thereafter. The default value of OFFSET is 0. For example, --timeout=900 --clock-
time=300 causes flowcap to close its output files at the 05, 20, 35, and 50 minute points in each
hour. Even with this switch, files are still be closed if they exceed the size specified by --max-file-size.

--fc-version=NUM

Choose the record version for the files of IPv4 flow records that flowcap produces. Valid values are 2,
3, 4, and 5, and the default is 5. This switch is ignored for probes that support IPv6 addresses.

--freespace-minimum=SIZE

Set the minimum free space to maintain on the file system where the --destination-directory is
located. By default, flowcap assumes that it has full rein over the file system on which it writes its

SiLK-3.23.1 673

flowcap(8) The SiLK Reference Guide

files. The default is to leave 1GB of free space. If flowcap fills this space, it exits. Flows arriving
during this time will be lost. See also --space-maximum-percent.

--space-maximum-percent=NUM

Use no more than this percentage of the file system containing the --destination-directory. The
default is to use no more than 98% of the file system. If flowcap fills this space, it exits. See also
--freespace-minimum.

--compression-method=COMP METHOD

Specify the compression library to use when writing output files. When no compression method is
specified, flowcap files are compressed using the best method, regardless of the default chosen when
SiLK was compiled. The valid values for COMP METHOD are determined by which external libraries
were found when SiLK was compiled. To see the available compression methods and the default
method, use the --help or --version switch. SiLK can support the following COMP METHOD values
when the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output. Using zlib produces the smallest output files
at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression. This
compression provides good compression with less memory and CPU overhead.

snappy

Use the snappy library for compression. This compression provides good compression with less
memory and CPU overhead. Since SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available.

--verify-sensor-config

--verify-sensor-config=VERBOSE

Verify that the syntax of the sensor configuration file is correct and then exit flowcap. If the file is
incorrect or if it does not define any probes, an error message is printed and flowcap exits abnormally.
If the file is correct and no argument is provided to the --verify-sensor-config switch, flowcap simply
exits with status 0. If an argument (other than the empty string and 0) is provided to the switch, the
names of the probes found in the sensor configuration file are printed to the standard output, and then
flowcap exits.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

674 SiLK-3.23.1

The SiLK Reference Guide flowcap(8)

Logging and Daemon Configuration Switches

The switches in this section determine the type of log messages that flowcap generates and where those
messages are written.

One of the following switches are required:

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

none

Messages are not written anywhere.

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-directory=DIR PATH

Use DIR PATH as the directory to which the log files are written; DIR PATH must be a complete
directory path. The log files have the form

DIR_PATH/LOG_BASENAME-YYYYMMDD.log

where YYYYMMDD is the current date and LOG BASENAME is the application name or the value
passed to the --log-basename switch when provided. The log files are rotated: At midnight local
time, a new log is opened, the previous file is closed, and the command specified by --log-post-rotate
is invoked on the previous day’s log file. (Old log files are not removed by flowcap; the administrator
should use another tool to remove them.) When this switch is provided, a process-ID file (PID) is also
written in this directory unless the --pidfile switch is provided.

--log-pathname=FILE PATH

Use FILE PATH as the complete path to the log file. The log file is not rotated.

The following switches are optional:

--log-level=LEVEL

Set the severity of messages that are logged. The levels from most severe to least are: emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where flowcap is running. This
switch produces an error unless --log-destination=syslog is specified.

SiLK-3.23.1 675

flowcap(8) The SiLK Reference Guide

--log-basename=LOG BASENAME

Use LOG BASENAME in place of the application name in the name of log files in the log directory. See
the description of the --log-directory switch. This switch does not affect the name of the process-ID
file.

--log-post-rotate=COMMAND

Run COMMAND on the previous day’s log file after log rotation. When this switch is not specified,
the previous day’s log file is compressed with gzip(1). When the switch is specified and COMMAND
is the empty string, no action is taken on the log file. Each occurrence of the string %s in COMMAND
is replaced with the full path to the log file, and each occurrence of %% is replaced with %. If any
other character follows %, flowcap exits with an error. Specifying this switch without also using
--log-directory is an error.

--pidfile=FILE PATH

Set the complete path to the file in which flowcap writes its process ID (PID) when it is running as
a daemon. No PID file is written when --no-daemon is given. When this switch is not present, no
PID file is written unless the --log-directory switch is specified, in which case the PID is written to
LOGPATH/flowcap.pid.

--no-chdir

Do not change directory to the root directory. When flowcap becomes a daemon process, it changes
its current directory to the root directory so as to avoid potentially running on a mounted file system.
Specifying --no-chdir prevents this behavior, which may be useful during debugging. The application
does not change its directory when --no-daemon is given.

--no-daemon

Force flowcap to run in the foreground---it does not become a daemon process. This may be useful
during debugging.

ENVIRONMENT

SILK IPFIX PRINT TEMPLATES

When set to 1, flowcap writes messages to the log file describing each IPFIX and NetFlow v9 template
it receives. This is equivalent to adding show-templates to the log-flags setting for each probe in
the sensor.conf file. See the sensor.conf(5) manual page for the format of these messages. Since
SiLK 3.8.2.

SILK LIBFIXBUF SUPPRESS WARNINGS

When set to 1, flowcap disables all warning messages generated by libfixbuf. These warning mes-
sages include out-of-sequence packets, data records not having a corresponding template, record count
discrepancies, and issues decoding list elements. Since SiLK 3.10.0.

FILES

sensor.conf

The location of this file must be specified by the --sensor-configuration switch. This file specifies
probe blocks that tell flowcap how to capture data. The syntax of this file is described in the
sensor.conf(5) manual page.

676 SiLK-3.23.1

The SiLK Reference Guide flowcap(8)

SEE ALSO

sensor.conf(5), rwflowpack(8), rwsender(8), rwreceiver(8), silk(7), yaf(1), syslog(3), zlib(3),
gzip(1), SiLK Installation Handbook

SiLK-3.23.1 677

rwflowappend(8) The SiLK Reference Guide

rwflowappend

Append incremental SiLK Flow files to hourly files

SYNOPSIS

rwflowappend --incoming-directory=DIR_PATH --root-directory=DIR_PATH

--error-directory=DIR_PATH [--archive-directory=DIR_PATH]

[--flat-archive] [--post-command=COMMAND]

[--hour-file-command=COMMAND] [--threads=N]

[--reject-hours-past=NUM] [--reject-hours-future=NUM]

[--no-file-locking] [--polling-interval=NUM]

[--byte-order=ENDIAN] [--pad-header]

[--compression-method=COMP_METHOD]

[--site-config-file=FILENAME]

{ --log-destination=DESTINATION

| --log-pathname=FILE_PATH

| --log-directory=DIR_PATH [--log-basename=LOG_BASENAME]

[--log-post-rotate=COMMAND] }

[--log-level=LEVEL] [--log-sysfacility=NUMBER]

[--pidfile=FILE_PATH] [--no-chdir] [--no-daemon]

rwflowappend --help

rwflowappend --version

DESCRIPTION

rwflowappend is a daemon that watches a directory for files that contain small numbers of SiLK Flow
records---these files are called incremental files---as generated by rwflowpack(8) when it is run with -
-output-mode=incremental-files or --output-mode=sending. rwflowappend appends these SiLK
Flow records to the hourly files stored in the SiLK data repository whose directory tree root is specified by
the --root-directory switch.

The directory that rwflowappend watches for incremental files is specified by --incoming-directory. As
rwflowappend scans this directory, it ignores a file if its size is 0 bytes or if its name begins with a dot (.).
On each scan, if rwflowappend detects a file name that was not present in the previous scan, it records the
name and size of the file. If the file has a different size on the next scan, the new size is recorded. Once the
file has the same size on two consecutive scans, rwflowappend appends the file to the appropriate hourly
file.

After rwflowappend processes an incremental file, the file is deleted unless the --archive-directory switch
is specified, in which case the incremental file is moved to that directory or to a subdirectory of that directory
depending on whether --flat-archive was specified. The --post-command switch allows a command to be
executed on the incremental file after it has been moved to the archive directory.

If a fatal write error occurs (for example, the disk containing the data repository becomes full), rwflowap-
pend exits. Before exiting, rwflowappend attempts to truncate the hourly file to the size it had when
it was opened, and rwflowappend moves the incremental file it was reading to the directory specified by
--error-directory.

678 SiLK-3.23.1

The SiLK Reference Guide rwflowappend(8)

Running rwflowappend separately from rwflowpack is used when you wish to copy the packed SiLK Flow
records from the machine doing the packing to multiple machines for use by analysts. Almost any network
file transport protocol may be used to move the files from the packing machine to the destination machine
where rwflowappend is running, though we have written the rwsender(8) and rwreceiver(8) to perform
this task.

Separate rwflowpack and rwflowappend processes are also recommended if you want another process (such
as the Analysis Pipeline http://tools.netsa.cert.org/analysis-pipeline/) to process the SiLK Flow records as
they are generated.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

General Configuration

The following switches are required:

--incoming-directory=DIR PATH

Periodically scan the directory DIR PATH for incremental files to append to the hourly files. As
rwflowappend scans DIR PATH, it ignores a file if its name begins with a dot (.) or if its size is 0
bytes. When a file is first detected, its size is recorded, and the file must have the same size for two
consecutive scans before rwflowappend will append it to the appropriate hourly file. The interval
between scans is set by --polling-interval. DIR PATH must be a complete directory path.

--root-directory=DIR PATH

Append to existing hourly files and create new hourly files in the directory tree rooted at this location.
The directory tree has the same subdirectory structure as that created by rwflowpack. DIR PATH
must be a complete directory path.

--error-directory=DIR PATH

Store in this directory incremental files that were NOT successfully appended to an hourly file.
DIR PATH must be a complete directory path.

The following switches are optional:

--archive-directory=DIR PATH

Move each incremental file to DIR PATH or a subdirectory of it after rwflowappend has successfully
appended the incremental file to an hourly file. If this switch is not provided, the incremental files are
deleted once they are successfully appended to an hourly file. When the --flat-archive switch is also
provided, incremental files are moved into the top of DIR PATH ; when --flat-archive is not given,
each incremental file is moved to a subdirectory of DIR PATH that mirrors the path of the hourly
file to which the incremental file was appended. Removing files from the archive-directory is not the
job of rwflowappend; the system administrator should implement a separate process to clean this
directory. This switch is required when the --post-command switch is present.

SiLK-3.23.1 679

http://tools.netsa.cert.org/analysis-pipeline/

rwflowappend(8) The SiLK Reference Guide

--flat-archive

When archiving incremental files via --archive-directory, move the files into the top of the archive-
directory, not into subdirectories of it. This switch has no effect if --archive-directory is not also
specified. This switch may be used to allow another process to watch for new files appearing in the
archive-directory.

--post-command=COMMAND

Run COMMAND on each incremental file after rwflowappend has successfully appended it to an
hourly file and moved it into the archive-directory. Each occurrence of the string %s in COMMAND is
replaced with the full path to the incremental file in the archive-directory, and each occurrence of %%
is replaced with %. If any other character follows %, rwflowappend exits with an error. When using
this feature, the --archive-directory must be specified. The exit status of COMMAND is ignored.
See also the rwpollexec(8) daemon.

--hour-file-command=COMMAND

Run COMMAND upon creation of a new hourly file. The string %s in COMMAND is replaced with
the full path to the hourly file, and the string %% is replaced with %. If any other character follows %,
rwflowappend exits with an error. The exit status of COMMAND is ignored.

--threads=N

Invoke rwflowappend with N threads reading the incremental files and writing to the repository.
When this switch is not provided, rwflowappend runs with a single thread. Since SiLK 3.8.2.

--reject-hours-past=NUM

Reject incremental files containing records whose starting hour occurs more than this number of hours
in the past relative to the current hour. Incremental files that violate this value are moved into the
error directory. Times are compared using the starting hour of the flow record and the current hour.
For example, flow records that start at 18:02:56 and 18:58:04 are considered 1 hour in the past whether
the current time is 19:01:47 or 19:59:33. When performing live data collection, it is not uncommon to
get flows one to two hours in the past due to the flow generator’s active timeout (often 30 minutes)
and the time to transfer the flow records through the collection system. The default is to accept all
incremental files.

--reject-hours-future=NUM

Similar to --reject-hours-past, but reject incremental files containing records whose starting hour
occurs more than this number of hours in the future relative to the current hour. Future dated flow
records are rare, but can occur due to time drift at the sensor. The default is to accept all incremental
files.

--no-file-locking

Do not use advisory write locks. Normally, rwflowappend obtains a write lock on an hourly file
prior to writing records to it. The write lock prevents two instances of rwflowappend from writing
to the same hourly file simultaneously. However, attempting to use a write lock on some file systems
causes rwflowappend to exit with an error, and this switch can be use when writing data to these
file systems.

--polling-interval=NUM

Check the incoming directory for new incremental files every NUM seconds. The default polling interval
is 15 seconds.

--byte-order=ENDIAN

Set the byte order for newly created SiLK Flow files. When appending records to an existing file, the
byte order of the file is maintained. The argument is one of the following:

680 SiLK-3.23.1

The SiLK Reference Guide rwflowappend(8)

as-is

Maintain the byte order of the incremental files (i.e., the byte order specified to rwflowpack).
This is the default.

native

Use the byte order of the machine where rwflowappend is running.

big

Use network byte order (big endian) for the flow files.

little

Write the flow files in little endian format.

--compression-method=COMP METHOD

Specify the compression library to use when creating new hourly files. When this switch is not given,
newly created hourly files maintain the compression method used by the incremental file (i.e., the
compression method specified to rwflowpack). When appending to an existing hourly file, the com-
pression method of the file is maintained. The valid values for COMP METHOD are determined by
which external libraries were found when SiLK was compiled. To see the available compression meth-
ods and the default method. use the --help or --version switch. SiLK can support the following
COMP METHOD values when the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output. Using zlib produces the smallest output files
at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression. This
compression provides good compression with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwflowappend searches for the site configuration file in the locations specified in the FILES section.

Logging and Daemon Configuration

One of the following mutually-exclusive switches is required:

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

SiLK-3.23.1 681

rwflowappend(8) The SiLK Reference Guide

none

Messages are not written anywhere.

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-directory=DIR PATH

Use DIR PATH as the directory where the log files are written. DIR PATH must be a complete
directory path. The log files have the form

DIR_PATH/LOG_BASENAME-YYYYMMDD.log

where YYYYMMDD is the current date and LOG BASENAME is the application name or the value
passed to the --log-basename switch when provided. The log files are rotated: At midnight local
time, a new log is opened, the previous file is closed, and the command specified by --log-post-
rotate is invoked on the previous day’s log file. (Old log files are not removed by rwflowappend; the
administrator should use another tool to remove them.) When this switch is provided, a process-ID
file (PID) is also written in this directory unless the --pidfile switch is provided.

--log-pathname=FILE PATH

Use FILE PATH as the complete path to the log file. The log file is not rotated.

The following set of switches is optional:

--log-level=LEVEL

Set the severity of messages that are logged. The levels from most severe to least are: emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where rwflowappend is running.
This switch produces an error unless --log-destination=syslog is specified.

--log-basename=LOG BASENAME

Use LOG BASENAME in place of the application name in the name of log files in the log directory. See
the description of the --log-directory switch. This switch does not affect the name of the process-ID
file.

--log-post-rotate=COMMAND

Run COMMAND on the previous day’s log file after log rotation. When this switch is not specified,
the previous day’s log file is compressed with gzip(1). When the switch is specified and COMMAND
is the empty string, no action is taken on the log file. Each occurrence of the string %s in COMMAND
is replaced with the full path to the log file, and each occurrence of %% is replaced with %. If any other
character follows %, rwflowappend exits with an error. Specifying this switch without also using
--log-directory is an error.

682 SiLK-3.23.1

The SiLK Reference Guide rwflowappend(8)

--pidfile=FILE PATH

Set the complete path to the file in which rwflowappend writes its process ID (PID) when it is
running as a daemon. No PID file is written when --no-daemon is given. When this switch is not
present, no PID file is written unless the --log-directory switch is specified, in which case the PID is
written to LOGPATH/rwflowappend.pid.

--no-chdir

Do not change directory to the root directory. When rwflowappend becomes a daemon process, it
changes its current directory to the root directory so as to avoid potentially running on a mounted file
system. Specifying --no-chdir prevents this behavior, which may be useful during debugging. The
application does not change its directory when --no-daemon is given.

--no-daemon

Force rwflowappend to run in the foreground---it does not become a daemon process. This may be
useful during debugging.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

ENVIRONMENT

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwflowappend may use this environment variable. See the FILES section for details.

FILES

${SILK CONFIG FILE}

ROOT DIRECTORY/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-file
switch is not provided, where ROOT DIRECTORY/ is the directory specified to the --root-directory
switch.

SiLK-3.23.1 683

rwflowappend(8) The SiLK Reference Guide

SEE ALSO

rwflowpack(8), rwreceiver(8), rwsender(8), rwpollexec(8), rwfilter(1), silk(7), gzip(1), syslog(3),
zlib(3), The SiLK Installation Handbook

NOTES

rwflowappend does not check the integrity of an hourly file before appending records to it.

Prior to SiLK 3.6.0 when a write error occurred, rwflowappend could leave a partially written record
or compressed block in the hourly file. If a partially written compressed block remained and additional
compressed blocks were appended, these compressed blocks could not be read by other SiLK tools. If a
partially written record remained and additional records were appended, SiLK tools would read the unaligned
data as if it were aligned and produce garbage records. Although SiLK 3.6.0 works around the issue on write
errors, similar issues can occur if rwflowappend is suddenly killed (e.g., by kill -9).

When a write error occurs, rwflowappend may leave a zero byte file in the data repository. Such files do
affect the exit status of rwfilter(1), though rwfilter warns about being unable to read the header from the
file.

As of SiLK 3.1.0, rwflowappend obtains an advisory write lock on the hourly file it is writing, allowing
multiple rwflowappend processes to write to the same hourly file. File locking may be disabled by us-
ing the --no-file-locking switch. If this switch is enabled, the administrator must ensure that multiple
rwflowappend processes do not attempt to write to the same hourly file simultaneously.

684 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

rwflowpack

Collect flow data and store it in binary SiLK Flow files

SYNOPSIS

rwflowpack [--input-mode=MODE] INPUT_MODE_SPECIFIC_SWITCHES

[--output-mode=MODE] OUTPUT_MODE_SPECIFIC_SWITCHES

{ --log-destination=DESTINATION

| --log-pathname=FILE_PATH

| --log-directory=DIR_PATH [--log-basename=LOG_BASENAME]

[--log-post-rotate=COMMAND] }

[--no-file-locking] [--flush-timeout=VAL]

[--file-cache-size=VAL] [--pack-interfaces]

[--byte-order=ENDIAN] [--compression-method=COMP_METHOD]

[--error-directory=DIR_PATH] [--archive-directory=DIR_PATH]

[--flat-archive] [--post-archive-command=COMMAND]

[--site-config-file=FILENAME] [--log-level=LEVEL]

[--log-sysfacility=NUMBER] [--pidfile=FILE_PATH]

[--no-chdir] [--no-daemon]

To collect flow data over the network or directory polling (default):

rwflowpack [--input-mode=stream] --sensor-configuration=FILE_PATH

[--packing-logic=PLUGIN] [--sensor-name=SENSOR]

[--polling-interval=NUMBER] ...

To collect from local files containing flows created by flowcap(8):

rwflowpack --input-mode=fcfiles --incoming-directory=DIR_PATH

--sensor-configuration=FILE_PATH [--packing-logic=PLUGIN]

[--polling-interval=NUMBER] ...

To collect from a single file containing NetFlow v5 PDUs:

rwflowpack --input-mode=pdufile --netflow-file=FILE_PATH

--sensor-configuration=FILE_PATH [--packing-logic=PLUGIN]

[--sensor-name=SENSOR] ...

To respool SiLK Flows without modifying the class, type, or sensor:

rwflowpack --input-mode=respool --incoming-directory=DIR_PATH

[--polling-interval=NUMBER] ...

To store the SiLK Flow files on the local machine (default):

rwflowpack ... [--output-mode=local-storage]

--root-directory=DIR_PATH ...

SiLK -3.23.1 685

rwflowpack(8) The SiLK Reference Guide

To create incremental files to be processed by rwflowappend(8):

rwflowpack ... --output-mode=incremental-files

--incremental-directory=DIR_PATH ...

To create incremental files to be processed by rwflowappend (deprecated):

rwflowpack ... --output-mode=sending --sender-directory=DIR_PATH

--incremental-directory=DIR_PATH ...

Help options:

rwflowpack --sensor-configuration=FILE_PATH [--packing-logic=PLUGIN]

{ --verify-sensor-config | --verify-sensor-config=VERBOSE }

rwflowpack --help

rwflowpack --version

DESCRIPTION

rwflowpack is a daemon that runs as part of the SiLK flow collection and packing tool-chain. The primary
job of rwflowpack is to convert each incoming flow record to the SiLK Flow format, categorize each incoming
flow record (e.g., as incoming or outgoing), set the sensor value for the record, and determine which hourly
file will ultimately store the record.

The settings that rwflowpack uses to categorize each flow record are determined by two textual configuration
files and compiled code that is referred to as packing logic.

The first of the configuration files is silk.conf(5) which specifies the classes, types, and sensors to use at
your site. There are several different ways to specify the location of this file as detailed in the FILES section
below.

The second configuration file is the sensor.conf(5) file, whose location is specified via the --sensor-
configuration switch. This file contains multiple sensor blocks, where each block contains information
used to categorize flow records captured at that particular sensor. This file also contains probe blocks
which specify how to collect NetFlow v5, IPFIX, and/or NetFlow v9 flow records, and a mapping of probes
to sensors. See the sensor.conf(5) manual page for details.

The packing logic uses the information from the silk.conf and sensor.conf files to categorize each flow
record. By categorizing a flow record, we mean determine whether the record is incoming or outgoing
and assign a class/type pair (also called a flowtype) to the record. The flowtype along with the start-
ing hour of the record and the sensor where the record was collected form a triple which determines
into which file a flow record is stored. The files that rwflowpack produces have the form flowType-
sensorName YYYYMMDD.HH where flowType encodes the class/type pair, sensorName is the sensor where
the flows were collected, and YYYYMMDD.HH is the year, month, day, and hour when the flow started.

For more information on how rwflowpack categorizes each flow record and converts data to the SiLK Flow
format, see the SiLK Installation Handbook, the sensor.conf(5) manual page, and the manual page for
the packing logic plug-in that rwflowpack is using (e.g., packlogic-twoway(3) is the default, packlogic-
generic(3)).

686 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

The compiled code for the packing-logic is normally loaded into rwflowpack as a run-time. (The administra-
tor may choose to compile the packing logic into rwflowpack when building SiLK. See the SiLK Installation
Handbook for details.) The name of this plug-in is specified in the packing-logic statement in the silk.conf
file. A different location may be specified using the --packing-logic switch.

Input Modes

There are several ways to input data to rwflowpack, and the method to use is determined by the --input-
mode switch, with stream being the default when the switch is not provided.

stream

In stream input-mode, rwflowpack processes the probe statements in the sensor.conf(5) file which
specify how rwflowpack is to capture data from one or more sources. The data is assigned to a sensor
based on the probe-sensor mapping in the sensor.conf file. rwflowpack then categorizes the records,
converts them to the SiLK Flow format, and writes them to files.

The sources of data that rwflowpack supports are:

• listening for NetFlow v5 packets on a UDP socket

• listening for IPFIX (Internet Protocol Flow Information eXport) packets on a TCP or a UDP
socket

• listening for NetFlow v9 packets on a UDP socket

• listening for sFlow v5 packets on a UDP socket

• polling a directory for files containing NetFlow v5 records (see the description of the pdufile

input-mode for the required format of these files)

• polling a directory for files containing IPFIX records (as generated by yaf(1))

• polling a directory for files containing SiLK Flow records (compare to the respool input-mode)

Multiple sources may be specified.

Processing of IPFIX, NetFlow v9, or sFlow is only available when SiLK is compiled with support for
libfixbuf-1.7.0 or later. Processing of sFlow records was added in SiLK 3.9.0. libfixbuf is available from
http://tools.netsa.cert.org/fixbuf/.

Configuration of stream input-mode is specified in the Stream Collection Switches (--input-
mode=stream) section below.

fcfiles

Instead of having rwflowpack capture data itself, you may configure rwflowpack to work in con-
junction with one or more flowcap(8) daemons by specifying fcfiles as the input-mode.

In this configuration, each flowcap uses the probe statements in the sensor.conf(5) file to determine
how to collect the data. flowcap supports the network-based capture methods specified for the stream
input-mode---i.e., flowcap does not support directory polling. flowcap writes the data it captures into
small files and includes the probe name in each file’s header.

Typically, the flowcap processes run on separate machines near the router or flow meter that is
generating the records. The rwsender(8) and rwreceiver(8) daemons are often used to move the
files from the flowcap machines to the rwflowpack machine.

rwflowpack polls a directory for the files created by flowcap. Once it finds a file, it assigns those
records a sensor based on the probe-sensor mapping in the sensor.conf file, it categorizes the records,
and it writes the records to one or more output files.

SiLK-3.23.1 687

http://tools.netsa.cert.org/fixbuf/

rwflowpack(8) The SiLK Reference Guide

Since rwflowpack does not capture data in fcfiles input-mode, rwflowpack does not use the probe
statements in the sensor.conf file, and the statements do not need to be present.

The switches that rwflowpack uses in fcfiles input-mode are given below (Flowcap Files Collection
Switches (--input-mode=fcfiles)).

pdufile

Setting the input-mode to pdufile tells rwflowpack to read a single file containing NetFlow v5 PDU
records and then exit. rwflowpack does not become a daemon in this input-mode; instead it remains
in the foreground, processes the NetFlow file, and exits.

The file must be in the format created by NetFlow Collector: The file’s size must be an integer multiple
of 1464, where each 1464 byte chunk contains a 24-byte NetFlow v5 header and space for thirty 48-byte
NetFlow records. The number of valid records per chunk is specified in the chunk’s header. (This is
also the format that rwflowpack requires in stream input-mode when it is polling a directory for
NetFlow v5 files.)

To convert single PDU file to a stream of SiLK Flow records, consider using rwpdu2silk(1).

In pdufile input-mode, the sensor.conf file must define a sensor that maps to a probe that uses the
read-from-file statement. However, the argument to that statement is ignored, and the argument is
typically set to /dev/null. The NetFlow v5 file’s location must be specified with the --netflow-file
switch. If sensor.conf contains multiple sensor blocks, the --sensor-name switch is required to tell
rwflowpack which sensor to use.

See the PDU File Collection Switches (--input-mode=pdufile) section below for additional configuration
information.

respool

Sometimes it is desirable to pull existing SiLK Flow records from one data repository and use them
to create a ”mini” data repository (for example, for testing). The respool input-mode is one way to
accomplish this.

In this configuration, rwflowpack polls a directory for SiLK flow files and it uses the existing class/type
pair and sensor values to determine where to store the flow record. That is, rwflowpack puts the data
into appropriate hourly file, but it does not change any other settings on the flow records.

To contrast respool input-mode with rwflowpack processing SiLK Flow files in stream input-mode:
In respool input-mode, the existing class, type, and sensor values are used to determine each record’s
destination. In the latter, rwflowpack treats the records as it would any other newly arrived data,
assigning the data to a sensor and re-categorizing the records to assign a class/type pair to them.

Since no categorization occurs in respool input-mode, the --sensor-configuration and --packing-
logic switches are not required and not allowed, and their presence causes rwflowpack to exit with
an error code.

Output Modes

As mentioned above, after rwflowpack categorizes a flow record (that is, determines the sensor, class/type,
and starting hour for the record), it uses those values to generate the name of the hourly file that will contain
that record, and it writes the record to that file.

In order for the record in that file to be retrievable by rwfilter(1), the file must be stored in a SiLK data
repository, which is a directory tree of binary SiLK Flow files. The root of this directory tree is called the
SILK DATA ROOTDIR. The structure of the tree under the root is determined by the path-format setting
in the silk.conf(5) file.

688 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

There are two ways to get the files into the SILK DATA ROOTDIR; which method is used is determined
by rwflowpack’s --output-mode switch. This switch supports the following values:

local-storage

In local-storage output-mode, rwflowpack creates the hourly SiLK Flow files directly in the data
repository, and it writes the records into these files. rwflowpack uses local-storage output-mode
when the --output-mode switch is not provided.

incremental-files

When the output-mode is incremental-files, rwflowpack does not create hourly data files directly.
Instead, rwflowpack creates smaller files (called incremental files), and rwflowpack relies on the
rwflowappend(8) daemon to combine the incremental files into hourly files in the final data repository.

In incremental-files output-mode, rwflowpack uses a single destination directory whose location is
specified by the --incremental-directory switch. In this directory, rwflowpack creates a zero-byte
place holder file and a corresponding working file. The name of the place holder file has a unique,
random suffix, and the name of the working file is a dot (.) followed by the name of the place holder
file.

rwflowpack first writes records to the working files. Periodically (as determined by the value specified
to --flush-timeout), rwflowpack closes all the working files and moves them over the place holder
files. Once rwflowpack has closed and moved a working file, it no longer takes responsibility for it.

The rwflowappend process may poll the incremental-directory itself, or another process may poll that
directory and pass the files to rwflowappend. If rwflowpack and rwflowappend are on different
machines, an rwsender(8)/rwreceiver(8) pair may be used to move the files between the machines.

Additional reasons one may want to use incremental-files output-mode are to support having
multiple data repositories or to allow additional processing of the SiLK Flow records (such as by the
Analysis Pipeline (http://tools.netsa.cert.org/analysis-pipeline/)).

Note: This output-mode was introduced in SiLK 3.6.0. This mode is similar to the sending output-
mode and is meant to replace it. In incremental-files output-mode, all writing occurs within the
incremental-directory, while the sending output-mode uses two directories.

sending

This output-mode works similarly to incremental-files. The difference is that when rwflowpack
flushes the open files, it moves the files from the incremental-directory and to the directory specified by
the --sender-directory switch. Once a file is moved to the sender-directory, rwflowpack no longer
takes responsibility for it.

As of SiLK 3.6.0, the sending output-mode is deprecated.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Input and Output Mode

As described in the Input Modes section above, rwflowpack has multiple ways of getting data, and that
data may be stored in one of two methods (c.f., Output Modes). Choosing the modes and configuring each
mode are described in the sections below.

SiLK-3.23.1 689

http://tools.netsa.cert.org/analysis-pipeline/

rwflowpack(8) The SiLK Reference Guide

--input-mode=MODE

Determine how rwflowpack gathers data. The default input MODE is stream. The available input-
modes are stream, fcfiles, pdufile, and respool.

--output-mode=MODE

Determine what rwflowpack does with the data as it is packed into SiLK binary files. The default out-
put MODE is local-storage. The available output-modes are local-storage, incremental-files
and sending.

Stream Collection Switches (--input-mode=stream)

In stream input-mode, rwflowpack uses the probe statements in the sensor.conf file to capture data, and
then rwflowpack categorizes the data. The stream input-mode is the default when the --input-mode
switch is not provided. This input-mode accepts the following switches; the --sensor-configuration switch
is required, and all other switches are optional.

--sensor-configuration=FILE PATH

Give the path to the configuration file that specifies how rwflowpack is to capture data and that
tells rwflowpack whether a record represents an incoming or outgoing flow. The complete syntax of
the configuration file is described in the sensor.conf(5) manual page; see also the SiLK Installation
Handbook.

--packing-logic=PLUGIN

Specify the plug-in that rwflowpack should load, where the plug-in provides functions that deter-
mine into which class and type each flow record will be categorized and the format of the files that
rwflowpack will write. When SiLK has been configured with hard-coded packing logic (i.e., when
--enable-packing-logic was specified to the configure script), this switch will not be present on
rwflowpack. A default value for this switch may be specified in the silk.conf(5) site configuration
file (see the description of the --site-config-file switch). When PLUGIN does not contain a slash (/),
rwflowpack attempts to find a file named PLUGIN in the directories listed in the FILES section.
If rwflowpack finds the file, it uses that path. If PLUGIN contains a slash or if rwflowpack does
not find the file, rwflowpack relies on your operating system’s dlopen(3) call to find the file. When
the SILK PLUGIN DEBUG environment variable is non-empty, rwflowpack prints status messages
to the standard error as it attempts to find and open each of its plug-ins. rwflowpack exits if it does
not have access to the packing logic functions.

--sensor-name=SENSOR

Cause rwflowpack to ignore all probes in the sensor configuration file except the probes for SENSOR.
Only data for SENSOR is collected. This allows a common configuration file to be used by multiple
rwflowpack invocations, yet also allow each rwflowpack instance only collect data for a single sensor.
There must be a sensor definition for SENSOR in the configuration file. When this switch is not present,
rwflowpack collects and packs data for all sensors.

--polling-interval=NUMBER

Specify the number of seconds rwflowpack waits between scans of the directories specified by the
poll-directory settings of the probes in the sensor.conf file. The default is 15 seconds.

690 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

Flowcap Files Collection Switches (--input-mode=fcfiles)

As described in the Input Modes section above, in fcfiles input-mode, rwflowpack processes files cre-
ated by the flowcap(8) daemon. In fcfiles input-mode, the --sensor-configuration and --incoming-
directory switches are required.

--sensor-configuration=FILE PATH

Give the path to the configuration file that rwflowpack consults to determine whether a record
represents an incoming or outgoing flow. The complete syntax of the configuration file is described in
the sensor.conf(5) manual page; see also the SiLK Installation Handbook.

--incoming-directory=DIR PATH

Periodically scan the directoryDIR PATH for files that have been created by flowcap. As rwflowpack
scans DIR PATH, it ignores a file if its name begins with a dot (.) or if its size is 0 bytes. When a file
is first detected, rwflowpack records its size, and the file must have the same size for two consecutive
scans before rwflowpack processes it. After the file is successfully processed, rwflowpack either
moves it to the archive-directory or deletes it. The interval between scans is set by --polling-interval.
DIR PATH must be a complete directory path.

--packing-logic=PLUGIN

Specify the plug-in that rwflowpack should load for the packing logic. For more detail, see the
description above.

--polling-interval=NUMBER

Specify the number of seconds rwflowpack waits between polls of the incoming-directory for new files
created by flowcap. If not given, the default value is 15 seconds.

PDU File Collection Switches (--input-mode=pdufile)

In this input-mode, rwflowpack stays in the foreground, processes a single file of NetFlow v5 data, and
exits. The --sensor-configuration and --netflow-file switches are required. The --sensor-name switch is
also required when the sensor.conf file contains more than one sensor. The following switches are available
in pdufile input-mode:

--sensor-configuration=FILE PATH

Give the path to the configuration file that rwflowpack consults to determine whether a record
represents an incoming or outgoing flow.

--netflow-file=FILE PATH

Name the full path of the file from which rwflowpack reads NetFlow v5 PDUs. This switch is required
in PDU File input-mode.

--sensor-name=SENSOR

Cause rwflowpack to ignore all probes in the sensor configuration file except the probes for SENSOR.
There must be a sensor definition for SENSOR in the configuration file. This switch is required in this
input-mode unless the sensor.conf file only defines a single sensor.

--packing-logic=PLUGIN

Specify the plug-in that rwflowpack should load for the packing logic. For more detail, see the
description of this switch in the stream input-mode.

SiLK-3.23.1 691

rwflowpack(8) The SiLK Reference Guide

Respooling Switches (--input-mode=respool)

When the --input-mode=respool switch is provided, rwflowpack polls a directory for SiLK Flow files,
and writes the records it finds into new hourly files, leaving the sensor and class/type values unchanged in
the records. (See Input Modes above for additional details.) The first of the following switches is required:

--incoming-directory=DIR PATH

Periodically scan the directory DIR PATH for SiLK Flow files to process. As rwflowpack scans
DIR PATH, it ignores a file if its name begins with a dot (.) or if its size is 0 bytes. When a file is
first detected, rwflowpack records its size, and the file must have the same size for two consecutive
scans before rwflowpack will process it. After the file is successfully processed, rwflowpack either
moves it to the archive-directory or deletes it. The interval between scans is set by --polling-interval.
DIR PATH must be a complete directory path.

--polling-interval=NUMBER

Specify the number of seconds rwflowpack waits between polls of the incoming-directory. If not given,
the default value is 15 seconds.

Local Storage Switches (--output-mode=local-storage)

In local-storage output-mode, rwflowpack stores SiLK Flow records directly in the data repository. This
is the default when the --output-mode switch is not provided. When operating in this output-mode, the
following switch is required:

--root-directory=DIR PATH

Name the full path of the SILK DATA ROOTDIR; that is, the directory under which the files contain-
ing the packed SiLK Flow records are stored. rwflowpack creates subdirectories below DIR PATH
based on the data received and the path-format setting in the silk.conf(5) file.

Incremental-Files Switches (--output-mode=incremental-files)

As described in the Output Modes section above, the incremental-files output-mode tells rwflowpack
to write incremental-files. The rwflowappend(8) daemon combines these incremental-files to create a SiLK
data repository. When running in incremental-files output-mode, the following switch must be provided:

--incremental-directory=DIR PATH

Name the full path of the destination directory where incremental-files are both created and stored to
await action by another process such as rwflowappend or rwsender. It is recommended that only a
single rwflowpack process write to this directory.

Sending Mode Switches (--output-mode=sending)

This output-mode is deprecated as of SiLK 3.6.0. This output-mode works similarly to the
incremental-files output-mode, except rwflowpack moves the files to a second directory periodically.
Both the following switches are required in sending output-mode:

692 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

--incremental-directory=DIR PATH

Name the full path of the working directory under which incremental-files are initially created. Peri-
odically (as determined by the --flush-timeout switch), rwflowpack closes the files in this directory
and moves them to the sender-directory. An rwflowpack invocation assumes it has full control over
the files in this directory. When rwflowpack starts, any files in this directory are moved to the
sender-directory.

--sender-directory=DIR PATH

Name the full path of the destination directory where incremental-files are moved to await action
by another process such as rwflowappend or rwsender. Once rwflowpack moves files to this
directory, it no longer takes responsibility for them. The other process (e.g., rwsender) is responsible
for removing files from this directory. Multiple rwflowpack invocations may use a single sender-
directory.

General Configuration

The following switches are optional:

--no-file-locking

Do not use advisory write locks. Normally, rwflowpack obtains a write lock on an data file prior
to writing records to it. The write lock prevents two instances of rwflowpack from writing to the
same data file simultaneously. However, attempting to use a write lock on some file systems causes
rwflowpack to exit with an error, and this switch may be used when writing data to these file systems.

--flush-timeout=VAL

Set the timeout for flushing any in-memory records to disk to VAL seconds. If not specified, the default
is 2 minutes (120 seconds). When the output-mode is local-storage, this value specifies how often
the files are flushed to disk to ensure that any records in memory are written to disk. When using
the incremental-files or sending output-mode, this value specifies how often to close and move the
incremental files. See the Output Modes section for details.

--file-cache-size=VAL

Set the maximum number of data files to have open for writing at any one time to VAL. If not
specified, the default is 128 files. The minimum file cache size is 4. This switch also determines how
many files rwflowpack reads from simultaneously when using probes that poll directories for files (see
sensor.conf(5)). The maximum number of input files open at any one time is limited to one eighth of
VAL (with a minimum of 2), and the number of directory polling operations to perform simultaneously
is limited to one sixteenth of VAL (minimum is 1).

--pack-interfaces

Allow one to override the default file output formats of the packed SiLK Flow files that rwflowpack
writes. When this switch is present, rwflowpack writes additional information into the packed files:
the router’s SNMP input and output interfaces and the next-hop IP address. (When the sensor.conf
file contains an interface-values attribute whose value is vlan, the input and output fields contain
the vlan IDs instead of SNMP interface values.) The extra data produced by this switch is useful
for determining why traffic is being stored in certain files. Note that this switch only affects newly
created files. New records are always appended to an existing file in the file’s current output format
to maintain file integrity.

--byte-order=ENDIAN

Set the byte order for newly created SiLK Flow files. When appending records to an existing file, the
byte order of the file is maintained. The argument is one of the following:

SiLK-3.23.1 693

rwflowpack(8) The SiLK Reference Guide

native

Use the byte order of the machine where rwflowpack is running. This is the default.

big

Use network byte order (big endian) for the flow files.

little

Write the flow files in little endian format.

--compression-method=COMP METHOD

Specify the compression library to use when creating new files. When this switch is not given, newly
created files are compressed using the default chosen when SiLK was compiled. When appending
records to an existing file, the compression method of the file is maintained. The valid values for
COMP METHOD are determined by which external libraries were found when SiLK was compiled.
To see the available compression methods and the default method, use the --help or --version switch.
SiLK can support the following COMP METHOD values when the required libraries are available.

none

Do not compress the output using an external library.

zlib

Use the zlib(3) library for compressing the output. Using zlib produces the smallest output files
at the cost of speed.

lzo1x

Use the lzo1x algorithm from the LZO real time compression library for compression. This
compression provides good compression with less memory and CPU overhead.

snappy

Use the snappy library for compression, and always compress the output regardless of the desti-
nation. This compression provides good compression with less memory and CPU overhead. Since
SiLK 3.13.0.

best

Use lzo1x if available, otherwise use snappy if available, otherwise use zlib if available.

--site-config-file=FILENAME

Read the SiLK site configuration from the named file FILENAME. When this switch is not provided,
rwflowpack searches for the site configuration file in the locations specified in the FILES section.

Disposal of Input Flow Files

The following switches determine how rwflowpack handles input files once it has processed them. These
switches have no effect when rwflowpack reads all of its data directly from the network. Otherwise,
the switches affect the named --netflow-file in pdufile input-mode, the files read from the --incoming-
directory in fcfiles and respool input-mode, and files read from probes that have a poll-directory

statement (c.f. sensor.conf(5)) in stream input-mode.

--error-directory=DIR PATH

Move input files that cannot be opened, have an unexpected format, contain an unrecognized
probe name in fcfiles input-mode, or are not successfully processed into the directory DIR PATH.
DIR PATH must be a complete directory path. If this switch is not provided, problem files remain in
place and cause rwflowpack to exit.

694 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

--archive-directory=DIR PATH

Move input files that rwflowpack processes successfully into the directory DIR PATH. DIR PATH
must be a complete directory path. When this switch is not provided and the input-mode is pdufile,
the original NetFlow source file is not modified, moved, or deleted. In all other input-modes, no --
archive-directory switch causes rwflowpack to delete each input file after successfully processing it.
When the --flat-archive switch is also provided, incoming files are moved into the top of DIR PATH ;
when --flat-archive is not given, each file is moved to a subdirectory based on the current UTC time:
DIR PATH /YEAR/MONTH /DAY /HOUR/. Removing files from the archive-directory is not the job
of rwflowpack; the system administrator should implement a separate process to clean this directory.
This switch is required when the --post-archive-command switch is present.

--flat-archive

When archiving input files via the --archive-directory switch, move the files into the top of the
archive-directory, not into subdirectories of the archive-directory. This switch has no effect if --archive-
directory is not also specified. This switch may be used to allow another process to watch for new
files appearing in the archive-directory.

--post-archive-command=COMMAND

Run COMMAND on each input file after rwflowpack has successfully processed the file and moved
the file into the archive-directory. Each occurrence of the string %s in COMMAND is replaced with
the full path to the input file in the archive-directory, and each occurrence of %% is replaced with
%. If any other character follows %, rwflowpack exits with an error. When using this feature, the
--archive-directory switch must be specified. See also the rwpollexec(8) daemon.

Logging and Daemon Configuration

One of the following mutually-exclusive switches is required:

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

none

Messages are not written anywhere.

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-directory=DIR PATH

Use DIR PATH as the directory where the log files are written. DIR PATH must be a complete
directory path. The log files have the form

SiLK-3.23.1 695

rwflowpack(8) The SiLK Reference Guide

DIR_PATH/LOG_BASENAME-YYYYMMDD.log

where YYYYMMDD is the current date and LOG BASENAME is the application name or the value
passed to the --log-basename switch when provided. The log files are rotated: At midnight local time,
a new log is opened, the previous file is closed, and the command specified by --log-post-rotate is
invoked on the previous day’s log file. (Old log files are not removed by rwflowpack; the administrator
should use another tool to remove them.) When this switch is provided, a process-ID file (PID) is also
written in this directory unless the --pidfile switch is provided.

--log-pathname=FILE PATH

Use FILE PATH as the complete path to the log file. The log file is not rotated.

The following set of switches is optional:

--log-level=LEVEL

Set the severity of messages that are logged. The levels from most severe to least are: emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where rwflowpack is running. This
switch produces an error unless --log-destination=syslog is specified.

--log-basename=LOG BASENAME

Use LOG BASENAME in place of the application name in the name of log files in the log directory. See
the description of the --log-directory switch. This switch does not affect the name of the process-ID
file.

--log-post-rotate=COMMAND

Run COMMAND on the previous day’s log file after log rotation. When this switch is not specified,
the previous day’s log file is compressed with gzip(1). When the switch is specified and COMMAND
is the empty string, no action is taken on the log file. Each occurrence of the string %s in COMMAND
is replaced with the full path to the log file, and each occurrence of %% is replaced with %. If any
other character follows %, rwflowpack exits with an error. Specifying this switch without also using
--log-directory is an error.

--pidfile=FILE PATH

Set the complete path to the file in which rwflowpack writes its process ID (PID) when it is running
as a daemon. No PID file is written when --no-daemon is given. When this switch is not present, no
PID file is written unless the --log-directory switch is specified, in which case the PID is written to
LOGPATH/rwflowpack.pid.

--no-chdir

Do not change directory to the root directory. When rwflowpack becomes a daemon process, it
changes its current directory to the root directory so as to avoid potentially running on a mounted file
system. Specifying --no-chdir prevents this behavior, which may be useful during debugging. The
application does not change its directory when --no-daemon is given.

--no-daemon

Force rwflowpack to run in the foreground---it does not become a daemon process. This may be
useful during debugging.

696 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

Help Options

--verify-sensor-config

--verify-sensor-config=VERBOSE

Verify that the syntax of the sensor configuration file is correct and then exit rwflowpack. If the
file is incorrect or if it does not define any sensors, an error message is printed and rwflowpack exits
abnormally. If the file is correct and no argument is provided to the --verify-sensor-config switch,
rwflowpack simply exits with status 0. If an argument (other than the empty string and 0) is provided
to the switch, the names of the probes and sensors found in the sensor configuration file are printed to
the standard output, and then rwflowpack exits.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

ENVIRONMENT

SILK IPFIX PRINT TEMPLATES

When set to 1, rwflowpack writes messages to the log file describing each IPFIX and NetFlow v9
template it receives. This is equivalent to adding show-templates to the log-flags setting for each
probe in the sensor.conf file. See the sensor.conf(5) manual page for the format of these messages.
Since SiLK 3.8.2.

SILK LIBFIXBUF SUPPRESS WARNINGS

When set to 1, rwflowpack disables all warning messages generated by libfixbuf. These warning
messages include out-of-sequence packets, data records not having a corresponding template, record
count discrepancies, and issues decoding list elements. Since SiLK 3.10.0.

SILK CONFIG FILE

This environment variable is used as the value for the --site-config-file when that switch is not
provided.

SILK DATA ROOTDIR

This environment variable specifies the root directory of data repository. When the output-mode is
sending, rwflowpack may use this environment variable when searching for the SiLK site configura-
tion file. See the FILES section for details.

SILK PATH

This environment variable gives the root of the install tree. When searching for configuration files,
rwflowpack may use this environment variable. See the FILES section for details.

SILK PLUGIN DEBUG

When set to 1, rwflowpack print status messages to the standard error as it tries to open the packing
logic plug-in.

SiLK-3.23.1 697

rwflowpack(8) The SiLK Reference Guide

FILES

sensor.conf

The location of this file must be specified by the --sensor-configuration switch. This file specifies
probe blocks that tell rwflowpack how to capture data when the --input-mode is stream. The file
also contains sensor blocks that map probes to sensors and that the packing-logic uses to determine
the category of each flow record. The syntax of this file is described in the sensor.conf(5) manual
page.

${SILK CONFIG FILE}

ROOT DIRECTORY/silk.conf

${SILK PATH}/share/silk/silk.conf

${SILK PATH}/share/silk.conf

/usr/local/share/silk/silk.conf

/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when the --site-config-
file switch is not provided. When rwflowpack is running in local-storage output-mode,
ROOT DIRECTORY/ is the directory specified to the --root-directory switch. When the output-
mode is sending, ROOT DIRECTORY/ is either the value specified in the SILK DATA ROOTDIR
environment variable or the default data repository directory compiled into rwflowpack (/data).

${SILK PATH}/lib64/silk/

${SILK PATH}/lib64/

${SILK PATH}/lib/silk/

${SILK PATH}/lib/

/usr/local/lib64/silk/

/usr/local/lib64/

/usr/local/lib/silk/

/usr/local/lib/

Directories that rwflowpack checks when attempting to load the packing-logic plug-in.

SEE ALSO

SiLK Installation Handbook, sensor.conf(5), silk.conf(5), packlogic-twoway(3), packlogic-
generic(3), flowcap(8), rwfilter(1), rwflowappend(8), rwreceiver(8), rwsender(8), rwpollexec(8),
rwpdu2silk(1), rwpackchecker(8), silk(7), gzip(1), yaf(1), dlopen(3), zlib(3), syslog(3)

698 SiLK-3.23.1

The SiLK Reference Guide rwflowpack(8)

NOTES

As SiLK 3.6.0, the incremental-files output-mode should be used in place of the sending output-mode
that existed in prior releases of rwflowpack. See Output Modes for details.

For administrators that use the sending output-mode in SiLK 3.5 or older and upgrade to SiLK 3.6 or later:
Any incremental files that the older version of rwflowpack leaves in the incremental-directory will not be
moved to the sender-directory by the new version of rwflowpack. Those files will need to be moved by
hand.

rwflowpack does not check the integrity of the data file before appending records to it.

When the disk becomes full or other write errors occur, rwflowpack may leave partially written records or
partially written compressed blocks in the files it has open. For each file where a partially written compressed
block remains and additional compressed blocks are appended, the newly appended compressed blocks are
not readable by other SiLK tools. For each file where a partially written record remains and additional
records are appended, other SiLK tools will read the unaligned data as if it were aligned and produce
garbage records. Partially writes may also occur if rwflowpack is suddenly killed (e.g., by kill -9).

When a write error occurs, rwflowpack may leave a zero byte file in the data repository. Such files do affect
the exit status of rwfilter(1), though rwfilter warns about being unable to read the header from the file.

rwflowpack obtains an advisory write lock on the hourly file it is writing, allowing multiple rwflowpack
processes to write to the same hourly file. File locking may be disabled by using the --no-file-locking
switch. If this switch is enabled, the administrator must ensure that multiple rwflowpack processes do not
attempt to write to the same hourly file simultaneously.

SiLK-3.23.1 699

rwguess(8) The SiLK Reference Guide

rwguess

Determine which SNMP interfaces are active

SYNOPSIS

rwguess [{ --top=NUM | --print-all }] PDU_FILE [PDU_FILE...]

rwguess --help

rwguess --version

DESCRIPTION

rwguess is deprecated as of SiLK 3.8.3 and it will be removed in the SiLK 4.0 release. Replace invocations
of rwguess with rwpdu2silk(1) and either rwstats(1) or rwuniq(1) as shown in EXAMPLES.

rwguess reads NetFlow v5 PDUs from file(s) specified on the command line and counts the number of flow
records that are seen on each input and output SNMP interface. Once all input has been processed, rwguess
sorts the SNMP interfaces by the number of records each interface saw, and prints the two sorted lists, one
for the input interfaces and one for the output interfaces. By default, only the top-10 interfaces are printed;
the number of rows printed may be changed with the --top switch.

When the --print-all switch is specified, the results are printed in SNMP interface order, with one column
for the input record count and another for the output record count, and one row for each interface that saw
traffic.

The purpose of rwguess is to help one configure the sensor blocks in the silk.conf(5) file used by rwflow-
pack(8) to categorize flow records into classes and types.

The PDU files are expected to be in the form created by NetFlow Collector: Each file’s size must be an
integer multiple of 1464, where each 1464 byte chunk contains a 24 byte NetFlow v5 header and space for
thirty 48 byte NetFlow records. The number of valid records per chunk is specified in the PDU header.

To convert a PDU file to a stream of SiLK Flow records, use rwpdu2silk(1).

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--top=NUM

Print the top NUM interfaces for each of input and output. If not specified, the default is to print the
top 10 interfaces.

--print-all

Print all SNMP interfaces that saw records, sorted by the SNMP interface number. This switch disables
top-N printing.

700 SiLK-3.23.1

The SiLK Reference Guide rwguess(8)

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

EXAMPLES

rwguess is deprecated. This section demonstrates how to get equivalent functionality by piping the output
from rwpdu2silk(1) into either rwstats(1) or rwuniq(1).

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

Top-N List

By default, rwguess creates a top-10 list of SNMP interfaces.

$ rwguess file.pdu

Top 10 (of 36) SNMP Input Interfaces

Index| Input_Recs|

54| 3466|

38| 1374|

84| 770|

88| 746|

56| 737|

68| 513|

106| 508|

62| 373|

114| 323|

8| 321|

Top 10 (of 37) SNMP Output Interfaces

Index| Output_Recs|

54| 3507|

38| 885|

98| 699|

84| 673|

88| 671|

56| 605|

58| 538|

106| 501|

92| 460|

62| 380|

Use rwpdu2silk to convert the file to SiLK flow format, and pipe the result to rwstats. You must invoke
rwstats twice, once the input interface (--field=in) and once for the output interface (--field=out). The
--copy-input switch allows the second rwstats command to read output from rwpdu2silk.

SiLK -3.23.1 701

rwguess(8) The SiLK Reference Guide

$ rwpdu2silk file.pdu \

| rwstats --count=10 --fields=in --copy-input=- --output-path=stderr \

| rwstats --count=10 --fields=out

INPUT: 12056 Records for 36 Bins and 12056 Total Records

OUTPUT: Top 10 Bins by Records

in| Records| %Records| cumul_%|

54| 3466| 28.750663| 28.750663|

38| 1374| 11.398869| 40.149532|

84| 770| 6.388336| 46.537868|

88| 746| 6.193106| 52.730975|

56| 737| 6.117718| 58.848693|

68| 513| 4.261379| 63.110072|

106| 508| 4.216760| 67.326831|

62| 373| 3.094729| 70.421560|

114| 323| 2.681877| 73.103437|

8| 321| 2.666285| 75.769722|

INPUT: 12056 Records for 37 Bins and 12056 Total Records

OUTPUT: Top 10 Bins by Records

out| Records| %Records| cumul_%|

54| 3507| 29.089205| 29.089205|

38| 885| 7.347980| 36.437185|

98| 699| 5.801735| 42.238920|

84| 673| 5.588923| 47.827843|

88| 671| 5.572502| 53.400345|

56| 605| 5.022807| 58.423152|

58| 538| 4.462497| 62.885649|

106| 501| 4.155802| 67.041451|

92| 460| 3.821822| 70.863273|

62| 380| 3.157428| 74.020701|

Seeing all interfaces

The --print-all switch shows all interfaces.

$ rwguess --print-all file2.pdu

Index| Input_Recs| Output_Recs|

10| 17099| 17115|

172| 7893| 7893|

192| 25008| 24992|

Use rwuniq to generate similar output, though you must run rwuniq twice (as with rwstats in the previous
example).

$ rwpdu2silk file2.pdu \

| rwuniq --sort --fields=in --copy-input=- --output-path=stderr \

| rwuniq --sort --fields=out

in| Records|

10| 17099|

172| 7893|

192| 25008|

out| Records|

702 SiLK -3.23.1

The SiLK Reference Guide rwguess(8)

10| 17115|

172| 7893|

192| 24992|

SEE ALSO

rwpdu2silk(1), rwstats(1), rwuniq(1), rwflowpack(8), silk.conf(5), silk(7)

SiLK-3.23.1 703

rwpackchecker(8) The SiLK Reference Guide

rwpackchecker

Find unusual patterns that may indicate a corrupt file

SYNOPSIS

rwpackchecker [--value=TEST=VALUE] [--allowable-count=TEST=ALLOWED]

[--print-all]

{[--xargs] | [--xargs=FILENAME] | [FILE [FILE ...]]}

rwpackchecker --help

rwpackchecker --version

DESCRIPTION

rwpackchecker reads SiLK Flow records and checks for unusual patterns that may indicate the file has
been corrupted.

rwpackchecker has a default series of tests it runs on every flow record in an input file. Each default test
has two numbers associated with it: a value threshold and an allowed count threshold. A test compares a
value on the flow record to the value threshold, and if the value violates the threshold, a counter for that
test is incremented. In addition, if the flow record violates the value threshold for any test, a global counter
is incremented to denote a suspect record.

Once rwpackchecker finishes processing a file, it determines whether the file appears to be valid. A file is
considered valid if either

• the global counter of suspect records is 0, or

• no test has a counter that exceeds the test’s allowed count threshold

If rwpackchecker determines that all files are valid, it does not print any output by default. If rw-
packchecker does find an invalid file, it will print the name of the input file, the global number of suspect
records it found, and information for those tests where the counter exceeds the allowed count threshold.

As an example, if there are 10 tests and the count threshold for each is 10, it is possible for the global suspect
counter to be 90 and for rwpackchecker to consider the file valid.

To force rwpackchecker to print the results for all tests and for all input files, specify the --print-all
switch.

Some of the tests that run by default include checking the number of packets, the bytes per second ratio,
the bytes per packet ratio, and the bytes per packet ratio for a particular protocol (TCP, UDP, and ICMP).

The --value and --allowable-count switches modify the value threshold and allowed count threshold for
a test, respectively. The argument to the switch is the test name and the threshold, separated by a equals
sign (=). Repeat the switches to set multiple thresholds. For example, to change the value thresholds for the
max-bytes test to 20000 and for the max-packets test to 15000, specify the following:

rwpackchecker --value=max-bytes=20000 --value max-packets=15000 ...

704 SiLK-3.23.1

The SiLK Reference Guide rwpackchecker(8)

To get the most value from rwpackchecker, one should customize it for the particular site where it is being
used, since the default value for a threshold may or may not be unusual for a particular installation. For
example, a router that has Ethernet connections should have no more than 1500 bytes per packet, since that
is the Ethernet MTU; however, the default value for that ratio is 16384. In some cases the default value
is the largest value that a SiLK IPv4 hourly repository file can store, making it impossible for a record to
violate the threshold.

rwpackchecker supports additional tests which are not run by default. Representative tests include checking
whether an IP is (not) in an IPset or whether a port is (not) in an integer list. To run an additional test,
specify the name of the test using the --value switch and provide an argument for the test.

To see all of the tests that rwpackchecker supports as well as the value threshold and allowed count
threshold for each test, see the OPTIONS section below, or run rwpackchecker with the --help switch.

rwpackchecker reads SiLK Flow records from the files named on the command line or from the standard
input when no file names are specified and --xargs is not present. To read the standard input in addition
to the named files, use - or stdin as a file name. If an input file name ends in .gz, the file is uncompressed
as it is read. When the --xargs switch is provided, rwpackchecker reads the names of the files to process
from the named text file or from the standard input if no file name argument is provided to the switch. The
input to --xargs must contain one file name per line.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--value=TEST=VALUE

Set the value of TEST to the specified VALUE ; separate the test name from value by =. The available
TEST s are given below; the test name can be shortened to the shortest unique prefix. The form of
VALUE depends on the type of TEST :

• If TEST expects a minimum or maximum, VALUE should be a number.

• If TEST expects a list of IPs, VALUE should the name of a file containing an IPset (see rwset-
build(1)).

• If TEST expects a list of numbers (for example, ports or protocols), VALUE should contain a
comma separated list of integers and integer-ranges where a range is two integers separated by a
hyphen (-).

Repeat this switch for each value that you wish to set.

--allowable-count=TEST=ALLOWED

Allow the named TEST to be violated ALLOWED of times before treating it as unusual. ALLOWED
is an integer value. Separate the test name from the allowed count by =. Repeat this switch for each
allowable count you wish to set.

--print-all

Print the result of all tests for all input files. Normally only tests that are deemed unusual are printed.

--xargs

SiLK-3.23.1 705

rwpackchecker(8) The SiLK Reference Guide

--xargs=FILENAME

Read the names of the input files from FILENAME or from the standard input if FILENAME is not
provided. The input is expected to have one filename per line. rwpackchecker opens each named file
in turn and reads records from it as if the filenames had been listed on the command line.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

The following tests are always run:

min-bpp-ratio=NUMBER

Byte-per-packet ratio is less than NUMBER. Default value: 1. Allowed count: 0.

max-bpp-ratio=NUMBER

Byte-per-packet ratio is greater than NUMBER. Default value: 16384. Allowed count: 0.

min-bps-ratio=NUMBER

Byte-per-second ratio is less than NUMBER. Default value: 0. Allowed count: 0.

max-bps-ratio=NUMBER

Byte-per-second ratio is greater than NUMBER. Default value: 4294967295. Allowed count: 0.

min-packets=NUMBER

Packet count is less than NUMBER. Default value: 1. Allowed count: 0.

max-packets=NUMBER

Packet count is greater than NUMBER. Default value: 67108864. Allowed count: 0.

min-bytes=NUMBER

Byte count is less than NUMBER. Default value: 1. Allowed count: 0.

max-bytes=NUMBER

Byte count is greater than NUMBER. Default value: 4294967295. Allowed count: 0.

min-tcp-bpp-ratio=NUMBER

TCP byte-per-packet ratio is less than NUMBER. Default value: 1. Allowed count: 0.

max-tcp-bpp-ratio=NUMBER

TCP byte-per-packet ratio is greater than NUMBER. Default value: 16384. Allowed count: 0.

min-udp-bpp-ratio=NUMBER

UDP byte-per-packet ratio is less than NUMBER. Default value: 1. Allowed count: 0.

max-udp-bpp-ratio=NUMBER

UDP byte-per-packet ratio is greater than NUMBER. Default value: 16384. Allowed count: 0.

min-icmp-bpp-ratio=NUMBER

ICMP byte-per-packet ratio is less than NUMBER. Default value: 1. Allowed count: 0.

706 SiLK-3.23.1

The SiLK Reference Guide rwpackchecker(8)

max-icmp-bpp-ratio=NUMBER

ICMP byte-per-packet ratio is greater than NUMBER. Default value: 16384. Allowed count: 0.

The following tests are only run when the --value switch is used to specify a value for the test.

match-protocol=LIST

Protocol is present in LIST. No default. Allowed count: 0.

nomatch-protocol=LIST

Protocol is not present in LIST. No default. Allowed count: 0.

match-flags=LIST

TCP Flag Combination is present in LIST. No default. Allowed count: 0.

nomatch-flags=LIST

TCP Flag Combination is not present in LIST. No default. Allowed count: 0.

match-sip=IPSET FILE

Source IP is present in IPSET FILE. No default. Allowed count: 0.

nomatch-sip=IPSET FILE

Source IP is not present in IPSET FILE. No default. Allowed count: 0.

match-dip=IPSET FILE

Destination IP is present in IPSET FILE. No default. Allowed count: 0.

nomatch-dip=IPSET FILE

Destination IP is not present in IPSET FILE. No default. Allowed count: 0.

match-sport=LIST

Source Port is present in LIST. No default. Allowed count: 0.

nomatch-sport=LIST

Source Port is not present in LIST. No default. Allowed count: 0.

match-dport=LIST

Destination Port is present in LIST. No default. Allowed count: 0.

nomatch-dport=LIST

Destination Port is not present in LIST. No default. Allowed count: 0.

match-nhip=IPSET FILE

Next Hop IP is present in IPSET FILE. No default. Allowed count: 0.

nomatch-nhip=IPSET FILE

Next Hop IP is not present in IPSET FILE. No default. Allowed count: 0.

match-input=LIST

SNMP Input is present in LIST. No default. Allowed count: 0.

nomatch-input=LIST

SNMP Input is not present in LIST. No default. Allowed count: 0.

SiLK-3.23.1 707

rwpackchecker(8) The SiLK Reference Guide

match-output=LIST

SNMP Output is present in LIST. No default. Allowed count: 0.

nomatch-output=LIST

SNMP Output is not present in LIST. No default. Allowed count: 0.

EXAMPLES

In these examples, the dollar sign ($) represents the shell prompt and a backslash (\) is used to continue
a line for better readability. The examples do not use the optional = between the --value switch and the
switch’s argument for better readability.

Given the SiLK Flow file data.rw where the number of flows with various byte and packet counts are described
by this table:

Number of flows bytes <= 2000000 bytes > 2000000 TOTAL

packets <= 500 379303 308 379611

packets > 500 119586 2679 122265

TOTAL 498889 2987 501876

Running rwpackchecker:

$ rwpackchecker --value max-bytes=2000000 \

--value max-packets=500 data.rw

data.rw:

122573/501876 flows are bad or unusual

122265 flows where Packet Count > 500

2987 flows where Byte Count > 2000000

The counts for the individual tests are greater than the overall total since 2679 records fall into both
categories.

To see the effect of the --allowable-count switch:

$ rwpackchecker --value max-packets=500 \

--value max-bytes=2000000 --allowable max-bytes=3000 data.rw

data.rw:

122573/501876 flows are bad or unusual

122265 flows where Packet Count > 500

$ rwpackchecker --value max-bytes=2000000 \

--value max-packets=500 --allowable max-packets=150000 data.rw

data.rw:

122573/501876 flows are bad or unusual

2987 flows where Byte Count > 2000000

In each case the total number of unusual flows did not change; the violation of the other limit is still noted,
even when the test is not printed since the test’s allowed count threshold was not reached.

When the allowed count thresholds for none of the tests are reached, rwpackchecker produces no output
by default:

708 SiLK -3.23.1

The SiLK Reference Guide rwpackchecker(8)

$ rwpackchecker --value max-bytes=2000000 --allowable max-bytes=3000 \

--value max-packets=500 --allowable max-packets=150000 data.rw

$

Specify the --print-all switch to print the results:

$ rwpackchecker --value max-bytes=2000000 --allowable max-bytes=3000 \

--value max-packets=500 --allowable max-packets=15000 \

--print-all data.rw

data.rw:

122573/501876 flows are bad or unusual

0 flows where BPP Calculation is incorrect

0 flows where Elapsed Time > 4096

0 flows where Byte/Packet Ratio < 1

0 flows where Byte/Packet Ratio > 16384

0 flows where Byte/Second Ratio < 0

0 flows where Byte/Second Ratio > 4294967295

0 flows where Packet Count < 1

122265 flows where Packet Count > 500

0 flows where Byte Count < 1

2987 flows where Byte Count > 2000000

0 flows where TCP Byte/Packet Ratio < 1

0 flows where TCP Byte/Packet Ratio > 16384

0 flows where UDP Byte/Packet Ratio < 1

0 flows where UDP Byte/Packet Ratio > 16384

0 flows where ICMP Byte/Packet Ratio < 1

0 flows where ICMP Byte/Packet Ratio > 16384

SEE ALSO

rwflowpack(8), rwsetbuild(1), silk(7)

SiLK-3.23.1 709

rwpollexec(8) The SiLK Reference Guide

rwpollexec

Monitor a directory for files and execute a command on them

SYNOPSIS

rwpollexec --incoming-directory=DIR_PATH --command=COMMAND

--error-directory=DIR_PATH [--archive-directory=DIR_PATH]

[--flat-archive] [--simultaneous=NUM]

[--timeout=SIGNAL,SECS [--timeout=SIGNAL,SECS ...]]

[--polling-interval=NUM]

{ --log-destination=DESTINATION

| --log-pathname=FILE_PATH

| --log-directory=DIR_PATH [--log-basename=LOG_BASENAME]

[--log-post-rotate=COMMAND] }

[--log-level=LEVEL] [--log-sysfacility=NUMBER]

[--pidfile=FILE_PATH] [--no-chdir] [--no-daemon]

rwpollexec --help

rwpollexec --version

DESCRIPTION

rwpollexec is a daemon that monitors a directory for incoming files and executes a given command on each
file. If the command runs successfully on a file, the file is either moved to an archive directory or deleted. If
the command runs unsuccessfully or is terminated by a signal, the file is moved to an error directory.

rwpollexec executes a single command on each file. If you need to run multiple commands on a file, create
a script to run the commands and have rwpollexec execute the script.

The --simultaneous switch specifies the maximum number of invocations of COMMAND that rwpollexec
will run concurrently. The default is one, which causes rwpollexec to process the files one at a time.

If there is a possibility that the command will ”hang” and cause rwpollexec to stop processing files, you
may wish to specify that rwpollexec send a signal to the command after it has been running for some
number of seconds by using the --timeout switch. This switch may be repeated to send different signals
after various times.

When rwpollexec is signaled to exit, it waits for all running commands to terminate before exiting. If a
command has ”hung”, rwpollexec does not exit until that command is killed, or until rwpollexec itself is
sent a SIGKILL.

As rwpollexec scans the incoming file directory, it ignores a file if its size is 0 bytes or if its name begins
with a dot (.). On each scan, if rwpollexec detects a file name that was not present in the previous scan, it
records the name and size of the file. If the file has a different size on the next scan, the new size is recorded.
Once the file has the same size on two consecutive scans, rwpollexec executes the command on the file.

If the exit status of running the command of a file is zero, rwpollexec deletes the file unless the --archive-
directory switch is specified, in which case the file is moved to that directory or to a subdirectory of that
directory depending on whether the --flat-archive switch is specified.

If the exit status of the command is non-zero, the file is moved to the error directory. rwpollexec does not
provide a method to re-try a command that fails.

710 SiLK-3.23.1

The SiLK Reference Guide rwpollexec(8)

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

--incoming-directory=DIR PATH

Periodically scan the directory DIR PATH for files on which to run the command specified by the
--command switch. As rwpollexec scans DIR PATH, it ignores a file if its name begins with a dot
(.) or if its size is 0 bytes. When a file is first detected, its size is recorded, and the file must have the
same size for two consecutive scans before rwpollexec will execute the command on it. The interval
between scans is set by --polling-interval. DIR PATH must be a complete directory path. This
switch is required.

--command=COMMAND

Run COMMAND on each file noticed in the directory specified by --incoming-directory. Each
occurrence of the string %s in COMMAND is replaced with the full path to the file, and each occurrence
of %% is replaced with %. If any other character follows %, rwpollexec exits with an error. If the exit
status of COMMAND is zero, rwpollexec deletes the file unless the --archive-directory switch is
specified, in which case rwpollexec moves the file to that directory. If the command exits with a
non-zero status or is terminated by a signal, rwpollexec moves the file to the directory specified by
--error-directory. This switch is required.

COMMAND is interpreted by the shell used by rwpollexec. When the SILK RWPOLLEXEC SHELL

environment variable is set, its value is used as the shell. Otherwise, rwpollexec determines the shell
as described in the FILES section. Any output on stdout or stderr from COMMAND will appear in
the log when the log messages are being written to a local log file.

--error-directory=DIR PATH

Move to this directory files where COMMAND either runs unsuccessfully (i.e., has a non-zero exit
status) or terminates by a signal. DIR PATH must be a complete directory path. This switch is
required.

--archive-directory=DIR PATH

Move to this directory the files where COMMAND runs successfully (i.e., has an exit status of zero).
DIR PATH must be a complete directory path. If this switch is not supplied, rwpollexec will delete
these files instead. When the --flat-archive switch is also provided, incoming files are moved into
DIR PATH ; when --flat-archive is not given, each file is moved to a subdirectory of DIR PATH
based on the current local time: DIR PATH /YEAR/MONTH /DAY /HOUR/. Removing files from
the archive-directory is not the job of rwpollexec; the system administrator should implement a
separate process to clean this directory.

--flat-archive

When archiving input files via the --archive-directory switch, move the files into the top of the
archive-directory, not into subdirectories of the archive-directory. This switch has no effect if --archive-
directory is not also specified. This switch may be used to allow another process to watch for new
files appearing in the archive-directory.

--simultaneous=NUM

Allow a maximum of NUM commands to be executed simultaneously. The default is one, which allows
only one command to be run at a time. The maximum value allowed for this switch is 50.

SiLK-3.23.1 711

rwpollexec(8) The SiLK Reference Guide

--timeout=SIGNAL,SECS

Send SIGNAL to the running command if it has been executing for SECS seconds. SIGNAL may be a
signal name, with or without a SIG prefix, or a signal number. A list of signals can be determined by
running the command kill -l at a shell prompt (cf. kill(1)). This switch may be repeated to send
different signals after various amounts of time.

--polling-interval=NUM

Configure rwpollexec to check the incoming directory for new files every NUM seconds. The default
polling interval is 15 seconds.

One of the following logging switches is required:

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

none

Messages are not written anywhere.

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-directory=DIR PATH

Use DIR PATH as the directory where the log files are written. DIR PATH must be a complete
directory path. The log files have the form

DIR_PATH/LOG_BASENAME-YYYYMMDD.log

where YYYYMMDD is the current date and LOG BASENAME is the application name or the value
passed to the --log-basename switch when provided. The log files are rotated: At midnight local time,
a new log is opened, the previous file is closed, and the command specified by --log-post-rotate is
invoked on the previous day’s log file. (Old log files are not removed by rwpollexec; the administrator
should use another tool to remove them.) When this switch is provided, a process-ID file (PID) is also
written in this directory unless the --pidfile switch is provided.

--log-pathname=FILE PATH

Use FILE PATH as the complete path to the log file. The log file is not rotated.

The following set of switches is optional:

712 SiLK-3.23.1

The SiLK Reference Guide rwpollexec(8)

--log-level=LEVEL

Set the severity of messages that are logged. The levels from most severe to least are: emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where rwpollexec is running. This
switch produces an error unless --log-destination=syslog is specified.

--log-basename=LOG BASENAME

Use LOG BASENAME in place of the application name in the name of log files in the log directory. See
the description of the --log-directory switch. This switch does not affect the name of the process-ID
file.

--log-post-rotate=COMMAND

Run COMMAND on the previous day’s log file after log rotation. When this switch is not specified,
the previous day’s log file is compressed with gzip(1). When the switch is specified and COMMAND
is the empty string, no action is taken on the log file. Each occurrence of the string %s in COMMAND
is replaced with the full path to the log file, and each occurrence of %% is replaced with %. If any
other character follows %, rwpollexec exits with an error. Specifying this switch without also using
--log-directory is an error.

--pidfile=FILE PATH

Set the complete path to the file in which rwpollexec writes its process ID (PID) when it is running
as a daemon. No PID file is written when --no-daemon is given. When this switch is not present, no
PID file is written unless the --log-directory switch is specified, in which case the PID is written to
LOGPATH/rwpollexec.pid.

--no-chdir

Do not change directory to the root directory. When rwpollexec becomes a daemon process, it
changes its current directory to the root directory so as to avoid potentially running on a mounted file
system. Specifying --no-chdir prevents this behavior, which may be useful during debugging. The
application does not change its directory when --no-daemon is given.

--no-daemon

Force rwpollexec to run in the foreground---it does not become a daemon process. This may be useful
during debugging.

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

ENVIRONMENT

SILK RWPOLLEXEC SHELL

The shell to use for executing commands. If this variable is not set, rwpollexec tests the list of shells
specified in FILES to find a shell that uses a member of the execl(3) family of functions to run the
command. More details are available in the BUGS section.

SiLK-3.23.1 713

rwpollexec(8) The SiLK Reference Guide

FILES

${SILK RWPOLLEXEC SHELL}

/bin/sh

/bin/bash

/bin/ksh

/usr/bin/sh

/usr/bin/bash

/usr/bin/ksh

Shells that rwpollexec may use to invoke the command specified by --command. The shell specified
in SILK RWPOLLEXEC SHELL is always used when that variable is set. Otherwise, rwpollexec
checks the list of shells to find one that uses execl(3) to invoke the command. When a suitable shell
is not found, rwpollexec uses /bin/sh. See BUGS for additional information.

BUGS

rwpollexec uses a subshell to execute the command specified as the argument to --command. How the
subshell invokes the command is important when the --timeout switch is specified. Many shells use a
member of execl(3) family of functions to invoke the command, which causes the command’s process to
replace the shell process. For these shells, signals sent by rwpollexec are received by the command process
directly. However, some shells use a combination of fork(2) and wait(2) to invoke the command. In these
shells, the signal is received by the subshell instead of the command, and this can lead to undesirable or
unreliable behavior. When the SILK RWPOLLEXEC SHELL environment variable is set, rwpollexec uses
that shell regardless of how it invokes its command, though if the specified shell uses fork(2), rwpollexec
will emit a warning to the standard error and to the log. When SILK RWPOLLEXEC SHELL is not set,
rwpollexec attempts to find a shell that uses execl(3). If rwpollexec fails to find a suitable shell, it uses
/bin/sh and emits a warning message to standard error and to the log. The list of shells rwpollexec checks
are specified in the FILES section.

rwpollexec is unable to tell the difference between a command returning a non-zero exit status and a
command that fails because the command does not exist or is malformed. Both appear as a failed command
with a non-zero exit status. The shell may emit messages that explain why a command has failed. In these
instances, these messages will appear in the log.

rwpollexec only attempts to run the command one time. There is no way to tell rwpollexec to attempt
the command multiple times.

SEE ALSO

silk(7), kill(1), gzip(1), syslog(3), fork(2), wait(2), execl(3)

714 SiLK-3.23.1

The SiLK Reference Guide rwreceiver(8)

rwreceiver

Accepts files transferred from rwsender(s)

SYNOPSIS

To listen for incoming connections:

rwreceiver --mode=server --server-port=[HOST:]PORT

--client-ident=IDENT [--client-ident=IDENT ...]

...

To make outgoing connections:

rwreceiver --mode=client --server-address=IDENT:HOST:PORT

[--server-address=IDENT:HOST:PORT ...]

...

rwreceiver SERVER_MODE_OR_CLIENT_MODE_SWITCHES

--identifier=IDENT --destination-directory=DIR_PATH

[--tls-ca=TRUST_FILE

{ { --tls-cert=CERTIFICATE_FILE --tls-key=KEY_FILE }

| --tls-pkcs12=PKCS12_FILE }

[--tls-priority=TLS_PRIORITY] [--tls-security=TLS_SECURITY]

[--tls-crl=CRL_FILE] [--tls-debug-level=DB_LEVEL]]

[--post-command=COMMAND]

[--duplicate-destination=DIR_PATH

[--duplicate-destination=DIR_PATH...]]

[--unique-duplicates]

[--freespace-minimum=SIZE] [--space-maximum-percent=NUM]

{ --log-destination=DESTINATION

| --log-pathname=FILE_PATH

| --log-directory=DIR_PATH [--log-basename=LOG_BASENAME]

[--log-post-rotate=COMMAND] }

[--log-level=LEVEL] [--log-sysfacility=NUMBER]

[--pidfile=FILE_PATH] [--no-chdir] [--no-daemon]

rwreceiver --help

rwreceiver --version

DESCRIPTION

rwreceiver is a daemon which accepts files transferred from one or more rwsender(8) processes. The
received files are stored in a destination directory.

rwreceiver creates multiple copies of the files it receives when one or more --duplicate-destination
switches are specified. If possible, the duplicate file is created as a reference (a hard link) to the original file.
The --unique-duplicates switch tells rwreceiver not to use hard links and forces rwreceiver to create

SiLK-3.23.1 715

rwreceiver(8) The SiLK Reference Guide

an individual copy of the file in each duplicate destination directory. Failure to create a file in any of the
duplicate destination directories is noted in rwreceiver’s log but it is not treated as a failure to transfer the
file. Only when a file cannot be created in the destination-directory does rwreceiver consider the transfer
as failed.

The --post-command switch tells rwreceiver to execute a command on each file that it successfully
receives after the file has been written to the destination directory and copied to each duplicate destination
directory. The command may include a placeholder which rwreceiver fills with the path to the file in the
destination directory. The exit status of the command is ignored by rwreceiver. Any output on stdout or
stderr from COMMAND normally appears in the log when the log messages are being written to a local
log file. See also the rwpollexec(8) daemon.

Interaction with rwsender

Either rwsender or rwreceiver may act as the server with the other acting as the client. That is, an
rwsender server may listen for connections from rwreceiver clients, or an rwsender client may attempt
to connect to one or more rwreceiver servers.

In addition, each rwsender and rwreceiver is configured with an identifier of its own and the identifier(s)
of the rwreceiver(s) or rwsender(s) that may connect to it. The connection is closed if the identifier
provided by other process is not recognized.

Every rwsender that communicates with the same rwreceiver must have a unique identifier; likewise,
every rwreceiver that communicates with the same rwsender must have a unique identifier. Ideally, the
identifier should provide some information about where the rwsender or rwreceiver program is running
and what sort of data it is transferring.

Disk Usage

By default, if the disk that rwreceiver writes to becomes full, rwreceiver prints a message to the log file
and exits.

To prevent this, specify the --freespace-minimum and/or --space-maximum-percent switches, which
cause rwreceiver to monitor its disk usage. These switches were added in SiLK 3.6.

If receiving a file from an rwsender process would violate the limits specified in those switches, rwreceiver
closes the connection to that rwsender. This causes the connection to be reestablished, and rwsender
tries to transfer the file again. If the filesystem is still full, rwreceiver closes the connection again. After
a delay, the connection is reestablished. This loop is repeated until the file is successfully transferred. The
delay between each retry starts at five seconds and grows in five second increments to a maximum of one
minute.

When monitoring its disk usage, rwreceiver accounts for one copy of the number of bytes in the file.
rwreceiver does not account for the filesystem overhead associated with creating a file, and it does not
consider the space required to create multiple copies of the file (cf., --duplicate-destination).

File Creation

The following describes the process rwreceiver uses when creating a file it receives from rwsender. Ad-
ministrators may find this information useful when configuring other software to work with rwreceiver.

1. rwsender sends the name of the file, the size of the file, and the file’s permission bits to rwreceiver.

716 SiLK-3.23.1

The SiLK Reference Guide rwreceiver(8)

2. If a file with that name already exists in rwreceiver’s destination directory, rwreceiver checks the
file’s on-disk size. If the size is 0 and no other rwreceiver thread is currently handling that file,
rwreceiver assumes it is an aborted attempt to send the file, and rwreceiver removes the existing
file. Otherwise, rwreceiver tells rwsender that the name represents a duplicate file, at which point
rwsender moves the file to its error directory.

3. When neither --freespace-minimum nor --space-maximum-percent is specified, processing moves
to the next step. Otherwise, rwreceiver verifies that there is space on the filesystem to hold one copy
of the file. As described in the Disk Usage section above, rwreceiver delays processing the file until
space is available.

4. rwreceiver creates a 0-length placeholder file having the name of the file being transferred, and
rwreceiver closes this file. The permission bits on this file are all 0.

5. The rwreceiver process creates a second file whose name consists of a dot (.) followed by the name
of the file being transferred. The permission bits on this file are those sent by rwsender.

6. rwreceiver writes the data it receives from rwsender into the dot file.

7. Once the transfer is complete, rwreceiver closes the dot file.

8. If any duplicate destination directories have been specified, rwreceiver copies the dot file to each of
those directories (using a hard link if possible). A failure to copy the file into a duplicate destination
is noted in the log file, but otherwise the error is ignored.

9. rwreceiver renames the dot file to replace the placeholder file.

10. The rwreceiver process tells the rwsender process that the transfer was successfully completed.

11. rwreceiver prepares the command specified by the --post-command switch, perhaps filling in the
complete path to the file in the destination directory, and executes the command.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Application-specific switches

The following set of switches are required:

--identifier=IDENT

Use the name IDENT when establishing a connection with an rwsender process. The identifier should
contain only printable, non-whitespace characters; the following characters are illegal: colon (:), slash
(/ and \), period (.), and comma (,).

--mode=MODE

Specify how the connection between rwsender and rwreceiver(s) should be established. When
MODE is server, rwreceiver listens for connections from rwsender clients; when MODE is client,
rwreceiver attempts to connect to rwsender servers.

--destination-directory=DIR PATH

Place the transferred files into DIR PATH. Note that rwreceiver uses this as its processing directory;
see the File Creation section above for details.

SiLK-3.23.1 717

rwreceiver(8) The SiLK Reference Guide

Server-mode switches

When running in server mode, the following switches are required:

--server-port=[HOST :]PORT

Listen for incoming rwsender client connections on PORT as HOST. If HOST is omitted, rwreceiver
listens on any address. HOST may be a name or an IP address; when HOST is an IPv6 address, it
must be enclosed in square brackets.

--client-ident=IDENT

Allow connections from an rwsender client whose identifier is IDENT. This switch may be repeated to
allow multiple rwsender clients to connect. rwreceiver closes the connection if an rwsender client
connects and does not provide a valid identifier.

Client-mode switch

When running in client mode, the following switch is required:

--server-address=IDENT :HOST :PORT

Attempt to connect to the rwsender server listening to port number PORT on the machine HOST.
rwreceiver closes the connection unless the rwsender identifies itself as IDENT. This switch may
be repeated to connect to multiple rwsender servers. HOST may be a name or an IP address; when
HOST is an IPv6 address, it must be enclosed in square brackets.

Transport Layer Security switches

It is possible to build SiLK with support for the GnuTLS Transport Layer Security library (https://www.
gnutls.org/) which allows rwsender and rwreceiver to use an encrypted/authenticated channel for their
communication. When SiLK includes GnuTLS support, the following switches are available. To enable
use of GnuTLS, specify the --tls-ca switch and either the --tls-pkcs12 switch or both the --tls-cert and
--tls-key switches.

--tls-ca=TRUST FILE

Set the trusted certificate authorities to those in TRUST FILE, where TRUST FILE is the complete
path to a file containing a PEM-encoded list of certificates. This list of authorities is used to verify
the certificate sent by rwsender. (Store intermediate certificates in either CERTIFICATE FILE or
PKCS12 FILE.) This switch must be used in conjunction with either the --tls-pkcs12 switch or both
the --tls-cert and the --tls-key switches.

--tls-cert=CERTIFICATE FILE

Set the certificate chain (path) for rwreceiver’s private key to the list of certificates in CERTIFI-
CATE FILE, where CERTIFICATE FILE is the complete path to a file containing the PEM-encoded
certificates. The certificate corresponding to KEY FILE must be listed first; each subsequent inter-
mediate certificate certifies the one before it. This switch may only be used in conjunction with the
--tls-ca and --tls-key switches.

--tls-key=KEY FILE

Read rwreceiver’s private encryption key for TLS from KEY FILE, where KEY FILE is the complete
path to a PEM-encoded file. The key must not be password protected as there is no support in

718 SiLK-3.23.1

https://www.gnutls.org/
https://www.gnutls.org/

The SiLK Reference Guide rwreceiver(8)

rwreceiver for obtaining the password, but note that --tls-pkcs12 allows a password. This switch
may only be used in conjunction with the --tls-ca and --tls-cert switches.

--tls-pkcs12=PKCS12 FILE

Set rwreceiver’s encryption certificate and private key for TLS to the contents of PKCS12 FILE,
where PKCS12 FILE is the complete path to a file containing the PKCS#12 contents in DER-
format. If intermediate certificates are needed, they should be included in the file. This switch
may only be used in conjunction with the --tls-ca switch. rwreceiver uses the value in the RWRE-
CEIVER TLS PASSWORD environment variable to decrypt the PKCS#12 file. If this variable is not
set, rwreceiver assumes the password is the empty string.

--tls-priority=TLS PRIORITY

Set the preference order (priority) for ciphers, key exchange methods, message authentication codes,
and compression methods to those in TLS PRIORITY. This switch is optional; the default value is
NORMAL. The argument is parsed by the GnuTLS library, and the available arguments depend on the
version of GnuTLS linked with SiLK. Detailed information on the format of the argument is available
in the GnuTLS documentation under Priority Strings (e.g., https://gnutls.org/manual/html node/
Priority-Strings.html) provides the set for the most recent version of GnuTLS; the values used at your
site may be different). See also the output of running gnutls-cli(1) with the --priority-list switch.
Since SiLK 3.18.0.

--tls-security=TLS SECURITY

Set the security level to use when generating Diffie-Hellman parameters to TLS SECURITY, where
TLS SECURITY is one of low, medium, high, or ultra. This switch is optional, and when not
specified a value of medium is used. For the meaning of these values see Selecting cryptographic
key sizes in the GnuTLS documentation at your site (e.g., https://gnutls.org/manual/html node/
Selecting-cryptographic-key-sizes.html). Since SiLK 3.18.0.

--tls-crl=CRL FILE

Update the list of trusted certificates with the certificate revocation lists contained in CRL FILE,
where CRL FILE is the complete path to a file containing PEM-encoded list of CRLs. This switch is
optional. Since SiLK 3.18.0.

--tls-debug-level=DB LEVEL

Set the debugging level used internally by the GnuTLS library to DB LEVEL, an integer between 0
and 99 inclusive. The messages are written to the log destation at the info level. The default value
of 0 disables debugging. Larger values may reveal sensitive information and should be used carefully.
A value above 10 enables all debugging options. Since SiLK 3.18.0.

Required logging switches

One of the following logging switches is required:

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

none

Messages are not written anywhere.

SiLK-3.23.1 719

https://gnutls.org/manual/html_node/Priority-Strings.html
https://gnutls.org/manual/html_node/Priority-Strings.html
https://gnutls.org/manual/html_node/Selecting-cryptographic-key-sizes.html
https://gnutls.org/manual/html_node/Selecting-cryptographic-key-sizes.html

rwreceiver(8) The SiLK Reference Guide

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-directory=DIR PATH

Use DIR PATH as the directory where the log files are written. DIR PATH must be a complete
directory path. The log files have the form

DIR_PATH/LOG_BASENAME-YYYYMMDD.log

where YYYYMMDD is the current date and LOG BASENAME is the application name or the value
passed to the --log-basename switch when provided. The log files are rotated: At midnight local time,
a new log is opened, the previous file is closed, and the command specified by --log-post-rotate is
invoked on the previous day’s log file. (Old log files are not removed by rwreceiver; the administrator
should use another tool to remove them.) When this switch is provided, a process-ID file (PID) is also
written in this directory unless the --pidfile switch is provided.

--log-pathname=FILE PATH

Use FILE PATH as the complete path to the log file. The log file is not rotated.

Optional application-specific switches

The following switches are optional:

--post-command=COMMAND

Run COMMAND on a file once it has been successfully received. The following %-conversions are
supported in COMMAND : %s is replaced with the full path of the transferred file in the destination
directory, %I is replaced with the identifier of the rwsender that sent the file, and %% is replaced
with %. If any other character follows %, rwreceiver exits with an error. Note that COMMAND
is only invoked on files in the destination directory; however, at the time COMMAND is invoked,
rwreceiver has already copied the file into each of the duplicate destination directories, if any. See
also the rwpollexec(8) daemon.

--duplicate-destination=DIR PATH

Create a duplicate of each transferred file in the directory DIR PATH. This option may be specified
multiple times to create multiple duplicates. This duplicate is made by a hard link to the file in the
destination-directory if possible, otherwise a complete copy is made (see also --unique-duplicates).
If there are errors copying the file to this directory, the error is logged but the process continues as if
the transfer was successful. (rwreceiver considers a transfer as failed only when the file cannot be
created in the destination-directory.)

720 SiLK-3.23.1

The SiLK Reference Guide rwreceiver(8)

--unique-duplicates

Force the duplicate file created in each duplicate-destination directory to be a complete copy of the
file in the destination-directory instead of a hard link to the file. Using hard links saves disk space and
is faster than making a complete copy; however, any modification-in-place to one file affects all files.
This switch is ignored when the --duplicate-destination switch is not provided.

--freespace-minimum=SIZE

Set the minimum amount free space (in bytes) to maintain on the file system where the --destination-
directory is located. rwreceiver delays processing of any file that would cause it to violate this limit
(see Disk Usage above). The default value of this switch is 0, which tells rwreceiver not to monitor
its disk usage. See also --space-maximum-percent.

SIZE may be given as an ordinary integer, or as a real number followed by a suffix K, M, G, or T, which
represents the numerical value multiplied by 1,024 (kilo), 1,048,576 (mega), 1,073,741,824 (giga), and
1,099,511,627,776 (tera), respectively. For example, 1.5K represents 1,536 bytes, or one and one-half
kilobytes.

--space-maximum-percent=NUM

Use no more than this percentage of the file system containing the --destination-directory. The
default is to use all of the file system (100%). rwreceiver delays processing of files that would cause
it to violate this limit. The NUM parameter does not need to be an integer. See also --freespace-
minimum and Disk Usage.

Optional logging and daemon switches

The following are optional switches related to logging and running as a daemon:

--log-level=LEVEL

Set the severity of messages that are logged. The levels from most severe to least are: emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where rwreceiver is running. This
switch produces an error unless --log-destination=syslog is specified.

--log-basename=LOG BASENAME

Use LOG BASENAME in place of the application name in the name of log files in the log directory. See
the description of the --log-directory switch. This switch does not affect the name of the process-ID
file.

--log-post-rotate=COMMAND

Run COMMAND on the previous day’s log file after log rotation. When this switch is not specified,
the previous day’s log file is compressed with gzip(1). When the switch is specified and COMMAND
is the empty string, no action is taken on the log file. Each occurrence of the string %s in COMMAND
is replaced with the full path to the log file, and each occurrence of %% is replaced with %. If any
other character follows %, rwreceiver exits with an error. Specifying this switch without also using
--log-directory is an error.

--pidfile=FILE PATH

Set the complete path to the file in which rwreceiver writes its process ID (PID) when it is running
as a daemon. No PID file is written when --no-daemon is given. When this switch is not present, no

SiLK-3.23.1 721

rwreceiver(8) The SiLK Reference Guide

PID file is written unless the --log-directory switch is specified, in which case the PID is written to
LOGPATH/rwreceiver.pid.

--no-chdir

Do not change directory to the root directory. When rwreceiver becomes a daemon process, it changes
its current directory to the root directory so as to avoid potentially running on a mounted file system.
Specifying --no-chdir prevents this behavior, which may be useful during debugging. The application
does not change its directory when --no-daemon is given.

--no-daemon

Force rwreceiver to run in the foreground---it does not become a daemon process. This may be useful
during debugging.

Help switches

The following switches provide help:

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

ENVIRONMENT

RWRECEIVER TLS PASSWORD

Specifies the password to use to decrypt the PKCS#12 file specified in the --tls-pkcs12 switch. When
this is not provided, a NULL password is used. Set this environment variable to the empty string for
an empty password.

SEE ALSO

rwsender(8), rwpollexec(8), silk(7), gnutls-cli(1), certtool(1), syslog(3), gzip(1), SiLK Installation
Handbook

722 SiLK-3.23.1

The SiLK Reference Guide rwsender(8)

rwsender

Watch directory for files and transfer them to rwreceiver(s)

SYNOPSIS

To listen for incoming connections:

rwsender --mode=server --server-port=[HOST:]PORT

--client-ident=IDENT [--client-ident=IDENT ...]

...

To make outgoing connections:

rwsender --mode=client --server-address=IDENT:HOST:PORT

[--server-address=IDENT:HOST:PORT ...]

...

rwsender SERVER_MODE_OR_CLIENT_MODE_SWITCHES

--identifier=IDENT --incoming-directory=DIR_PATH

--processing-directory=DIR_PATH --error-directory=DIR_PATH

[--tls-ca=TRUST_FILE

{ { --tls-cert=CERTIFICATE_FILE --tls-key=KEY_FILE }

| --tls-pkcs12=PKCS12_FILE }

[--tls-priority=TLS_PRIORITY] [--tls-security=TLS_SECURITY]

[--tls-crl=CRL_FILE] [--tls-debug-level=DB_LEVEL]]

[--local-directory=[[IDENT]:]DIR_PATH

[--local-directory=[[IDENT]:]DIR_PATH ...]]

[--unique-local-copies]

[--filter=IDENT:REGEXP] [--priority=NUM:REGEXP]

[--polling-interval=NUM]

[--send-attempts=NUM] [--block-size=NUM]

{ --log-destination=DESTINATION

| --log-pathname=FILE_PATH

| --log-directory=DIR_PATH [--log-basename=LOG_BASENAME]

[--log-post-rotate=COMMAND] }

[--log-level=LEVEL] [--log-sysfacility=NUMBER]

[--pidfile=FILE_PATH] [--no-chdir] [--no-daemon]

rwsender --help

rwsender --version

DESCRIPTION

rwsender is a daemon which watches an incoming directory for files. As files are added to the incoming
directory, they are moved into a processing directory and then transferred over the network to one or more
rwreceiver(8) processes. Files in the incoming directory may also be ”transferred” to one or more local
directories.

SiLK-3.23.1 723

rwsender(8) The SiLK Reference Guide

As rwsender scans the incoming directory, it ignores a file if its size is 0 bytes or if its name begins with a
dot (.). On each scan, if rwsender detects a file name that was not present in the previous scan, it records
the name and size of the file. If the file has a different size on the next scan, the new size is recorded. Once
the file has the same size on two consecutive scans, rwsender moves the file to the processing directory and
queues it for transfer.

Interaction with rwreceiver

Either rwsender or rwreceiver may act as the server with the other acting as the client. That is, an
rwsender server may listen for connections from rwreceiver clients, or an rwsender client may attempt
to connect to one or more rwreceiver servers.

In addition, each rwsender and rwreceiver is configured with an identifier of its own and the identifier(s)
of the rwreceiver(s) or rwsender(s) that may connect to it. The connection is closed if the identifier
provided by other process is not recognized.

Every rwsender that communicates with the same rwreceiver must have a unique identifier; likewise,
every rwreceiver that communicates with the same rwsender must have a unique identifier. Ideally, the
identifier should provide some information about where the rwsender or rwreceiver program is running
and what sort of data it is transferring.

OPTIONS

Option names may be abbreviated if the abbreviation is unique or is an exact match for an option. A
parameter to an option may be specified as --arg=param or --arg param, though the first form is required
for options that take optional parameters.

Application-specific switches

The following set of switches are required:

--identifier=IDENT

Use the name IDENT when establishing a connection with an rwreceiver process. The identifier
should contain only printable, non-whitespace characters; the following characters are illegal: colon
(:), slash (/ and \), period (.), and comma (,).

--mode=MODE

Specify how the connection between rwsender and rwreceiver(s) should be established. When
MODE is server, rwsender listens for connections from rwreceiver clients; when MODE is client,
rwsender attempts to connect to rwreceiver servers.

--incoming-directory=DIR PATH

Periodically scan the directory DIR PATH for files to transfer. As rwsender scans DIR PATH, it
ignores a file if its name begins with a dot (.) or if its size is 0 bytes. When a file is first detected, its
size is recorded, and the file must have the same size for two consecutive scans before rwsender will
add it to sending queue. The interval between scans is set by --polling-interval. DIR PATH must
be a complete directory path.

--processing-directory=DIR PATH

724 SiLK-3.23.1

The SiLK Reference Guide rwsender(8)

Use DIR PATH as a location to cache files until they are successfully transferred. For each rwreceiver
IDENT specified on the command line, a subdirectory is created under DIR PATH to hold a copy of
each file that is to be sent to that rwreceiver. (rwsender uses a reference (a hard link) to the file
instead of a copy of the file when possible.) DIR PATH must be a complete directory path.

--error-directory=DIR PATH

Move a file that is rejected by an rwreceiver (for example, because it has a duplicate filename) to the
subdirectory IDENT of DIR PATH, where IDENT is the identifier of the rwreceiver that rejected
the file. DIR PATH must be a complete directory path.

Server-mode switches

When running in server mode, the following switches are required:

--server-port=[HOST :]PORT

Listen for incoming rwreceiver client connections on PORT as HOST. If HOST is omitted, rwsender
listens on any address. HOST may be a name or an IP address; when HOST is an IPv6 address, it
must be enclosed in square brackets.

--client-ident=IDENT

Allow connections from an rwreceiver client whose identifier is IDENT. This switch may be repeated
to allow multiple rwreceiver clients to connect. rwsender closes the connection if an rwreceiver
client connects and does not provide a valid identifier.

Client-mode switch

When running in client mode, the following switch is required:

--server-address=IDENT :HOST :PORT

Attempt to connect to the rwreceiver server listening to port number PORT on the machine HOST.
rwsender closes the connection unless the rwreceiver identifies itself as IDENT. This switch may be
repeated to connect to multiple rwreceiver servers. HOST may be a name or an IP address; when
HOST is an IPv6 address, it must be enclosed in square brackets.

Transport Layer Security switches

It is possible to build SiLK with support for the GnuTLS Transport Layer Security library (https://www.
gnutls.org/) which allows rwsender and rwreceiver to use an encrypted/authenticated channel for their
communication. When SiLK includes GnuTLS support, the following switches are available. To enable
use of GnuTLS, specify the --tls-ca switch and either the --tls-pkcs12 switch or both the --tls-cert and
--tls-key switches.

--tls-ca=TRUST FILE

Set the trusted certificate authorities to those in TRUST FILE, where TRUST FILE is the complete
path to a file containing a PEM-encoded list of certificates. This list of authorities is used to verify
the certificate sent by rwreceiver. (Store intermediate certificates in either CERTIFICATE FILE or
PKCS12 FILE.) This switch must be used in conjunction with either the --tls-pkcs12 switch or both
the --tls-cert and the --tls-key switches.

SiLK-3.23.1 725

https://www.gnutls.org/
https://www.gnutls.org/

rwsender(8) The SiLK Reference Guide

--tls-cert=CERTIFICATE FILE

Set the certificate chain (path) for rwsender’s private key to the list of certificates in CERTIFI-
CATE FILE, where CERTIFICATE FILE is the complete path to a file containing the PEM-encoded
certificates. The certificate corresponding to KEY FILE must be listed first; each subsequent inter-
mediate certificate certifies the one before it. This switch may only be used in conjunction with the
--tls-ca and --tls-key switches.

--tls-key=KEY FILE

Read rwsender’s private encryption key for TLS from KEY FILE, where KEY FILE is the complete
path to a PEM-encoded file. The key must not be password protected as there is no support in
rwsender for obtaining the password, but note that --tls-pkcs12 allows a password. This switch may
only be used in conjunction with the --tls-ca and --tls-cert switches.

--tls-pkcs12=PKCS12 FILE

Set rwsender’s encryption certificate and private key for TLS to the contents of PKCS12 FILE, where
PKCS12 FILE is the complete path to a file containing the PKCS#12 contents in DER-format. If
intermediate certificates are needed, they should be included in the file. This switch may only be used in
conjunction with the --tls-ca switch. rwsender uses the value in the RWSENDER TLS PASSWORD
environment variable to decrypt the PKCS#12 file. If this variable is not set, rwsender assumes the
password is the empty string.

--tls-priority=TLS PRIORITY

Set the preference order (priority) for ciphers, key exchange methods, message authentication codes,
and compression methods to those in TLS PRIORITY. This switch is optional; the default value is
NORMAL. The argument is parsed by the GnuTLS library, and the available arguments depend on the
version of GnuTLS linked with SiLK. Detailed information on the format of the argument is available
in the GnuTLS documentation under Priority Strings (e.g., https://gnutls.org/manual/html node/
Priority-Strings.html) provides the set for the most recent version of GnuTLS; the values used at your
site may be different). See also the output of running gnutls-cli(1) with the --priority-list switch.
Since SiLK 3.18.0.

--tls-security=TLS SECURITY

Set the security level to use when generating Diffie-Hellman parameters to TLS SECURITY, where
TLS SECURITY is one of low, medium, high, or ultra. This switch is optional, and when not
specified a value of medium is used. For the meaning of these values see Selecting cryptographic
key sizes in the GnuTLS documentation at your site (e.g., https://gnutls.org/manual/html node/
Selecting-cryptographic-key-sizes.html). Since SiLK 3.18.0.

--tls-crl=CRL FILE

Update the list of trusted certificates with the certificate revocation lists contained in CRL FILE,
where CRL FILE is the complete path to a file containing PEM-encoded list of CRLs. This switch is
optional. Since SiLK 3.18.0.

--tls-debug-level=DB LEVEL

Set the debugging level used internally by the GnuTLS library to DB LEVEL, an integer between 0
and 99 inclusive. The messages are written to the log destation at the info level. The default value
of 0 disables debugging. Larger values may reveal sensitive information and should be used carefully.
A value above 10 enables all debugging options. Since SiLK 3.18.0.

726 SiLK-3.23.1

https://gnutls.org/manual/html_node/Priority-Strings.html
https://gnutls.org/manual/html_node/Priority-Strings.html
https://gnutls.org/manual/html_node/Selecting-cryptographic-key-sizes.html
https://gnutls.org/manual/html_node/Selecting-cryptographic-key-sizes.html

The SiLK Reference Guide rwsender(8)

Required logging switches

One of the following logging switches is required:

--log-destination=DESTINATION

Specify the destination where logging messages are written. When DESTINATION begins with a
slash /, it is treated as a file system path and all log messages are written to that file; there is no log
rotation. When DESTINATION does not begin with /, it must be one of the following strings:

none

Messages are not written anywhere.

stdout

Messages are written to the standard output.

stderr

Messages are written to the standard error.

syslog

Messages are written using the syslog(3) facility.

both

Messages are written to the syslog facility and to the standard error (this option is not available
on all platforms).

--log-directory=DIR PATH

Use DIR PATH as the directory where the log files are written. DIR PATH must be a complete
directory path. The log files have the form

DIR_PATH/LOG_BASENAME-YYYYMMDD.log

where YYYYMMDD is the current date and LOG BASENAME is the application name or the value
passed to the --log-basename switch when provided. The log files are rotated: At midnight local
time, a new log is opened, the previous file is closed, and the command specified by --log-post-rotate
is invoked on the previous day’s log file. (Old log files are not removed by rwsender; the administrator
should use another tool to remove them.) When this switch is provided, a process-ID file (PID) is also
written in this directory unless the --pidfile switch is provided.

--log-pathname=FILE PATH

Use FILE PATH as the complete path to the log file. The log file is not rotated.

Optional application-specific switches

These are application-specific switches that are not required:

--local-directory=[[IDENT]:]DIR PATH

Create a duplicate of each incoming file in the directory DIR PATH. This switch may be specified
multiple times to create multiple duplicates. The duplicate is made by a reference (a hard link) to
the file in the processing-directory if possible, otherwise a complete copy is made. (Note that any
modification-in-place to a file reference affects all references to that file; use --unique-local-copies to
avoid this). If IDENT is specified, filters may be used to determine which files get copied to DIR PATH.
See --filter=IDENT :REGEXP”> for filter details. When DIR PATH contains the colon character and
no IDENT is wanted, a single colon may precede DIR PATH to designate an empty IDENT.

SiLK-3.23.1 727

rwsender(8) The SiLK Reference Guide

--unique-local-copies

Force the duplicate file created in each local-directory to be a complete copy of the file in the processing-
directory instead of a reference (a hard link) to the file. Using references saves disk space and is faster
than making a complete copy; however, any modification-in-place to one file affects all files. rwsender
always makes a complete copy when it is unable to make a reference. This switch is ignored when the
--local-directory switch is not provided.

--filter=IDENT :REGEXP

Configure rwsender to transfer files matching the regular expression REGEXP to the rwreceiver
whose identifier is IDENT, or to copy files to the local directory labeled as IDENT. This switch may be
repeated. When this switch is not provided, all rwreceivers and local directories get all files. When
this switch is provided, any files not matching a REGEXP are left in the incoming directory and are
not transferred.

The regular expression must be a POSIX 1003.2 modern or extended regular expressions, roughly akin
to those used by egrep(1). Documentation might be found in the regex(7) or re format(7) manual
pages on your system.

The filter is only applied to files in the incoming-directory. Once a file has been moved into an
rwreceiver-specific subdirectory of the processing-directory, restarting rwsender with a different set
of --filter switches does not affect the files previously queued for each rwreceiver. To apply the
filters to unsent files, you must stop the rwsender process, move all files from the subdirectories of
the processing-directory to the incoming-directory, and restart the rwsender process.

--priority=NUM :REGEXP

Set the priority of files that match REGEXP to NUM. NUM must be an integer between 0 and 100
inclusive. In the current version of rwsender, priorities 0 through 50 get grouped into a single low
priority bin, and priorities 51 through 100 get grouped into a single high priority bin. Files in the high
priority bin are generally be sent before files in the low priority bin. The default priority of a file is 50.
This switch may be repeated for multiple priorities.

--polling-interval=NUM

Configure rwsender to check the incoming directory for new files every NUM seconds. The default
polling interval is 15 seconds.

--send-attempts=NUM

For each file going to an rwreceiver, make NUM attempts to open the file, map its contents, and send
the contents to that rwreceiver. After NUM attempts, the file is ignored by rwsender but the file
remains in the rwreceiver-specific subdirectory of the processing directory. Unless the file is manually
removed from the processing directory, rwsender again attempts to send the file when rwsender is
restarted. The limit may be set to a value from 1 to 65535. When NUM is 0, there is no limit. The
default number of attempts is 5.

--block-size=NUM

Specify the chunk size in bytes that rwsender uses when sending files to rwreceivers. The default
number of bytes is 8192; the valid range is 256 to 65535.

Optional logging and daemon switches

The following are optional switches related to logging and running as a daemon:

728 SiLK-3.23.1

The SiLK Reference Guide rwsender(8)

--log-level=LEVEL

Set the severity of messages that are logged. The levels from most severe to least are: emerg, alert,
crit, err, warning, notice, info, debug. The default is info.

--log-sysfacility=NUMBER

Set the facility that syslog(3) uses for logging messages. This switch takes a number as an argument.
The default is a value that corresponds to LOG USER on the system where rwsender is running. This
switch produces an error unless --log-destination=syslog is specified.

--log-basename=LOG BASENAME

Use LOG BASENAME in place of the application name in the name of log files in the log directory. See
the description of the --log-directory switch. This switch does not affect the name of the process-ID
file.

--log-post-rotate=COMMAND

Run COMMAND on the previous day’s log file after log rotation. When this switch is not specified,
the previous day’s log file is compressed with gzip(1). When the switch is specified and COMMAND
is the empty string, no action is taken on the log file. Each occurrence of the string %s in COMMAND
is replaced with the full path to the log file, and each occurrence of %% is replaced with %. If any
other character follows %, rwsender exits with an error. Specifying this switch without also using
--log-directory is an error.

--pidfile=FILE PATH

Set the complete path to the file in which rwsender writes its process ID (PID) when it is running
as a daemon. No PID file is written when --no-daemon is given. When this switch is not present, no
PID file is written unless the --log-directory switch is specified, in which case the PID is written to
LOGPATH/rwsender.pid.

--no-chdir

Do not change directory to the root directory. When rwsender becomes a daemon process, it changes
its current directory to the root directory so as to avoid potentially running on a mounted file system.
Specifying --no-chdir prevents this behavior, which may be useful during debugging. The application
does not change its directory when --no-daemon is given.

--no-daemon

Force rwsender to run in the foreground---it does not become a daemon process. This may be useful
during debugging.

Help switches

The following switches provide help:

--help

Print the available options and exit.

--version

Print the version number and information about how SiLK was configured, then exit the application.

SiLK-3.23.1 729

rwsender(8) The SiLK Reference Guide

ENVIRONMENT

RWSENDER TLS PASSWORD

Specifies the password to use to decrypt the PKCS#12 file specified in the --tls-pkcs12 switch. When
this is not provided, a NULL password is used. Set this environment variable to the empty string for
an empty password.

SEE ALSO

rwreceiver(8), silk(7), gnutls-cli(1), certtool(1), syslog(3), egrep(1), gzip(1), regex(7),
re format(7), SiLK Installation Handbook

BUGS

An attempt should be made to use a unique name for each file put into the incoming directory. When a
file is added to the incoming directory that has the same name as a file in the processing directory, the file
added to the incoming directory replaces the existing file in the processing directory.

730 SiLK-3.23.1

Appendix A

License

SiLK 3.22.0

Copyright 2023 Carnegie Mellon University.

GNU GPL 2.0

June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want its

731

APPENDIX A. LICENSE The SiLK Reference Guide

recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program pro-
prietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by

732 SiLK-3.23.1

The SiLK Reference Guide APPENDIX A. LICENSE

you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associ-
ated interface definition files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to

SiLK-3.23.1 733

APPENDIX A. LICENSE The SiLK Reference Guide

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

734 SiLK-3.23.1

The SiLK Reference Guide APPENDIX A. LICENSE

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

One line to give the program’s name and a brief idea of what it does.

Copyright (C) ¡year¿ ¡name of author¿

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO
WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes
at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

SiLK 3.22.0 includes and/or can make use of certain third party software (”Third Party Software”). The
Third Party Software that is used by SiLK 3.22.0 is dependent upon your system configuration, but typically
includes the software identified in this license.txt file, and/or described in the documentation and/or read me
file. By using SiLK 3.22.0, You agree to comply with any and all relevant Third Party Software terms and
conditions contained in any such Third Party Software or separate license file distributed with such Third
Party Software. The parties who own the Third Party Software (”Third Party Licensors”) are intended third
party beneficiaries to this License with respect to the terms applicable to their Third Party Software. Third

SiLK-3.23.1 735

APPENDIX A. LICENSE The SiLK Reference Guide

Party Software licenses only apply to the Third Party Software and not any other portion of SiLK 3.22.0 or
SiLK 3.22.0 as a whole.

This material is based upon work funded and supported by the Department of Homeland Security under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department
of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

GOVERNMENT PURPOSE RIGHTS – Software and Software Documentation

Contract No.: FA8702-15-D-0002 Contractor Name: Carnegie Mellon University Contractor Address: 4500
Fifth Avenue, Pittsburgh, PA 15213

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this software are
restricted by paragraph (b)(2) of the Rights in Noncommercial Computer Software and Noncommercial
Computer Software Documentation clause contained in the above identified contract. No restrictions apply
after the expiration date shown above. Any reproduction of the software or portions thereof marked with
this legend must also reproduce the markings.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM23-0973

736 SiLK-3.23.1

	 Introduction
	1 SiLK Analysis Tools and Utilities
	mapsid
	num2dot
	rwaddrcount
	rwaggbag
	rwaggbagbuild
	rwaggbagcat
	rwaggbagtool
	rwappend
	rwbag
	rwbagbuild
	rwbagcat
	rwbagtool
	rwcat
	rwcombine
	rwcompare
	rwcount
	rwcut
	rwdedupe
	rwfglob
	rwfileinfo
	rwfilter
	rwgeoip2ccmap
	rwgroup
	rwidsquery
	rwip2cc
	rwipaexport
	rwipaimport
	rwipfix2silk
	rwmatch
	rwnetmask
	rwp2yaf2silk
	rwpcut
	rwpdedupe
	rwpdu2silk
	rwpmapbuild
	rwpmapcat
	rwpmaplookup
	rwpmatch
	rwptoflow
	rwrandomizeip
	rwrecgenerator
	rwresolve
	rwscan
	rwscanquery
	rwset
	rwsetbuild
	rwsetcat
	rwsetmember
	rwsettool
	rwsilk2ipfix
	rwsiteinfo
	rwsort
	rwsplit
	rwstats
	rwswapbytes
	rwtotal
	rwtuc
	rwuniq
	silk_config

	3 SiLK Libraries and Plug-Ins
	addrtype
	app-mismatch
	ccfilter
	conficker-c
	cutmatch
	flowkey
	flowrate
	int-ext-fields
	ipafilter
	packlogic-generic.so
	packlogic-twoway.so
	pmapfilter
	PySiLK
	silk-plugin
	silkpython

	5 SiLK File Formats
	sensor.conf
	silk.conf

	7 SiLK Miscellaneous Information
	SiLK

	8 SiLK Administrator's Tools
	flowcap
	rwflowappend
	rwflowpack
	rwguess
	rwpackchecker
	rwpollexec
	rwreceiver
	rwsender

	A License

