Carnegie Mellon University

Software Engineering Institute

Network Traffic
Analysis with SIiLK

Analyst's Handbook for SiLK Version 3.15.0 and Later

AUGUST 2020

RTINS

1 P O) oo g

Paul Krystosek
Nancy Ott
Geoffrey Sanders
Timothy Shimeall

CERT® Situational Awareness Group

Carnegie Mellon University
Software Engineering Institute

Network Traffic Analysis with SiLK
Analyst’s Handbook for SiLK Versions 3.15.0 and Later

Paul Krystosek
Nancy M. Ott
Geoffrey Sanders
Timothy Shimeall
August 2020

CERT® Situational Awareness Group

[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution.

https://www.sei.cmmu.edu

https://www.sei.cmu.edu

Copyright 2020 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,
MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT®, CERT Coordination Center® and FloCon® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM20-0675

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Adobe is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries.
Akamali is a registered trademark of Akamai Technologies, Inc.

Apple and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Cisco Systems is a registered trademark of Cisco Systems, Inc. and/or its affiliates in the United States and
certain other countries.

DOCSIS is a registered trademark of CableLabs.

FreeBSD is a registered trademark of the FreeBSD Foundation.

IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

JABBER is a registered trademark and its use is licensed through the XMPP Standards Foundation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

MaxMind, GeolP, GeoLite, and related trademarks are the trademarks of MaxMind, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or
other countries.

OpenVPN is a registered trademark of OpenVPN Technologies, Inc.

Perl is a registered trademark of The Perl Foundation.

Python is a registered trademark of the Python Software Foundation.

SNORT is a registered trademark of Cisco and/or its affiliates.

Solaris is a registered trademark of Oracle and/or its affiliates in the United States and other countries.
UNIX is a registered trademark of The Open Group.

VPNz is a registered trademark of Advanced Network Solutions, Inc.

Wireshark is a registered trademark of the Wireshark Foundation.

All other trademarks are the property of their respective owners.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 111

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Contents

Contents

List of Figures
List of Tables

List of Examples
List of Hints
Acknowledgements

Handbook Goals

1 Introduction to SiLK

1.1 What is SiLK?

1.2 The SiLK Flow Repository
1.2.1 What is Network Flow Data?,
1.2.2 Structure of a Flow Record
1.2.3 Flow Generation and Collection,
1.2.4 Introduction to Flow Collection
1.2.5 Where Network Flow Data Are Collected
1.2.6 Types of Network Traffic
1.2.7 The Collection System and Data Management
1.2.8 How Network Flow Data Are Organized

1.3 The SiLK Tool Suite e e e

1.4 How to Use SiLK for Analysis
1.4.1 Single-path Analysis
1.4.2 Multi-path Analysis e
1.4.3 Exploratory Analysis e

1.5 Workflow for SILK Analysis
1.5.1 Formulate e e e e e
1.5.2 Model e
1.5.3 Test . . . o o e e
1.5.4 Analyze e
1.5.5 Refine e

1.6 Applying the SILK Workflow

1.7 Avoiding Cognitive Biases L

1.8 Dataset for Single-path, Multi-path, and Exploratory Analysis Examples

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

xi

xiii

XV

xix

xxi

xxiii

© © 0000 IO O WWN N - -

o T S e S S S e Gy e Tl
= LW NN NN RO OO O

2 Basic Single-path Analysis with SiLK: Profiling and Reacting

2.1 Single-path Analysis: Concepts
2.1.1 Scoping Queries of Network Flow Data
2.1.2 Excluding Unwanted Network Traffic.
2.1.3 Example Single-Path Analysis.

2.2 Single-path Analysis: Analytics L
2.2.1 Get a List of Sensors With rwsiteinfo
2.2.2 Choose Flow Records With rwfilter
2.2.3 View Flow Records With rweut
2.2.4 Viewing File Information with rwfileinfo
2.2.5 Profile Flows With rwuniq and rwstats
2.2.6 Characterize Traffic by Time Period With rwcount
2.2.7 Sort Flow Records With rwsort
2.2.8 Use IPsets to Gather IP Addresses
2.2.9 Resolve IP Addresses to Domain Names With ruresolve

2.3 Situational Awareness and Single-Path Analysis
2.3.1 Components of Situational Awareness

2.3.2 Single-Path Analysis for Desired Awareness: Validate Web and DNS Servers

2.3.3 Single-Path Analysis for Actual Awareness: Examine Network Traffic.
2.3.4 Translate IDS Signatures into rwufilter Calls with rwidsquery
2.4 Summary of SILK Commands in Chapter 2

3 Case Studies: Basic Single-path Analysis

3.1 Profile Traffic Around an Event L o
3.1.1 Examining Shifts in Traffic
3.1.2 How to Profile Traffic

3.2 Generate Top N Lists e
3.2.1 Using rustats to Create Top N Lists
3.2.2 Interpreting the Top-N Lists

4 Intermediate Multi-path Analysis with SiLK: Explaining and Investigating

4.1 Multi-path Analysis: Concepts
4.1.1 What Is Multi-path Analysis?
4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic
4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis
4.1.4 Integrating and Interpreting the Results of Multi-path Analysis
4.1.5 “Gotchas” for Multi-path Analysis

4.2 Multi-path Analysis: Analytics L o L
4.2.1 Complex Filtering With rwfilter
4.2.2 Finding Low-Packet Flows with rwfilter

4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount

4.2.4 Summarizing Network Traffic with Bags
4.2.5 Working with Bags and IPsets
4.2.6 Masking IP Addresses
4.2.7 Working With IPsets
4.2.8 Indicating Flow Relationships 0.
4.2.9 Managing IPset, Bag, and Prefix Map Files
4.3 Multi-path Analysis for Situational Awareness
4.3.1 Structuring a Multi-path Analytic for Situational Awareness.
4.3.2 Characterizing Threats 0 .

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CONTENTS

Vi

CONTENTS

4.3.3 Profiling Data e 114
4.3.4 Multi-path Analysis for Differential Awareness: Investigate Abnormal Web Traffic . . 115
4.4 Summary of SILK Commands in Chapter 4 120
5 Case Studies: Intermediate Multi-path Analysis 121
5.1 Building Inventories of Network Flow Sensors With IPsets 121
5.1.1 Path 1: Associate Addresses with a Single Sensor 122
5.1.2 Path 2: Associate Addresses of Remaining Sensors 123
5.1.3 Path 3: Associate Shared Addresses 123
5.1.4 Merge Address Results 124
5.2 Automating IPset Inventories of Network Flow Sensors 124
5.2.1 Program Header 125
5.2.2 Program Loop e 125
6 Advanced Exploratory Analysis with SiLK: Exploring and Hunting 127
6.1 Exploratory Analysis: Concepts L e 127
6.1.1 Exploring Network Behavior o L. 128
6.1.2 Starting Points for Exploratory Analysis L L. 129
6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity 129
6.1.4 Observations on Exploratory Analysis 134
6.2 Exploratory Analysis: Analytics 134
6.2.1 Using Tuple Files for Complex Filtering 134
6.2.2 Manipulating Bagso 136
6.2.3 Sets Versus Bags: A Scanning Example oo 141
6.2.4 Manipulating SILK Flow Record Files 143
6.2.5 Generate Flow Records From Text 147
6.2.6 Using Aggregate Bags 149
6.2.7 Labeling Data with Prefix Maps 154
6.3 Exploratory Analysis for Situational Awareness 163
6.3.1 Structuring an Exploratory Analysis for Situational Awareness 163
6.3.2 Situational Awareness for User-driven and Automated Services 164
6.3.3 Exploratory Analysis for Differential and Actionable Awareness: Investigate Abnormal
Web Traffic o 165
6.4 Summary of SILK Commands in Chapter 6, 171
7 Case Studies: Advanced Exploratory Analysis 173
7.1 Dataset for Exploratory Case Studies 173
7.2 Case Study: Investigating Suspicious TCP Behavior 174
7.2.1 Level 0: Which TCP Requests are Suspicious? 174
7.2.2 Level 1: Which Requests are Illegitimate? 176
7.2.3 Level 2: What are the Illegitimate Sources and Destinations Doing? 177
7.2.4 Level 3: What are the Commonalities Across The Cases? 181
7.3 Case Study: Exploring Network Messaging for Information Exposure 181
7.3.1 Prepare a Model of the Enterprise Network and Protocols 182
7.3.2 Pull Records Associated with ICMP Flows 185
7.3.3 What Anomalies are in the ICMP Records? 186
7.3.4 Exploring Attributes of ICMP Messaging 187
7.3.5 Wrap Up Investigation and Identify Follow-On Analyses 193
8 Extending the Reach of SiLK with PySiLK 195
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Vil

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CONTENTS

8.1 Using PySiLK o . o e
8.1.1 PySiLK Requirements e
8.1.2 PySiLK Scripts and Plug-ins o

8.2 Extending rwfilter with PySILK o
8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating Inconsistent

SOUTCES .+ o v v v et e e e e e
8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting Port Knocking
8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Environment
8.2.4 Simple PySiLK with rwfilter —-python-expr
8.2.5 PySiLK with Complex Combinations of Rules
8.2.6 Use of Data Structures in Partitioning

8.3 Extending SiLK with Fields Defined with PySiLK

8.4 Extending rwcut and rwsort with PySiLK o oo
8.4.1 Computing Values from Multiple Records
8.4.2 Computing a Value Based on Multiple Fields in a Record
8.4.3 Defining a Character String Field for rwecut
8.4.4 Defining a Character String Field for Five SiLK Tools

8.5 Defining Key Fields and Summary Value Fields for rwuniq and rwstats

Tuning SiLK for Improved Performance
9.1 Imtroduction e
9.1.1 Example: Reducing the Run Time of SiILK Analyses
9.1.2 Processor Contention, Data Contention, and Performance
9.2 Using Concurrent rwfilter Calls to Spread the Load Across Processors
9.2.1 Parallelizing rufilter Calls By Type
9.2.2 Parallelizing rufilter Calls By Flow Time
9.3 Combining Results From Concurrent rwfilter Calls via rwuniq, rwcount, and rwstats . . .
9.4 Parallelizing via the rwfilter --threads Parameter
9.4.1 Improving rwfilter Performance with -—threads
9.4.2 Effect of -——threads On Other rufilter Parameters
9.4.3 Limitations On --threads Performance Improvements
9.5 Constructing Efficient Queries oL o
9.5.1 Pipelining Calls to SiILK commands 0.
9.5.2 Using Flow Characteristics To Improve rwfilter Efficiency
9.5.3 Specifying Fewer SiLK Types In rufilter Calls
9.5.4 Constraining rwfilter Output
9.5.5 Merging the Results of Multiple rwfilter Calls
9.6 Using Coarse Parallelism e
9.7 Using Named Pipes and Process Substitution
9.8 Specifying Local Temporary Files o
9.9 Administrative Actions to Improve SiLK Performance
9.10 Summary of Strategies to Improve SiLK Performance

TCP/IP, UDP and ICMP Headers

A.1 Structure of the IP Header e

A.2 Structure of the TCP Header
A21 TCPFlags o e e e e
A.2.2 Major TCP Services o o o i

A.3 Structure of UDP and ICMP Headers
A.3.1 UDP and ICMP Packet Structure

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

198
199
201

215
216
216
216
217
217
218
222
224
224
224
227
228
228
229
231
232
232
236
238
240
240
240

241
241
243
243
244
244
244

viii

CONTENTS

A.3.2 Major UDP Services and ICMP Messages

B Common Features of SILK Commands
B.1 Getting Help with SiILK Tools e
B.2 Displaying the Current Version of SILK o oo o
B.3 Parameters Common to Important SILK Commands

C Additional Information on SiLK
C.1 SiLK Support and Documentation
C.2 FloCon Conference and Social Media
C.3 Email Addresses and Mailing Lists

D Further Reading and Resources
D.1 Unixand Linux o e
D.1.1 Useful UNIX Commands et e e
D.1.2 Online Tutorials on Unix and Linux
D.1.3 Books on Unix and Linux L e
D.2 Networking and TCP/IP e e
D.2.1 Online Courses on Networking and TCP/IP Fundamentals
D.2.2 Books on Networking and TCP/IP Fundamentals.
D.3 Network Flow and Related Topics
D.3.1 Technical Papers e e
D.3.2 Books on Network Flow and Network Security
D.4 Bash Scripting Resources L L
D.4.1 Online Tutorial o
D.4.2 Books on Bash Scripting
D.5 Visualizing SILK Data e
D51 Rayono
D.5.2 FloViz o o e
D.5.3 Graphviz—Graph Visualization Software
D.5.4 The Spinning Cube of Potential Doom, .
D.6 Networking Standards L

Index

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

247
247
247
247

251
251
252
252

253
253
253
253
253
255
255
255
255
255
256
256
256
256
257
257
258
258
258
258

260

ix

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Figures

1.1 From Packets to Flows L 5
1.2 Default Traffic Types for Sensors 6
1.3 SiLK Analysis Workflow L 11
1.4 FCC Network Diagram o e 15
2.1 Single-Path Analysis e e 18
2.2 rwfilter Parameter Relationships o oo 24
2.3 Displaying rwcount Output Using 10-Minute and 1-Minute Bins 50
4.1 Multi-Path Analysis o 70
4.2 Diagram of a Simple, Non-overlapping Manifold 76
4.3 Diagram of a Complex, Overlapping Manifold 76
4.4 Client and Server TCP flags 78
4.5 Allocating Flows, Packets and Bytes via rwcount Load-Schemes 86
6.1 Exploratory Analysis L e 128
6.2 Time Series Plot of NTP Traffic. 132
9.1 Response times for rwfilter parallelized by 6-hour time bins 221
9.2 Comparing response times for rufilter -—threads values 226
9.3 Decreasing Response Time by Using rwfilter --threads Profiled by Number of Running
Processes o e 227
9.4 Response times for rufilter with all SILK types and limited SiLK types 233
A.1 Structure of the IPv4 Header 242
A2 TCP Header e 243
A3 UDP and ICMP Headers. 0 e e 245
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Xl

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY X11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Tables

1.1
4.1
B.1
B.2
B.3
B.4
D.1

Fields in a SiLK Network Flow record
Time distribution options for rwcount --load-scheme 83

Common Parameters in Essential SILK Tools 248
Parameters Common to Several Commands, 249
——ip-format Values e 250
--timestamp-format format, modifier, and timezone Values 250
Some Common UNIX Commands it 254

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Xlil

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY X1v

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Examples

2.1 Using rwsiteinfo to List Sensors, Display Traffic Types, and Show Repository Information .
2.2 Using rwfilter to Retrieve Network Flow Records From The SiLK Repository
2.3 rwcut for Displaying the Contents of Ten Flow Records
2.4 rucut --fields to Rearrange Output
2.5 rwfileinfo Displays Flow Record File Characteristics
2.6 Characterizing flow byte counts with rwuniq oL L.
2.7 Finding the top protocols with rwstats
2.8 Finding overall traffic profile rustats -—overall
2.9 Summarizing traffic with one protocol via rwstats --detail-proto-stats
2.10 Profiling protocol volumes with rwstats —-values
2.11 Counting Bytes, Packets and Flows with Respect to Time
2.12 Sorting by Destination IP Address, Protocol, and Byte Count
2.13 Using ruset to Gather IP Addresses
2.14 Using rwsetbuild to Gather IP Addresses
2.15 Using rwsetcat to Count Gathered IP Addresses
2.16 Using rwsetcat to Print Networks and Host Counts
2.17 Using rwsetcat to Print IP Address Statistical Summaries
2.18 Looking Up Source and Destination Hostnames with rwresolve
2.19 Looking Up Destination Hostnames with rwresolve
2.20 Using rwfilter and rwstats to Profile Web and DNS Services
2.21 Using rwuniq to Profile an Address o
2.22 Using rwfilter and rwstats for Web Actual Awareness
2.23 Using rwfilter and rwstats for DNS Actual Awareness
2.24 Using rwidsquery for Snort Rule Translation
3.1 Using rwfilter and rwuniq to Profile Traffic Around an Event
3.2 Collated Profile of Traffic Around an Event
3.3 Removing Unneeded Flows for Top N
4.1 Examining Flows for Web Service Ports o
4.2 Simple Manifold to Select Inbound Client and Server Flows
4.3 Complex Manifold to Select Inbound Client and Server Flows
4.4 Extracting Low-Packet Flow Records oo
4.5 Constraining Counts to a Threshold by using rwuniq --flows
4.6 Setting Minimum Flow Thresholds with rwuniq --values
4.7 Constraining Flow and Packet Counts with rwuniq --flows and --packets
4.8 Profiling IP addresses with rwuniq —-fields
4.9 Profiling IP addresses with rustats ——fields
4.10 Isolating DNS and Non-DNS Behavior with rwuniq.
4.11 Generating Bags with rwbag L
4.12 Summarizing Network Traffic with rwuniq oL

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

XV

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

LIST OF EXAMPLES

Summarizing Network Traffic with Bags 0. 90
Creating a Bag of Network Scanners with rwbagbuild and rwscan 91
Viewing the Contents of a Bag with rwbagcat 92
Thresholding Results with rwbagcat —-mincounter, --maxcounter, --minkey, and --maxkey 92
Displaying Unique IP Addresses per Value with rwbagcat —-bin-ips 93
Displaying Decimal and Hexadecimal Output with rwbagcat —-key-format 94
Creating an IP Set from a Bag with rwbagtool --coverset 95
Using rwbagtool --intersect to Extract a Subnet L. 96
Abstracting Source IPv4 addresses with rwnetmask 96
Generating a Monitored Address Space IPset with rwsetbuild 97
Generating a Broadcast Address Space IPset with rwsetbuild 97
Performing an IPset Union with rwsettool 98
Displaying Repository Dates with rwsiteinfo 98
Counting Outbound DNS Servers with rwset 98
Finding IPset Differences with rwsettool 99
Finding IPset Symmetric Difference with rwsettool 99
Grouping Outbound DNS Servers by Sensor 0. 100
Identifying DNS Traffic Flow e 100
Identifying Shared DNS Monitoring e 101
rwsetcat Options for Showing Structure L L 103
Grouping Flows of a Long Session with rwgroup 106
Dropping Trivial Groups with rwgroup --rec-threshold 106
Summarizing Groups with rwgroup —-summarize 107
Using rwgroup to Identify Specific Sessions L oo L 108
Using rwmatch with Incomplete Relate Values 109
Using rwmatch with Full TCP Fields 110
rwfileinfo for Sets, Bags, and Prefix Maps L. 112
Using rwstats --overall-stats for Summary Statistics 116
Using rwbagcat --print-statistics for Summary Statistics 117
Using rwfilter and rwstats for Contrasting On-port and Off-port Web Connections 117
Using rwcut and rwuniq to Examine Off-port Web Connections 119
Building an IPset Inventory for Sensor SO Lo 122
Automating IPset Inventories 126
Using rwfilter to Profile NTP Activity o o 130
Using rwuniq to examine NTP Activity 131
Using rwcount to generate NTP Timelines 131
Using rwuniq and Bags to Summarize Prior Traffic on NTP Clients 133
Using Multiple Data Pulls to Filter on Multiple Criteria 135
Filtering on Multiple Criteria with a Tuple File 136
Merging the Contents of Bags Using rubagtool ——add 138
Using rwbagtool to Generate Percentages 140
Using rwset to Filter for a Set of Scanners 141
Using rwbagtool to Filter Out a Set of Scanners 142
Combining Flow Record Files with rwcat to Count Overall Volumes 144
rwsplit for Coarse Parallel Execution 146
rwsplit to Generate Statistics on Flow Record Files 147
Simple File Anonymization with rwtuc L oL 148
Summarizing Source IP, Destination Port, and Protocol with rwaggbag 150
Summarizing Source IP, ICMP Type, and ICMP Code with rwaggbagbuild 152

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XVI

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

LIST OF EXAMPLES

6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

7.17
7.18

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

Thresholding an aggregate bag with rwaggbagtool 153
Extracting a bag from an aggregate bag with rwaggbagtool 153
Extracting an IPset from an aggregate bag with rwaggbagtool 154
Using rwpmapbuild to Create a FCC Pmap File 156
Using Pmap Parameters with rwfilter 159
Viewing Prefix Map Labels with rwcut, 160
Sorting by Prefix Map Labels o 161
Counting Records by Prefix Map Labels o 161
Query Addresses and Protocol/Ports with rwpmaplookup 162
Contrasting User-driven vs. Autonomic Flows with rwcount 165
Isolating Low-byte Web Flows with rwfilter 167
Pivoting with rwfilter and rwuniq to Explore Endpoint Behavior 168
Pivoting with rwfilter to Explore Contacts of Endpoints 170
Looking for Service Ports with Higher Inbound than Outbound TCP Traffic 175
Identifying Abnormal TCP Flows and their Originating Hosts 177
Finding Activity of Illegitimate Destination IP Addresses 179
Finding Changed Behavior in Destination IPs 180
Building an RFC Compliant ICMP Type and Code Prefix Map 182
Building an IPset of FCCX-15 Internal Subnetworks 184
Building an IPset of FCCX-15 Internal Subnetwork Gateways 185
Building an IPset of FCCX-15 Internal Network Service Subnetworks 185
Pulling ICMP Network Flow Data for a Specified Period 185
Exploring Unique ICMP Types/Codes ina SILK Raw File 186
Counting Hosts that Send ICMP Timestamp Reply Messages 188
Counting Hosts that Send ICMP Timestamp Reply Messages Outside their Subnetwork . . . 189
Identifying Networks that Send ICMP Timestamp Reply Messages 190
Counting External Networks that Receive ICMP Echo Reply Messages 190
Identifying External Networks that Receive ICMP Echo Reply Messages 191
Counting Internal Non-Gateway Hosts that Send ICMP Echo Reply Messages Outside their

Subnetworko 191
Building a Prefix Map of Service Subnetworks 192
Identifying Internal Non-Gateway Hosts that Send ICMP Echo Reply Messages Outside their

Subnetwork L 192
ThreeOrMore.py: Using PySiLK for Memory in rwfilter Partitioning 198
portknock.py: Using PySiLK to Retain State in rwfilter Partitioning 200
Calling Three0rMOoTre.PY . . . v v v v v v v ittt it e e e e e e 201
Using --python-expr for Partitioning oo 202
vpn.py: Using PySiLK with rwfilter for Partitioning Alternatives 202
matchblock.py: Using PySiLK with rwfilter for Structured Conditions 204
Calling matchblock.py o o i 205
delta.pPy e 206
Calling delta.py o v v v v e 207
payload.py: Using PySiLK for Conditional Fields with rwsort and rwcut 208
Calling payload.py ot e 209
decode_duration.py: A Program to Create a String Field for rwcut 209
Calling decode_duration.py« . o v vt ittt e 210
sitefield.py: A Program to Create a String Field for Five SiLK Tools 211
Calling sitefield.Py« o o i i 212
DPP-PY -+ o o o e e e e e e e e 212

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XVil

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

LIST OF EXAMPLES

8.17 Calling bPP.PY - - « « v o o e e 213
9.1 Using Multiple rwfilter Processes to Parallelize by Type 218
9.2 Using Concurrent rwfilter Processes by Hour 219
9.3 Response Time for Sorting Records and File Parameters 223
9.4 Using rwfilter --threads to Reduce Response Time 225
9.5 Avoiding multiple rwfilter Commands to Increase Performance 230
9.6 Closely Defining Analysis Problem to Increase Performance 231
9.7 Using Only Needed rwfilter Types to Increase Performance 232
9.8 Using Additional Parameters with rufilter to Increase Performance. 233
9.9 Combining Flow Files with rwcat, rwappend, and rwsort 235
9.10 Coarse Parallelism of rwuniq using rwsplit oo 237
9.11 Pipes and Process Substitution to Improve Response Time 239

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XVlil

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Hints

2.1 Minimum Partitioning Parameters for rwfilter 23
2.2rwfilter File Naming Conventions. e 24
2.3 SiLK Parameter Abbreviations Lo 25
2.4 rufilter Output File Performance o 25
2.5 Keep Data in Binary Format Where Possible o0 27
2.6 Format IP Addresses with SiLK Environment Variables 28
2.7 Use Unix Pipes To Improve SiLK Performance 32
2.8 Data Resolution Versus Bin Size 40
2.9 Use rwresolve with Small Datasets L 47
2.106iLK Byte Counts Include Packet Headers o L. 57
3.1 CIDR Notation for IP Addresses i i e 64
4.1 Use Named Pipes for Efficient Analytics 71
4.2 An Example TCP Session e 77
4.3 How to Specify Ranges with rwuniq L 84
4.4 How to Use rwbagtool --coverset with Bag Files 95
4.5 Scale Grouping Tools with Sorted Data 104
6.1 Be Aware of Bag Types with rwbagtool 137
6.2 Use Caution when Dividing Bags with rwbagtool 139
6.3 SiLK Tools Can Use Multiple Flow Files 143
6.4 Sorting and counting aggregate bag keys oL L oL oL 150
7.1 Limiting rwfilter Query Size e e 185
9.1 Response Times and Processor Architectures 0o, 215
9.2 Performance for IPv4 Versus IPv6 Addresses 228

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XiX

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Acknowledgements

The authors wish to acknowledge the valuable contributions of all members of the CERT® Situational
Awareness group and the CERT Engineering Group, past and present, to the concept and execution of the
SiLK tool suite and to this handbook. Many individuals served as contributors, reviewers, and evaluators of
the material in this handbook.

The authors also gratefully acknowledge the many SiLK users who have contributed immensely to the
evolution of the tool suite.

Lastly, the authors wish to acknowledge their ongoing debt to the memory of Suresh L. Konda, PhD, who
led the initial concept and development of the SiLK tool suite as a means of gaining network situational
awareness.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XX1

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XX11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Goals for Network Traffic Analysis
with SiLK

How to Use This Handbook

Network Traffic Analysis with SiLK: Analyst’s Handbook for SiLK Versions 3.15.0 and Later (also known
as the SiLK Analyst’s Handbook) is an introduction to methods of analyzing network traffic, illustrated by
commands from the SiLK tool suite. The focus is on learning to identify traffic features important to the
security of information on the network. The handbook moves from a basic understanding of network flow
and the SiLK tool suite through a series of examples that illustrate how to use SiLK to analyze network
behavior.

The examples in this handbook are mainly command sequences that illustrate specific analysis concepts.
Examples are commonly discussed on a line-by-line basis in the text and presented as command and output
listings. In general, examples are also associated with a specific task (or tasks), indicated in the section and
in the example caption. Case studies take a deeper dive into specific topics for analysis.

For readers already familiar with SiLK, the explanations of SiILK commands in the text of this handbook are
kept short enough not to be redundant. More complete discussions of the commands and their parameters
are provided in the SiLK Reference Guide and the man pages for the SiLK commands. Readers who are
interested in analyzing network flow records with other tools than SiLK are encouraged to read the overall
description of the analysis approaches, then use the description of commands to find parallels using the tool
suite of their choice.

How This Handbook Is Organized

This handbook contains the following chapters:

1. Introduction to SiLK provides a short overview of some of the background necessary to begin using
the SiLK tools for analysis. It includes a brief introduction to the SiLK suite and describes the basics of
network flow capture by sensors and storage in the SiLK flow repository. It also discusses the analysis
process used in this handbook and its application to situational awareness, incident response, and
threat hunting. Finally, it describes the dataset used for the examples in this handbook.

2. Basic Single-path Analysis with SiLK: Profiling and Reacting describes the most straightfor-
ward analysis approach and applies it to several example analyses. It introduces some of the core SiLK
commands and uses them to analyze network traffic.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XX111

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

HANDBOOK GOALS

3. Case Studies: Basic Single-path Analysis applies the single-path analysis approach to several
extended examples, focusing on how those examples were developed from an initial problem statement
through executable commands.

4. Intermediate Multi-path Analysis with SiLK: Explaining and Investigating explains a more
complex, intermediate form of analysis which applies basic, single-path analysis in a multi-pronged
structure. The chapter describes how multi-path analysis can be applied and includes a fuller explo-
ration of SiLK tools that may be useful for this type of analysis.

5. Case Studies: Intermediate Multi-path Analysis applies multi-path analysis to extended exam-
ples.

6. Advanced Exploratory Analysis with SiLK: Exploring and Hunting discusses the use of
SiLK to deal with open-ended, often iterative analyses that incorporate both single-path and multi-
path methods. It also describes more sophisticated uses of the SiLK tool suite that support complex
analyses of network behavior.

7. Case Studies: Advanced Exploratory Analysis applies exploratory analysis to an extended ex-
ample.

8. Extending the Reach of SiLK with PySiLK describes how to extend the functionality of the
SiLK tool suite by using the Python scripting language.

9. Tuning SiLK for Improved Performance discusses techniques to improve the efficiency and per-
formance of SiLK when working with very large datasets.

The appendices to this guide provide information about common network protocols, list useful Unix com-
mands, and give sources for additional information about the SiLK tool suite and network analysis.

What This Handbook Doesn’t Cover

This handbook does not contain an exhaustive description of all the tools in the SiLK tool suite or of all the
options in the described commands. Rather, it offers concepts and examples to allow analysts to accomplish
needed work while continuing to build their skills and familiarity with SiLK.

e FEvery SiLK tool includes a —-help option that briefly describes the command and lists its parameters.

o Every tool also has a manual page (also called a man page) that provides detailed information about
the use of the tool. These pages may be available on your system by typing man command. For example,
type man rwfilter to see information about the rufilter command.

o The SiLK Documentation page at https://tools.netsa.cert.org/silk /docs.html includes links to individ-
ual manual pages.

e The SiLK Reference Guide is a single document that bundles all of the SiILK manual pages. It is
available in HTML and PDF formats on the SiLK Documentation page (https://tools.netsa.cert.org/
silk /docs.html).

This handbook deals solely with the analysis of network flow record data using an existing installation of the
SiLK tool suite. For information on installing and configuring a new SiLK tool setup and on the collection
of network flow records for use in these analyses, see the “Installation Information” section of the SiLK
Documentation page at https://tools.netsa.cert.org/silk /docs.html#installation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY XX1V

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html#installation

Chapter 1

Introduction to SiLK

Network analysts need to build an ongoing perspective on the traffic passing over their networks. This
perspective is often built on information about the traffic (such as volumes, timing, and communication
paths), rather than on the traffic itself. This chapter introduces the tools and techniques used to store such
information, particularly in the form known as network flow. It will help you to become familiar with the
structure of network flow data, how the SiLK collection system gathers those data from sensors, and how to
use those data.

Upon completion of this chapter you will be able to

e describe a network flow record and the conditions under which the collection of one begins and ends
e describe the types of SiLK flow records

o describe the structure of the SiLK flow repository

e understand the steps involved in analyzing network flow data

e describe common applications of the analysis process

o describe the dataset for the examples in this handbook

1.1 What is SiLK?

The System for internet-Level Knowledge! (SiLK) tool suite is a highly scalable flow-data capture and anal-
ysis system developed by the CERT Situational Awareness group at Carnegie Mellon University’s Software
Engineering Institute (SEI). The SiLK tools provide network security analysts with the means to under-
stand, query, and summarize both recent and historical traffic data represented as network flow records (also
referred to as “network flow” or “network flow data” and occasionally just “flow”). These tools provide
network security analysts with a relatively complete high-level view of traffic across an enterprise network,
subject to placement of sensors.

Analyses using the SiLK tools provide insight into various aspects of network behavior. Some example
applications of this tool suite include:

1The suite name, and in particular the capitalization, were chosen in memory of Dr. Suresh L. Konda, who was the
inspirational leader for the creation of the initial suite prior to his sudden passing.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 1. INTRODUCTION TO SILK
e supporting network forensics: identifying artifacts of intrusions, vulnerability exploits, worm behavior,
etc.

 providing service inventories for large and dynamic networks (on the order of a /8 Classless Inter-
Domain Routing (CIDR) block)

« generating profiles of network usage (bandwidth consumption) based on protocols and common com-
munication patterns

e enabling non-signature-based scan detection and worm detection, for detection of limited-release ma-
licious software and for identification of precursors

These examples, and others, are explained further in this handbook. By providing a common basis for these
analyses, the SiLK tools provide a framework for developing network situational awareness.

Common questions addressed via flow analyses include (but aren’t limited to)

e What is on my network?

o What constitutes typical network behavior?

e What happened before, during, and after an event?

e Where are policy violations occurring?

e Which are the most popular web servers?

e How much volume would be reduced by applying a blacklist?
e Do my users browse to known infected web servers?

e Is a spammer on my network?

e When did my web server stop responding to queries?

o Is my organization routing undesired traffic?

o Who uses my public Domain Name System (DNS) server?

1.2 The SiLK Flow Repository

1.2.1 What is Network Flow Data?

NetFlow is a traffic-summarizing format that was first implemented by Cisco Systems® primarily for account-
ing purposes. Network flow data (or network flow) is a generalization of NetFlow. Network flow collection
differs from direct packet capture (such as with tcpdump) in that it builds a summary of communications
between sources and destinations on a network. For NetFlow, this summary covers all traffic matching seven
relevant keys: the source and destination TP addresses, the source and destination ports, the transport layer
protocol, the type of service, and the router interface.

SiLK uses five of these attributes to constitute the flow label:
1. source IP address

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1.2. THE SILK FLOW REPOSITORY

2. destination IP address
3. source port
4. destination port

5. transport layer protocol

These attributes (also known as the five-tuple), together with the start time of each network flow, distinguish
network flows from each other. The SiLK repository stores the accumulated flows from a network.

1.2.2 Structure of a Flow Record

A network flow often covers multiple packets that all match the fields of their common labels. A flow record
thus provides the label and statistics on the packets covered by the network flow, including the number of
packets covered by the flow, the total number of bytes, and the duration and timing of those packets (among
other fields). A flow file is a series of flow records.

The fields in the flow record are listed in Table 1.1 (deprecated fields removed for clarity). Every field is
identified by a name and number that can be used interchangeably. For example, the source IP address field
of a flow record can be identified by either its field name (sIP) or its field number (1). Capitalization does
not matter: sIP is equivalent to sip or SIP.

Because network flow is a summary of traffic, it does not contain packet payload data, which are expensive
to retain on a large, busy network. Each network flow record created by SiLK is very small: it can be as
little as 22 bytes (the exact size is determined by several configuration parameters). However, even at that
tiny size, a sensor may collect many gigabytes of flow records daily on a busy network.

Some of the fields are actually stored in the record, such as start time and duration. Some fields are
not actually stored; rather, they are derived either wholly from information in the stored fields or from a
combination of fields stored in the record and external data. For example, end time is derived by adding
the start time and the duration. Source country code is derived from the source IP address and a table that
maps I[P addresses to country codes.

1.2.3 Flow Generation and Collection

To understand how to use SiLK for analysis, it helps to have some knowledge of how network flow data
are collected, stored, and managed. Understanding how the data are partitioned can produce faster queries
by reducing the amount of data searched. In addition, by understanding how the sensors complement each
other, it is possible to gather traffic data even when a specific sensor has failed.

Every day, SiLK may collect many gigabytes of network flow records from across the enterprise network.
This section reviews the collection process and shows how data are stored as network flow records.

A network flow record is generated by sensors throughout the enterprise network. Usually, the majority of
these sensors are routers. Specialized sensors such as yaf? can be employed when a data feed from a router
is not available, such as on a home network or on an individual host. yaf can also be used to avoid artifacts
in a router’s implementation of network flow or to use non-device-specific network flow data formats such

2YAF (Yet Another Flowmeter). CERT NetSA Security Suite website. [Accessed May 14, 2020] https://tools.netsa.cert.
org/yaf/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://tools.netsa.cert.org/yaf/
https://tools.netsa.cert.org/yaf/

CHAPTER 1. INTRODUCTION TO SILK
Field Field
Number Name Description
1 sIP Source IP address for flow
2 dIp Destination IP address for flow
3 sPort Source port for flow (or 0)
4 dPort Destination port for flow (or 0)
5 protocol Transport layer protocol number for flow
6 packets, pkts Number of packets in flow
7 bytes Number of bytes in flow (starting with TP header)
8 flags Cumulative TCP flag fields of flow (or blank)
9 sTime Start date and time of flow
10 duration Duration of flow
11 eTime End date and time of flow
12 sensor Sensor that collected the flow
13 in Ingress interface or VLAN on sensor (usually zero)
14 out Egress interface or VLAN on sensor (usually zero)
15 nhIP Next-hop IP address (usually zero)
16 sType Type of source IP address (pmap required)
17 dType Type of destination IP address (pmap required)
18 sce Source country code (pmap required)
19 dcc Destination country code (pmap required)
20 class Class of sensor that collected flow
21 type Type of flow for this sensor class
— iType ICMP type for ICMP and ICMPv6 flows (SiLK V3.8.1+)
— iCode ICMP code for ICMP and ICMPv6 flows (SiLK V3.8.1+)
25 icmpTypeCode Both ICMP type and code values (before SiLK V3.8.1)
26 initialFlags TCP flags in initial packet
27 sessionFlags TCP flags in remaining packets
28 attributes Termination conditions
29 application Standard port for application that produced the flow

Table 1.1: Fields in a SiLK Network Flow record

as IPFIX3. It provides more control over network flow record generation and can convert packet data to
network flow records via a script that automates this process.

A sensor generates network flow records by grouping together packets that are closely related in time and
have a common flow label. “Closely related” is defined by the sensor and typically set to around 30 seconds.
Figure 1.1 shows the generation of flows from packets. Case 1 in that figure diagrams flow record generation
when all the packets for a flow are contiguous and uninterrupted. Case 2 diagrams flow record generation
when several flows are collected in parallel. Case 3 diagrams flow record generation when timeout occurs, as
discussed below.

Network flow is an approximation of traffic. Routers and other sensors make a guess when they decide which
packets belong to a flow. These guesses are not perfect; there are several well-known phenomena in which a
long-lived session will be split into multiple flow records:

3See https:/ /tools.ietf.org/html/rfc7011 for definitions of the IPFIX information elements; see the IPFTX protocol description
and https://www.iana.org/assignments/ipfix for their descriptions.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://tools.ietf.org/html/rfc7011
https://www.iana.org/assignments/ipfix

1.2. THE SILK FLOW REPOSITORY

Case |

==_§ Packet :_E Packet :-E Packet _ji Packet
» Time
Flow
» Time
==_§ Packet ;_E Packet ;E Packet ::E Packet
»Time

Flow / Flow \
» Time

A A PERANER A L A
I I I I I I
T P | P T P T P [P T P
L L L L L L » Time
>

Flow Flow /FIZ\
» Time

Figure 1.1: From Packets to Flows

1. Active timeout is the most common cause of a split network flow. Network flow records are purged
from the sensor’s memory and restarted after a configurable period of activity. As a result, all network
flow records have an upper limit on their duration that depends on the local configuration. A typical
value would be around 30 minutes.

2. Cache flush is a common cause of split network flows for router-collected network flow records. Network
flows take up memory resources in the router, and the router regularly purges this cache of network
flows for housekeeping purposes. The cache flush takes place approximately every 30 minutes as well.
A plot of network flows over a long period of time shows many network flows terminate at regular
30-minute intervals, which is a result of the cache flush.

3. Router erhaustion also causes split network flows for router-collected flows. A router has limited
processing and memory resources devoted to network flow. During periods of stress, the flow cache
will fill and empty more frequently due to the number of network flows collected by the router.

Use of specialized flow sensors can avoid or minimize cache-flush and router-exhaustion issues. All of these

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 1. INTRODUCTION TO SILK

cases involve network flows that are long enough to be split. As we show later, the majority of network flows
collected at the enterprise network border are small and short-lived.

1.2.4 Introduction to Flow Collection

An enterprise network comprises a variety of organizations and systems. The flow data to be handled by
SiLK are first processed by the collection system, which receives flow records from the sensors and organizes
them for later analysis. The collection system may collect data through a set of sensors that includes both
routers and specialized sensors that are positioned throughout the enterprise network. After records are
added to the flow repository by the collection system, analysis is performed using a custom set of software
called the SiLK analysis tool suite.

The SiLK project is active, meaning that the system is continually improved. These improvements include
new tools and revisions to existing collection and analysis software. See Appendix D for information on how
to obtain the most up-to-date version of SiLK.

1.2.5 Where Network Flow Data Are Collected

While complex networks may segregate flow records based on where the records were collected (e.g., the
network border, major points within the border, at other points), the generic implementation of the SiLK
collection system defaults to collection only at the network border, as shown in Figure 1.2. The default
implementation has only one class of sensors: all. Further segregation of the data is done by type of traffic.

outweb, outicmp, out p—

SENSOR

‘r

) L

Internal I External
= inweb, inicmp, in
network network
outnull w

"\
H

NULL

Figure 1.2: Default Traffic Types for Sensors

The SiLK tool rwsiteinfo can produce a list of sensors in use for a specific installation, reflecting its
configuration. For more information on how to use this tool, see Section 2.2.1.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1.2

1.2.

THE SILK FLOW REPOSITORY

6 Types of Enterprise Network Traffic

In SiLK, the term type mostly refers to the direction of traffic, rather than a content-based characteristic.
In the generic implementation (as shown in Figure 1.2), there are six basic types and five additional types.
The basic types are

The

in and inweb, which is traffic coming from the Internet service provider (ISP) to the enterprise network
through the border router. Web traffic is separated from other traffic due to its volume, making many
searches faster.

out and outweb, which is traffic coming from the enterprise network to the ISP through the border
router.

int2int, which is traffic going both from and to the enterprise network, but which passes by the sensor.

ext2ext, which is traffic going both from and to the ISP, but which passes by the sensor. (The presence
of this type of traffic usually indicates a configuration problem either in the sensor or at the ISP.)

additional SiLK types are

inicmp and outicmp, which represent ICMP traffic entering or leaving the enterprise network. These
types are operational only if SiILK was compiled with the option to support them.

innull and outnull, which only can be found when the sensor is a router and not a dedicated sensor.
They represent traffic from the upstream ISP or the enterprise network, respectively, that terminates

at the router’s IP address or is dropped by the router due to an access control list.

other, which is assigned to traffic where one of the addresses (source or destination) is in neither the
internal nor the external networks.

The constructed type all selects all types of flows associated with a class of sensors.

These types are configurable. Configurations vary as to which types are in actual use (see the discussion
below under Sensors: Class and Type).

1.2.

7 The Collection System and Data Management

Data collection starts when a flow record is generated by one of the sensors: either a router or a dedicated
sensor. Flow records are generated when a packet relevant to the flow is seen, but a flow is not reported until
it is complete or flushed from the cache. Consequently, a flow can be seen some time after the start time of
the first packet in the flow, depending on timeout configuration and on sensor caching, among other factors.

Packed flows are stored into files indicated by class, type, sensor, and the hour in which the flow started. So
for traffic coming from the ISP through or past the sensor named SEN1 on March 1, 2018 for flows starting
between 3:00 and 3:59:59.999 p.m. Coordinated Universal Time (UTC), a sample path to the file could be
/data/SEN1/in/2018/03/01/in-SEN1_20180301.15.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 1. INTRODUCTION TO SILK

1.2.8 How Network Flow Data Are Organized

The data repository is accessed via the SiLK tools, particularly the rufilter command. An analyst uses
rwfilter to choose the type of data to be viewed by specifying a set of selection parameters. This handbook
discusses selection parameters in more detail in Section 2.2.2; this section briefly outlines how data are stored
in the repository.

Dates

The SiLK repository stores data in hourly divisions, which are referred to in the form yyyy/mm/ddThh in UTC.
Thus, the hour beginning 11 a.m. on February 23, 2018 in Pittsburgh would be referred to as 2018/2/23T16
when compensating for the difference between UTC and Eastern Standard Time (EST)—five hours.

In general, data for a particular hour starts being recorded at that hour and will continue recording until
some time after the end of the hour. Under ideal conditions, the last long-lived flows will be written to the
file soon after they time out (e.g., if the active timeout period is 30 minutes, the last flows will be written out
30 minutes plus propagation time after the end of the hour). Under adverse network conditions, however,
flows could accumulate on the sensor until they can be delivered. Under normal conditions, the file for
2018/3/7 20:00 UTC would have data starting at 3 p.m. in Pittsburgh and finish being updated after 4:30
p-m. in Pittsburgh.

Sensors: Class and Type

Data are divided by time and sensor. The class of a sensor is often associated with the sensor’s role as a
router: access layer, distribution layer, core (backbone) layer, or border (edge) router. The classes of sensors
that are available are determined by the installation. By default, there is only one class—all—but based on
analytical interest, other classes may be configured as needed. As shown in Figure 1.2, each class of sensor
has several types of traffic associated with it: typically in, inweb, out, and outweb.

Data types are used for two reasons:

1. They group data together into common directions.
2. They split off major query classes.
As shown in Figure 1.2, most data types have a companion web type (i.e., in and inweb, out and outweb).

Web traffic generally constitutes about 50% of the flows in any direction; by splitting the web traffic into a
separate type, we reduce query time.

Most queries to repository data access one class of data at a time but access multiple types simultaneously.

1.3 The SiLK Tool Suite

The SiLK analysis suite consists of over 60 command-line UNIX tools (including flow collection tools) that
rapidly process flow records or manipulate ancillary data. The tools can communicate with each other and
with scripting tools via pipes (both unnamed and named) or via intermediate files.

Flow analysis is generally input/output bound (I/O bound)—the amount of time required to perform an

analysis is proportional to the amount of data read from disk. A major goal of the SiLK tool suite is to

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1.4. HOW TO USE SILK FOR ANALYSIS

minimize that access time. Some SiLK tools perform functions analogous to common UNIX command-line
tools and to higher level scripting languages such as Perl®. However, the SiLK tools process this data in
non-text (binary) form and use data structures specifically optimized for analysis.

Consequently, most SiLK analysis consists of a sequence of operations using the SiLK tools. These operations
typically start with an initial rwfilter call to retrieve data of interest and culminate in a final call to a text
output tool like rwstats or rwuniq to summarize the data for presentation.

Keeping data in binary for as many steps as possible greatly improves efficiency of processing. This is because
the structured binary records created by the SiLK tools are readily decomposed without parsing, their fields
are compact, and the fields are already in a format that is ready for calculations, such as computing netmasks.

In some ways, it is appropriate to think of SiLK as an awareness toolkit. The flow-record repository provides
large volumes of data, and the tool suite provides the capabilities needed to process these data. However,
the actual insights come from analysts.

1.4 How to Use SiLK for Analysis

The SiLK tool suite provides a robust collection of tools to facilitate network traffic analysis tasks. It is
designed to be very flexible in its support of analysis methods. Over time, different analysts have used a
variety of approaches in their use of SILK. This section discusses three approaches that have been useful in
analyzing network flow records.

The chapters following this one expand on these approaches in more detail, focusing on the support that
network flow analysis can provide to such analyses. Being aware of and practicing multiple approaches to
analysis enables an analyst to gain insight into a wide variety of network traffic behaviors.

1.4.1 Single-path Analysis

The single-path approach is the most basic and most commonly-used approach to analyzing network behavior.
It makes use of a single sequence of commands to produce the analytic results. In this approach, the analyst
formulates an initial hypothesis, constructs a query to retrieve traffic of interest, produces a table, summary,
or series to profile this traffic, and then interprets this profile either numerically or through a graph. Iteration
can be used if needed (e.g., to refine the initial query), but may not be necessary for many simpler, more
straightforward analyses.

This approach could be used for service identification, network device inventories, incident response, or usage
studies. Chapter 2 provides an overview of single-path analysis, including the SiLK commands that are most
commonly used with it. Chapter 3 describes example case studies of single-path analyses.

1.4.2 Multi-path Analysis

The multi-path approach uses a sequence of tools that frequently involve several alternatives, and often
includes iterating over some steps. Although a multi-path approach can be done manually, it more often
involves scripting to select alternatives based on categories of data and then iterate until the desired traffic is
isolated or the desired summaries are produced. The alternatives are used as required for processing groups
of records in differing ways to reach results that profile behavior of interest.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 1. INTRODUCTION TO SILK

This approach could be used for examining traffic using several protocols, each following its own alternative
set of characteristics, to accomplish the same goal. For example, there are multiple ways that malware can
beacon to its command-and-control network. Each of those ways could be examined separately via a chain
of SiLK commands, generating sets of results that contribute to overall awareness of beaconing.

Chapter 4 provides an overview of multi-path analysis, including the SiLK commands that are most com-
monly used with it. Chapter 5 describes an example case study of multi-path analysis.

1.4.3 Exploratory Analysis

We do not always know ahead of time what the scope of our analysis will be—or even what questions we
should be asking! Ezploratory analysis is an open-ended approach to formulating, scoping, and conducting a
network analysis. It uses single-path and multi-path analyses as building blocks for investigating anomalous
network traffic. These simpler types of analysis help us to formulate different scenarios, investigate alternative
hypotheses, and explore multiple aspects of the data. Exploratory analysis is initially manual in nature, but
can transition to scripted analysis for ease of repetition and for regularity of results.

This approach is used for complex or emerging phenomena, where multiple indicators need to be combined
to gain understanding. An example of this approach to analysis would be a study of data exfiltration, which
can be performed in a wide variety of ways. Each of those exfiltration methods could be profiled using a set
of indicators, and the results of all such analyses combined to produce a composite understanding of traffic
being passed to various groups of suspicious addresses.

Chapter 6 provides an overview of exploratory analysis, including advanced SiLK commands and concepts.
Chapter 7 describes an example case study of exploratory analysis.

1.5 Workflow for SiLK Analysis

SiLK analyses share a common workflow, shown in Figure 1.3. While single-path, multi-path, and exploratory
analysis may incorporate different steps in this workflow, all follow its general sequence.

1.5.1 Formulate

The Formulate step investigates the context of the event. Essentially, it involves collecting information to
identify the unique attributes of the network, its operation, and the event. How large is the network? How is
it structured? Where are network sensors located? When did the event occur? Is it associated with specific
sensors, [P addresses, hosts, network spaces, ports, protocols, and so forth? Do any earlier analyses of the
network offer insight? The information may be incomplete at this point, but it serves as a starting point for
launching the analysis and establishing its scope. We can use it to formulate a hypothesis for the network’s
behavior. This hypothesis serves as the basis of our analysis. In more sophisticated exploratory analyses,
we can formulate multiple scenarios and hypotheses for investigation and analysis.

Information gleaned from exploring the event’s context helps us to establish which network behaviors should
be included in (or excluded from) our analysis. We can use this information to construct a query to select
and partition network flow records from the SiLK repository or a stored file. Queries typically incorporate
information such as where the flow was collected, the date of data collection, and the flow direction. Within
the SiLK community, query selection is commonly called a data pull.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Formulate

Establish context for
investigation
(Where? When?)

Research analytic

+ vendor documentation
published papers

+ datafeeds

Needs analysis - does a prior
analytic address this?

1.5. WORKFLOW FOR SILK ANALYSIS

Model

Can we quantify what
happened?

Build model
isolate behavior
« find patterns

Lessons learned from prior
analytics

Program model

Test

Execute programmed
model

monitor progress
« debug
Save test results
« rw files
« ‘set'files

« ‘bag’files

Analyze

What did we find?

Does it match our
hypothesis?

Review test results
Reduce false positives
Reduce false negatives

Identify improvements

Refine

Re-evaluate hypothesis
Apply improvements
Update programs
Repeat

Mature the process

« templates

+ regression testing

« code reuse/analytics

Identify unique attributes ool + other file formats libraries
y uniq python
ports « other
protocols
+ associations
behaviors

Build queries

Look at alternative
scenarios and hypotheses

Figure 1.3: SiLK Analysis Workflow

Partitioning applies tests to selected flow records to separate (or partition) them into categories for further
inspection and investigation. A default set of tests is provided with SiLK. It includes IP addresses, ports,
protocols, time, and volumes. (If additional tests are needed for analyses, the SiLK tools can be extended
via plugins to provide them.)

The combination of selection and partitioning (commonly referred to as filtering) is performed with the
rufilter command. Records that meet the filtering criteria are sent to pass destinations. Records that do
not are sent to fail destinations. Both can be combined into all destinations. This provides flexibile options
to either store query results in files or use pipes to send them to other commands for processing.

1.5.2 Model

The Model step summarizes data and investigates behaviors of interest. What is the network’s behavior
during normal operation? What happened during an event? What patterns and behaviors can we identify?
Are they similar to those observed during other events? By examining the information gathered during the
Formulate step, you can come up with a model of the event that perhaps explains what is going on.

SiLK provides a variety of tools for examining network flow data associated with an event. Each tool
offers different views into the data that can be considered independently or in combination for analysis.
For example, SiLK includes tools for generating time-series summaries of traffic (the rwcount command),
computing summary statistics (the rwustats command), and summing up the values of flow attributes for
user-defined time periods (the rwuniq command).

This step can be done manually. For analyses that are larger in scope, it can be automated by using shell

or Python scripts.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 1. INTRODUCTION TO SILK

1.5.3 Test

The Test step runs the model that you created—either manually or by executing shell or Python scripts.
This gives you a chance to check the progress of the analysis.

SiLK includes commands for sorting flow records according to user-defined keys (the rwsort command),
creating sets of unique IP addresses from flow records (rwset and its related commands), and creating
groups of records by other criteria (rwbag and its related commands). These commands help you to organize
output from the various SiLK commands and save it for further use.

1.5.4 Analyze

The Analyze step reviews the results of the previous steps. What do these results tell us about the event?
What behaviors have been identified? What types of events are they associated with? What relationships
can we identify between flows? Do our initial hypotheses still hold up? Can we find and eliminate false
positives and false negatives?

This step involves examining and interpreting output from the analysis tools mentioned earlier. SiLK can also
translate binary flow records into text for analysis with graphics packages, spreadsheets, and mathematical
tools (the rwcut command).

1.5.5 Refine

The Refine step improves the analysis. Did we successfully explain the event? If not, what problems did we
encounter? Did we properly understand the event’s context? Did our query into the SiLK repository pull
too much data? Do we need to dig deeper into the data during the modeling and testing steps? Should we
take another look at the results to see if we missed or misinterpreted important patterns and behaviors?

The preceding steps in the workflow can be combined in an iterative pattern. For example, you may want to
isolate flow records of interest from unrelated network traffic by making additional queries with the rwfilter
command and repeating subsequent steps in the analysis. This narrows the data to focus on the time periods
and behaviors of interest and eliminate unneeded flow records.

The workflow described in this section gives us the flexiblity to begin our data exploration with a general
question, apply one or more analyses to the question, and complete the workflow with a repeatable analytic.
This flexiblity does come with trade-offs, however. Queries typically increase proportionally with the time
window and flow record attributes of an analysis. Therefore, a precise model of an analysis should be
produced to minimize the query results.

1.6 Applying the SiILK Workflow

The SiLK workflow can be applied in different ways to meet the requirements of analysis groups. Groups
that are primarily concerned with network operations will often focus on network monitoring or service and
device validation. Incident response groups commonly focus on changes in network behavior that may be
associated with an incident. Security improvement groups often focus on understanding problematic network
behavior and changes that identify the impact of improvements. While the SiLK suite offers features that
support all groups, the work required to use them will vary.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1.7. AVOIDING COGNITIVE BIASES

The extended examples and case studies in this handbook apply the SiLK workflow to perform common
cybersecurity and network management operations. Most of them fall into three broad areas, each identified
by an icon. When you see these icons, you'll know that the text that follows relates to these areas.

knowing what is currently threatening it, and predicting what might be expected to happen in

situational amareness b€ future. The eye icon to the left identifies content related to situational awareness, including
detailed examples of how to apply the SiLK analysis workflow to improve your awareness of
what is happening on your network. Sections 2.3, 4.3, and 6.3 go into further detail abut using
SiLK for situational awareness.

@ Situational awareness consists of understanding what is currently present on your network,

Incident Response is an organized approach to addressing and managing the aftermath of
a security breach or cyberattack, also known as an IT incident, computer incident or security
incident.? The magnifying glass icon to the left identifies content related to incident response,
incident Response - including detailed examples of how to apply the SiLK workflow to investigate and respond to
security incidents.

) @ Threat Hunting is proactively searching for malware or attackers that are lurking in a net-
._|||_] work — and may have been there for some time.> The binocular icon to the left identifies
— i — content related to threat hunting, including detailed examples of how to apply the SiLK work-

Threat Huntin,
e flow to find active and potential threats to your network.

1.7 Avoiding Cognitive Biases

Cognitive biases are systematic errors in thinking that affect the decisions and judgments that people make.5
They grow out of limitations on how much information the human brain can process at a given time. Analysts
need to take common cognitive biases into account when investigating network behavior. If these biases are
not identified and countered, they can lead to analyses that are inaccurate or incomplete.

Common cognitive biases that can affect an analysis are listed below, along with strategies for avoiding them.

e Anchoring bias is where the analyst focuses too heavily on the initial profile or data within the
profile. This bias results in a premature judgment of the threat.

One way to fight anchoring bias is to assemble a balanced view across several datasets before making
even tentative conclusions.

e Selective perception bias is the tendency to not notice parts of the profile that do not support
assumptions about the threat. This bias results in an incomplete analysis of the threat.
One way to fight this bias is to consider multiple possible outcomes before doing the analysis. Highlight

data that supports each outcome before identifying the outcome with the strongest support.

e Information bias is where data is collected or analyzed improperly. This bias results in mistaken
conclusions from analysis.

4Definition of incident response, Techtarget Network website. [Accessed May 5, 2020] https://searchsecurity.techtarget.com/
definition/incident-response

5Byrne, Louse. A Beginner’s Guide to Threat Hunting. Security Intelligence website. September 12, 2018. [Accessed May
5, 2020] https://securityintelligence.com/a-beginners-guide-to-threat-hunting/

6Cherry, Kendra. How Cognitive Biases Influence How You Think and Act. VeryWellMind website. [Accessed February, 18,
2020] https://www.verywellmind.com/what-is-a-cognitive-bias-2794963

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://searchsecurity.techtarget.com/definition/incident-response
https://searchsecurity.techtarget.com/definition/incident-response
https://securityintelligence.com/a-beginners-guide-to-threat-hunting/
https://www.verywellmind.com/what-is-a-cognitive-bias-2794963

CHAPTER 1. INTRODUCTION TO SILK

One way to fight this bias is to double-check the collected data and use tested analytics to produce the
profile.

e Confirmation bias is where new data is only interpreted as supporting an existing assessment of the
threat. This bias prevents the analyst from considering alternative explanations and can result in an
unsupported conclusion.

One way to fight this bias is to consider multiple outcomes before analysis and highlight data that
supports each one. (This is similar to the method for avoiding selective perception bias.)

o Conservatism bias is where an analyst fails to sufficiently revise the current interpretation of the
threat when further information provides contrary evidence. This bias results in the analyst clinging
to prior interpretations that are no longer supported by the current data, which leads to unreliable
results.

One way to fight this bias is to avoid even tentative conclusions until all current data is incorporated
into the analysis. (This is similar to the method for avoiding anchoring bias.)

¢ Recency bias is when an analyst focuses too heavily on the most current results. This bias results in
ongoing trends being discounted in favor of more recent variations, producing misleading results.

One way to fight this bias is to examine both the longer-term trends and the recent variations before
making conclusions about the threat.

1.8 Dataset for Single-path, Multi-path, and Exploratory Analy-
sis Examples

The dataset used for the command examples and case studies of single-path, multi-path, and exploratory
analysis in this document is the FCCX-15 dataset”. It originates from a June, 2015 Cyber Exercise conducted
by the Software Engineering Institute at Carnegie Mellon University in a virtual environment.

The exercise network topology is shown in Figure 1.4 and is documented in the data download. It comprises
a distributed enterprise for the period from June 2-16, 2015. Internet and transport layer protocols such as
IPv4, TCP, UDP, and ICMP are well represented in the data. Link layer protocols such as IGMP and OSPF
are also included; however, they are not as prevalent as the Internet and transport layer protocols.

7SiLK Reference Data. CERT NetSA Security Suite website. [Accessed May 5, 2020] https://tools.netsa.cert.org/silk/
referencedata.html

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://tools.netsa.cert.org/silk/referencedata.html
https://tools.netsa.cert.org/silk/referencedata.html

1.8. DATASET FOR SINGLE-PATH, MULTI-PATH, AND EXPLORATORY ANALYSIS EXAMPLES

FLAMING CUPCAKE Challenge TOPOLOGY
TEAM ENVIRONMENT

Internal IDS
10.0.30.50 Grey Network
DivOsvc Mgmt: 10.0.40.62 External IDS Yy
10.0.10.50 Divomgt (see Grey diagram)

10.0.40.0/24

Mgmt: 10.0.40.61 155.6.6.0/24

Firewall
S2 Mgmt: 10.0.40.91 S0

Backbone
Core

DivOmgt
10.0.50.0/24

NOC Subnet
143.84.150.0/24

10.0.10.0/24

Dividmz
192.168.20.0/24

Dividhq
192.168.111.0/24

Divlsve
192.168.40.0/24

Web Proxy
155.6.10.10

Divisve
192.168.40.0/24

Divimgt
192.168.50.0/24

External IDS
192.168.10.50
Mgmt: 10.0.40.63

Divllogl
192.168.121.0/24

Web Proxy
192.168.70.10

192.168.30.0/24 VPN Client Pool

192.168.181.0/24

N

Sy
.’
S3 Firewall

Div1.INTL Mgmt: 10.0.40.92
VPN GW: X.X.3.11

Divllog2
192.168.122.0/24

192.168.60.0/24 Internal IDS
192.168.30.50 Divimed
sa Mgmt: 10.0.40.64 192.168.166.0/24

192.168.130.0/24 Div1.INT2
Sy N

Divllog3 ‘ v

192.168.123.0/24

Divinusr
192.168.165.0/24

192.168.170.0/24 V
E <__ <
2,168, 160, 05

Divlintell
192.168.161.0/24

Divlopsl
192.168.141.0/24

Divimar
192.168.164.0/24

Divllog4
192.168.124.0/24

Divlops2
192.168.142.0/24

Divlops3
192.168.143.0/24

Divlintel3
192.168.163.0/24

Divlintel2
192.168.162.0/24

Figure 1.4: FCC Network Diagram

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

16

Chapter 2

Basic Single-path Analysis with SiLK:
Profiling and Reacting

This chapter introduces basic single-path analysis through application of the analytic development process
with the SiLK tool suite. It discusses basic analysis of network flow data with SiLK, in addition to specific
tools and how they can be combined to form a workflow.

Upon completion of this chapter you will be able to

describe basic single-path analysis and how it maps to the analytic development process

e understand SiLK tools commonly used with basic single-path analysis

« describe SiLK IPsets and their application

describe the single-path analysis workflow using network flow data

o describe how to apply the single-path analysis workflow to situational awareness

2.1 Single-path Analysis: Concepts

Single-path analysis is the approach of combining data with methods that do not require conditional steps,
integration, or a great deal of refinement. In layman’s terms, single-path analysis can be described as the
‘start-to-finish’ approach of combining one or more analytical steps to characterize network behavior. Its
output may contain multiple attributes and characteristics; however, it results in information that normally
does not need continued iteration. Figure 2.1 provides an overview of single-path analysis.

Single-path analysis typically incorporates the Formulate, Model, Test, and Analyze steps of the analysis
workflow described in Section 1.5. The Refine step can also be included—for instance, to change the scope
of a data pull from the SiLK repository—but is not always needed. The analysis begins by identifying the
context of an analysis and formulating a hypothesis to explain the behavior under investigation. Event
attributes such as hosts, networks, and time periods are used to identify, retrieve, and partition data for
analysis. Attributes such as frequency, volume, and supporting network services provide additional behavioral
context.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Single-path analysis then summarizes this data to produce sequences of event behavior. Data can be sepa-
rated into logical groups such as successful and unsuccessful contacts, scanning, and misconfiguration. This
enables analysts to produce known and unknown activity, trends, and differences for comprehensive analysis
of a network’s behavior.

Analysts also use single-path analyses as building blocks for broader, more complex analyses. See Chapter 4
and Chapter 6 for descriptions of analysis workflows that include single-path analyses as building blocks for
more comprehensive investigations of network activity.

Single-Path Development

Characteristics of the Analytics Steps Involved in Building an Analytic
Stimulus Query
* Network Event * Time frame of stimulus
* Environmental condition * Network characteristics of stimulus
* Intrusion * Eliminate uninteresting traffic
Response Summarize
+ Change in traffic level * Revealing volumetric
(up or down) + Contingent on stimulus
+ Odd traffic (port/protocol characteristics
usage, endpoints) + Additional validating metrics

« Off-port traffic

Figure 2.1: Single-Path Analysis

2.1.1 Scoping Queries of Network Flow Data

Be careful when defining the scope of an initial query into the SiLK repository or a file. The natural tendency
is to make the partitioning criteria very inclusive, which has two drawbacks. It pulls over-large amounts of
data, consuming storage and other computer resources. Overly-broad queries may match behaviors other
than those of interest, which will complicate later steps in the analysis.

The preferred method for scoping queries is the opposite:

1. Make the partitioning criteria initially narrow, specific to the desired behaviors.

2. Once the traffic related to the behavior is retrieved, broaden the initial criteria to identify related
network traffic.

Starting narrow and broadening the scope of the data query as the analysis proceeds will use computing
resources more efficiently and facilitate clearer analysis by minimizing unwanted data.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

2.1.2 Excluding Unwanted Network Traffic

Despite narrowing the initial query, unrelated traffic is commonly included in the intially-retrieved records.
Analysis will often require isolating the desired activity from among the retrieved traffic. This may involve
studying the traffic to identify unrelated behaviors and constructing further criteria to exclude them. It may
also include eliminating traffic involving specific addresses (often by using the rwset tools to build IPsets),
traffic that does not occur in the proper timeframe (often by using a further rwfilter call), or traffic that
lacks specific protocol information associated with behavior of interest (again by using a further rufilter
call).

2.1.3 Example Single-Path Analysis

This chapter documents an example single-path analysis using the SiLK tool suite. It serves as an indepen-
dent analysis, but could also depict the beginning of a multi-path (intermediate) or exploratory (advanced)
analysis workflow. The example begins with identifying the context of an event by using rwsiteinfo to
select relevant sensors and time periods for analysis. The time window is expanded beyond the event under
analysis to select data to compare against the event period. rwfilter is then used to retrieve network flow
records that apply to the defined sensor and period.

Traffic characteristics such as bytes, packets, and TCP flags options are then used with rwfilter on the
retrieved data to select sequences of behaviors such as successful and unsuccessful contacts, scanning, and
misconfigurations. The resulting network flow records are then displayed with tools such as rwcut, rwuniq,
rwcount, and rwstats. These tools summarize and display network flow records using specified bins in
order for analysts to verify and group data for traffic characterization and behavioral analysis. Top-N and
bottom-N statistics, time series, event sequence, and record-by-record displays are a few examples depicted
in this analysis.

Hosts that match specific characteristics or behaviors during an analysis are then saved to named SiLK IPsets.
IPsets are data structures that represent an arbitrary collection of individual addresses, and are commonly
named using a behavior, characteristic, or some other descriptive attribute. For example, webservers. set
could be a IPset file of the source IP addresses obtained from querying network flow data for flows where
the source IP address responded to a SYN scan on its port 80. These binary data structures enable analysts
to use the SiLK tool suite to describe network traffic and save, display, or query the hosts that match those
descriptions with tools such as rwset, rwsetbuild, rwsetcat, or rwfilter.

2.2 Single-path Analysis: Analytics

The commands, parameters, and examples described in this chapter serve as the building blocks for analyses
with the SiLK tool suite.

2.2.1 Get a List of Sensors With rwsiteinfo

The first step in a basic, single-path network analysis of the dataset described in Section 1.8 is to find out
which sensor recorded the data to be analyzed and narrow down the time period for our analysis. Since
routing is relatively static, data from a specific IP address generally enters or leaves through the same sensor.
You need to identify the sensor that covers the affected network and figure out when this sensor recorded
network flow data.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Use the rwsiteinfo command to view this information for the sensors on your network. rwsiteinfo prints
SiLK configuration file information for a site, its sensors, and the traffic they collect. The —-fields parameter
is required and specifies what information is displayed. Run rwsiteinfo twice to do the following:

1. List the names and descriptions of all the sensors on the network. This helps to locate the sensor that
covers the affected network.

2. For the sensor of interest, list the types of SiLK traffic that it carries, the number of data files stored in
the SiLK repository for each type of traffic, and the start and end times for storing network flow data
in the repository. This identifies the direction and type of network traffic that the sensor recorded and
the time period when it was actively storing data.

Example 2.1 shows the two rwsiteinfo commands and their output. The results of these two calls to
rwsiteinfo will be used in Section 2.2.2 to build a query with the rwfilter command to select the network
flow records for our analysis.

Determine Which Sensor Covers the Affected IP Addresses

To start, run the rwsiteinfo command to find the names and locations of the sensors in the network.
rwsiteinfo ——-fields=sensor,describe-sensor

The --fields parameters requests the following information:

« sensor displays the name of each sensor in plain text.

o describe-sensor displays the description of each sensor from the site configuration file (normally
silk.conf in the root of the repository). A site’s owner can specify information about the sensor
configuration in this file. This gives you information (such as the sensor’s location) that can help you
to find which sensors recorded network traffic for the affected address block. (If the site’s owner did
not include this information in the site configuration file, nothing is displayed for this parameter.)

The output at the top of Example 2.1 lists the names and locations of the sensors. You need to find the
sensor that covers the affected network. We are interested in traffic through the subnetwork DiviExt. The
sensor S1 is associated with this subnetwork, which we will examine more closely.

Find Traffic Types and Repository Storage Times

Once you have found the sensor of interest (S1), you can find out what kinds of traffic the sensor carries and
when it wrote data to the SiLK repository.

rwsiteinfo --sensor=S1 --fields=type,repo-file-count,repo-start-date,repo-end-date

e —-sensor specifies which sensor to examine. In this example, it is the name of the sensor identified
via the first rwsiteinfo command (S1).

o —-fields displays the following information in table format for sensor S1:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

<1>$ rwsiteinfo

--fields=sensor ,describe-sensor

Sensor | Sensor-Description|

SO |
S1|
S2 |
S3|
S4 |
S5 |
S6 |
S7 1
S8 |
S9 |
S10 |
S11|
S12 |
S13|
S14 |
S15 |
S16 |
S17 |
S18 |
S19|
S20 |
S21 |
<2>$ rwsiteinfo

--fields=type,repo-file-count ,repo-start-date,repo-end-date
Type|File-Count |

in|

out |
inweb |
outweb |
innull |
outnull |
int2int |
ext2ext |
inicmp |
outicmp |
other |

DivOExt |
Divi1Ext |
DivO0Int |
DiviInt1 |
Div1iInt2|
Divilogl |
Divilog2|
Divilog3 |
Divilog4|
Diviops1|
Diviops2|
Diviops3|
Divisvec|
Dividhq|
Dividmz |
Divimar |
Divimed |
Divinusr |
Divimgt |
Diviintel1l |
Diviintel2|
Diviintel3|
--sensor=S1 \

441]12015/06/02T13
512]2015/06/02T13
328|2015/06/02T13
446|12015/06/02T13

0l

0l
511|12015/06/02T13
20412015/06/02T13

0l

ol

0l

Start -Date |
:00
:00:
:00:
:00:

:00:
:00:

:00/2015/06/18T18:
00/2015/06/18T18
00/2015/06/18T18
00/2015/06/18T18

|

|
00/2015/06/18T18
00/2015/06/18T18

|

|

|

:00:
:00:

End-Date |
00:
:00:
:00:
:00:

001
00|
001
001
|
|
001
001
|
|
|

Example 2.1: Using rwsiteinfo to List Sensors, Display Traffic Types, and Show Repository Information

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

21

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

type—the types of enterprise network traffic that are associated with S1. This tells you the
direction and origin of the network traffic it carries. It is also useful for splitting off data of
interest (for instance, separating inbound Web traffic from other inbound traffic), which can
speed up SiLK queries. (To learn more about the basic SiLK network types, see Sections 1.2.6
and 1.2.8.)

repo-file-count—the number of files that S1 stored in the SiLK repository for each type of
network traffic. Each file represents one hour of recorded data.

repo-start-date—the time and date of the oldest file that S1 stored in the SiLK repository.
repo-end-date—the time and date of the most recent file that S1 stored in the SiLK repository.

The output at the bottom of Example 2.1 lists the different types of network traffic carried by S1. The bulk
of this traffic was recorded from 2015/06/02T13:00:00 through 2015/06/18T18:00:00. In the next step of
our analysis, we will therefore retrieve network flow records from S1 within this time period.

The output from Example 2.1 can also tell us whether S1 recorded enough data to support a meaningful
network analysis. The repository contains 441 files of inbound traffic from the ISP to the network (in),
representing 441 hours of recorded inbound traffic to the IP addresses covered by S1. Similarly, the repository
contains 512 hours of outbound traffic from these IP addresses to the ISP (out), 328 hours of inbound Web
traffic (inweb), and 446 hours of outbound web traffic (outweb). This is sufficient for our analysis.

This example shows the process described in Section 1.5. The formulation is to find which sensors recorded
the data. The model used the static nature of the data and applied rwsiteinfo. Example 2.1 provided the
test, producing data that was analyzed to yield the sensor. The refinement was to use further parameters
with rwsiteinfo to determine traffic types and date ranges.

Help with rwsiteinfo

For a full list of rwsiteinfo options, type rwsiteinfo —-help.

For a detailed description of the rwsiteinfo command, type man rwsiteinfo at the command prompt.

Other Useful rusiteinfo Options

Keep the following in mind when using this command:

e You must always specify parameters with rwsiteinfo; there is no default output.

e Enter rwsiteinfo --fields options in the order that you would like them to be displayed. For in-
stance, to view the sensor description before the sensor name, specify ——fields=describe-sensor,sensor

« To find the classes and types supported by an installation, run rwsiteinfo --fields=class,type,mark-defaults.
This produces three columns labeled Class, Type, and Defaults. The Defaults column shows plus
signs (+) for all the types in the default class and asterisks (*) for the default types in each class.

o The rusiteinfo command supports optional parameters to control the formatting of its output (disable
column spaces, change separation character, disable column headers, change field separators). It can
also limit output to specific network types of interest.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS
2.2.2 Choose Flow Records With rwfilter

A key step in performing a network analysis is to find and retrieve network flow records associated with the
event from the SiLK repository. Use the rwfilter command to pull network flow records that were recorded
by the sensor of interest (S1) during the time period of interest. These records will be used in subsequent
steps in our analysis.

During this step in the analysis, rwfilter will be used to save network flow records of interest to a file.
Later, we’ll use rwfilter in conjunction with other SiLK commands to partition and explore this data.

About the rufilter command

rwfilter is the most commonly used SiLK command and serves as the cornerstone for building a network
analysis. It selects records from the SiLK repository, then directs the output to either files or other SiLK
commands. Alternatively, rwfilter can select records from a pipe or file in a working directory (for instance,
the output of a prior rwfilter command). It can optionally compute basic statistics about the flow records
it reads from the repository or a file. rwfilter can be used on its own or in conjunction with other SiLK
analysis tools, including additional invocations of rwfilter.

The following is a high-level view of the rufilter command and its options:

rwfilter {selection | input} partition output

Specify input to rwfilter by using either selection or input parameters.

o Selection parameters read (or pull) network flow records of interest that were recorded by sensors
and stored in the SiLK flow repository. They specify the attributes of records to be read from the
repository, such as the sensor that recorded the data, the type of network data, the start and end dates
for retrieving data, and the location of the repository.

o Input parameters read network flow records from pipes and/or named files in working directories
containing records previously extracted from the repository or created by other means. They can be
filenames (e.g., infile.rw) or pipe names (e.g., stdin or /tmp/my.fifo) to specify locations from
which to read records. As many names as desired may be given, with both files and pipes used in the
same command.

In this step of our network analysis, we will use rwufilter’s selection parameters to retrieve records from the
SiLK repository. In future steps, we will use rufilter’s input parameters to read flow records from a file or

pipe.

Partitioning parameters create the “filter” part of rufilter. These parameters specify which records pass
the filter and which fail. This enables you to find and isolate network flow records that match the parti-
tioning criteria you specify. rwfilter offers a variety of filtering parameters for specifying the criteria for
pass/fail filtering, including time period, value ranges for packets and bytes, IP address, protocol, source
and destination ports, and more.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

— Hint 2.1: Minimum Partitioning Parameters for rwfilter

An analysis will involve at least one call to rwfilter unless you are looking at records
saved from a previous analysis. Each rufilter call must include at least one partitioning
parameter unless ——all-destination is specified as an output parameter. Note that the
partitioning parameter does not have to filter anything; it just needs to be present. The
partitioning parameter —-protocol=0- is often used in this situation since it will not filter
any records.

In this step of our network analysis, we will specify just one partitioning parameter: the IP address that
is associated with the event. In future steps, we will specify additional partitioning parameters to identify
records of interest and isolate them for further exploration with other SiLK commands.

Output parameters specify which group of records is returned from the call to rufilter: those that “pass” the
filter, those that “fail” the filter, both, or neither. These records can be written to pipes and/or named files
in a working directory via the output parameters. (This also applies to statistics computed with rwfilter.)
Each call to rwfilter must have at least one output parameter.

In this step of our network analysis, we will use output parameters to specify the name of the file where
records are stored. In future steps, we will use pipes to direct rwfilter output to other SiLK commands
for further investigation and processing.

Hint 2.2: rwfilter File Naming Conventions

The examples in this guide store flow records in either *.rw or *.raw files (e.g., flows.rw,
external.raw). Both are commonly-accepted file extensions for rwfilter output.

Figure 2.2 shows how the rwfilter parameters interact.

ire (__O IPI\:;L:\-II-VIETERS
| > PARTITIONING
PARAMETERS @ Pipe

e 1

SELECTION OUTPUT

R . PARAMETERS PARAMETERS
epository B |
File

Figure 2.2: rwfilter Parameter Relationships

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Retrieving network flow records and saving them to a file

Our sample single-path analysis pulls network flow records from the SiLK repository with rufilter, saves
them to a binary file, then examines the data in the file. This is often much faster and more efficient than
pulling fresh data from the repository at every step in the analysis. rwfilter queries into large repositories
can take a long time to run—especially if you are investigating activity over an extended period of time. To
look at another group of records from the repository (for instance, from a different sensor or time period),
simply run rwfilter again to retrieve the desired records and create additional files for analysis.

Use the rufilter command as follows to pull network flow records associated with the sensor, time period,
and IP address of interest to our analysis (demonstrated in Example 2.2):

rwfilter —--start=2015/06/17T14 --end=2015/06/17T14 --sensor=S1 --type=all
--any-address=192.168.70.10 --pass=flows.rw

o —-start and --end specify the time period for retrieving records from the SiLK repository (which was
found in Section 2.2.1). Times can be expressed in the form YYYYMM/DDThh:mm:ss.mmm. While some
rwfilter parameters use the full format, -—start and --end use an abbreviated time form, specifying
time to the day (2015/06/17) or to the hour 2015/06/17T14), but no finer resolution than the hour.
In this example, one hour of traffic is pulled from the repository, starting at UTC 14:00:00.000 and
ending at UTC 14:59:59.999 on June 17, 2015.

Hint 2.3: SILK Parameter Abbreviations

The full parameter names are --start-date and --end-date. SiLK will recognize a param-
eter as long as you specify enough of its name to uniquely identify it.

o ——sensor specifies which sensor’s records to retrieve (sensor 81, which was identified in Section 2.2.1)

e ——type specifies the types of SILK network traffic to retrieve. We will pull records for all network
traffic.

o --any-address sets up a simple pass/fail filter for partitioning the selected network flow records. We
are interested in traffic associated with the IP address 192.168.70.10. Records that match the specified
IP address pass the filter; records that do not, fail it.

e —-pass specifies the destination of the selected records that pass the filter. In this case, they are stored
in the local disk file flows.rw.

Hint 2.4: rufilter Output File Performance

Be aware that saving rwfilter output to a network disk file can slow down this command
considerably. The speed at which records are written to the file is limited by the speed of
the network. Saving to a local file is faster. (To learn more about strategies for speeding up
rwfilter performance, see Chapter 9.)

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

The resulting binary file, flows.rw, contains network flow records from the time period, sensor, traffic
types, and IP address of interest. The 1s command in Example 2.2 shows that this file has content after
the rufilter command. In other words, the records in this file are a snapshot of the event that we will be
investigating over the course of our network analysis.

<1>$ rwfilter --start=2015/06/17T14 --end=2015/06/17T14 \
--sensor=S1 --type=all --any-address=192.168.70.10 \
--pass=flows.rw

<2>$ 1s -1 flows.rw

-rw-r--r--. 1 analyst analyst 365935 Nov 3 14:48 flows.rw

Example 2.2: Using rufilter to Retrieve Network Flow Records From The SiLK Repository

Help with rwfilter

Type rufilter --help for a full list of parameters.

Type man rwfilter for a detailed description of the rwfilter command and its parameters.

Other Useful rwfilter Options

Keep the following in mind when using rwfilter:

e Some selection parameters can be used as partitioning parameters when rwfilter is pulling network
flow records from a file or pipe. The --sensor, --type, —-class, and --flowtype parameters can
perform double duty for selecting and partitioning records.

e When specifying selection parameters, experienced analysts include a --start-date to avoid having
rwfilter implicitly pull all records from the current day, potentially leading to inconsistent results.

o rwfilter partitioning parameters give analysts great flexibility in describing which flow records pass
or fail the filter. Figuring out how to partition data to filter out unwanted records can be the most
difficult part of using this command.

o Narrowing the selection of files from the repository always improves the performance of a query. On the
other hand, increasing the specificity of partitioning options could improve or diminish performance.
Increasing the number of partitioning parameters means more processing must be performed on each
flow record. Most partitioning options involve minimal processing, but some involve considerable
processing.

Generally, processing partitioning options is much less of a concern than the number of output oper-
ations, especially disk operations, and most especially network disk operations. Choosing to output
both the “pass” and “fail” sets of records will involve more output operations than choosing only one
set.

e The parameter —-print-filenames lists, on the standard error file, the name of each file as rwfilter
opens it for reading. This provides assurance that the expected files were read and indicates the
command’s progress. (This is especially useful when many files are used as data sources and the
command will take a long time to complete.)

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

e rwfilter can take multiple files and pipes as input. If the number of files exceeds what is convenient
to put in the command line, use the --xargs parameter. It specifies the name of a file containing
filenames from which to read flow records. This parameter also is used when another UNIX process is
generating the list of input files, as in

find . -name 's.rw' | --xargs=stdin...

2.2.3 View Flow Records With rwcut

Translating network flow records from binary format into human-readable text is a helpful part of a network
analysis. Use the rwcut command to translate the binary network flow records selected via the rufilter
command as tables of ASCII text.

SiLK uses binary data to speed up queries, file manipulation, and other operations. However, these data
cannot be read using any of the standard text-processing UNIX tools. rwcut reads SiLK flow records and
translates this binary data into pipe-delimited (|) text output. You can then view the data directly in a
terminal window or read it into a text-processing, graphing, or mathematical analysis tool.

Hint 2.5: Keep Data in Binary Format Where Possible

Keep data in binary format (i.e., *.rw files) for as long as possible while performing an
analysis. Binary SiLK network flow records are more compact and offer faster performance
than the ASCII representation of these records. Use rwcut to inspect records or export data
to other tools for further analysis. See Chapter 9 for examples of text vs. binary processing.

rwcut can be invoked in two ways: by reading a file or by connecting it with another SiLK tool (such as
rwfilter or rwsort) via a pipe. When reading a file, specify the file name in the command line. The
--fields parameter selects, reorders, and formats SiLK data fields as text and separates them in different
ways.

Displaying Flow Records

As part of the network analysis, in Example 2.3 we will use rwcut to take a closer look at a set of flow
records from the file flows.rw (produced in Example 2.2).

rwcut —-fields=sip,dip,sport,dport,protocol,stime --num-recs=10 flows.rw

e The --fields parameter specifies which fields in a SiLK record are shown. Field names are case-
insensitive. This example displays the following fields:
sip—source IP address for the flow
dip —destination IP address for the flow
sport—source port for the flow
dport—destination port for the flow

protocol—transport-layer protocol for the flow

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

stime—start time of the flow, formatted as YYYY/MM/DDThh:mm:ss.mmm

e The --num-recs parameter determines how many records rwcut displays. In this example, up to ten
records are shown (regardless of how many records are actually in the file). If the file were to contain
no records, rwcut only displays the column heading for each field.

e flows.rw is the name of the file containing SiLK network flow records.

<1>$ rwcut --fields=sip,dip,sport,dport,protocol,stime \

--num-recs=10 --ipv6-policy=ignore flows.rw

sIP| dIP|sPort|dPort |prol sTime |
10.0.40.83| 192.168.70.10/53981| 8082| 6/2015/06/17T14:00:02.631]|
10.0.40.20| 192.168.70.10] 53158887 1712015/06/17T14:00:04.619]|
10.0.40.20] 192.168.70.10] 53|55004| 17|2015/06/17T14:00:04.621|
10.0.40.83| 192.168.70.10/53982| 8082| 6/2015/06/17T14:00:12.673|
10.0.40.20| 192.168.70.10]| 53164408| 1712015/06/17T14:00:14.685]|
10.0.40.20] 192.168.70.10]| 53|57734| 17|2015/06/17T14:00:14.689|
10.0.40.83| 192.168.70.10/53983| 8082| 6/2015/06/17T14:00:22.709]
10.0.40.20| 192.168.70.10] 53163770 1712015/06/17T14:00:24.753]|
10.0.40.20] 192.168.70.10]| 53|53374| 17|2015/06/17T14:00:24.755/|
10.0.40.83| 192.168.70.10/53984| 8082| 6/2015/06/17T14:00:32.741]|

Example 2.3: rwcut for Displaying the Contents of Ten Flow Records

The six fields specified with the rwcut command are displayed in the order in which they are listed. Each
field is in a separate column with its own header. The source IP addresses (sip) for each record vary; two
addresses are shown in this example. The destination IP address (dip) is the same for all of these records
since we only pulled records associated with that IP address. The output in Example 2.3 shows that the
host of interest (192.168.70.10) is receiving DNS responses (protocol 17 (UDP), source port 53 (DNS))
and service requests to TCP (protocol 6) destination port 8082 (associated with a file server).

Hint 2.6: Format IP Addresses with SiLK Environment Variables

Your output may contain additional spaces in the IP address field. The environment variable
SILK_IPV6_POLICY=ignore ignores any flow record marked as IPv6, regardless of the IP
addresses it contains. Only records marked as IPv4 will be printed. Setting this environment
variable has the same effect as invoking rwcut with the ——ipv6-policy=ignore parameter.

Help with rwcut

Type rwcut --help for a full list of parameters.

Type man rwcut for a detailed description of the rwcut command and its parameters.
Other Useful rwcut Options

Keep the following in mind while using the rwcut command:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

e The --fields parameter selects which network flow record fields appear in rwcut output. Each field is
associated with a number as well as a name. Table 1.1 lists the field numbers and their corresponding
field names. Numbers can be specified individually or as ranges. Field names and numbers can be
combined and can be listed in arbitrary order. For instance, ~-fields=1-4,9,protocol produces the
same output as ——fields=sip,dip,sport,dport,stime,protocol

e The --fields parameter also specifies the order in which fields are shown in output. Fields can be
displayed in any order. Example 2.4 displays the output fields in this order: source IP address, source
port, start time, destination IP address. This is useful to emphasize trends. By this rearrangement,
we can more easily see that the TCP traffic is using sequential ephemeral source ports, and being sent
at 10 second separations. Both of these features indicate that this is manufactured traffic.

<1>$ rwfilter flows.rw --protocol=6 --max-pass-records=4 \
--pass=stdout | rwcut --fields=1,3,sTime,2
sIP|sPort | sTime | 4dIP |

10.0.40.83|53981|2015/06/17T14:00:02.631] 192.168.70.10]
10.0.40.8315398212015/06/17T14:00:12.673| 192.168.70.10]|
10.0.40.83|53983|2015/06/17T14:00:22.709| 192.168.70.10]
10.0.40.83|53984|2015/06/17T14:00:32.741] 192.168.70.10]

Example 2.4: rwcut --fields to Rearrange Output

e If ——fields is not specified, rwcut prints the source and destination IP address, source and destination
port, protocol, packet count, byte count, TCP flags, start time, duration, end time, and the sensor
name.

o The --delimited=C parameter changes the separator from a pipe (|) to any other single character,
where C is the delimiting character. It also removes spacing between fields. This is particularly
useful with --delimited=',"' which produces comma-separated-value (CSV) output for easy import
into spreadsheet programs and other tools that accept CSV files. --delimited is the equivalent of
specifying -—no-columns --no-final-delimiter --column-sep=C.

o When output is sent to a terminal, rwcut (and other text-outputting tools) automatically invoke the
command listed in the user’s PAGER environment variable to paginate the output. The command given
in the SILK_PAGER environment variable will override the user’s PAGER environment. If SILK_PAGER
contains the empty string, no paging will be performed. The paging program can be specified for an
individual command invocation by using its —-pager parameter.

2.2.4 Viewing File Information with rwfileinfo

Analyses using the SiLK tool suite can become quite complex, with several intermediate files created while
isolating the behavior of interest. The rwfileinfo displays a variety of characteristics for each file format
produced by the SiLK tool suite, which helps you to manage these files. Use this command (demonstrated
in Example 2.5) to find out more information about the file flows.rw, which contains the SiLK records
associated with the IP address of interest.

For most analysts, the three most important file characteristics are the number of records in the file, the
size of the file, and the SiLK commands that produced the file. Enter the following rwfileinfo command
to view this information for flows.rw:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

rwfileinfo ——-fields=count-records,file-size,command-lines flows.rw

e ——fields specifies which SiLK file characteristics are displayed.

count-records—the total number of network flow records in a flow record file.
file-size—the size of the file in bytes.

command-lines—the commands used to generate the file. This can be very helpful when per-
forming an analysis that involves many steps and repeated applications of commands such as
rwfilter.

e flows.rw is the name of the file containing SiLK network flow records.
Output is shown in Example 2.5. flows.rw contains 21,864 network flow records; its size is 365,935 bytes.

This gives us an idea of how much network traffic is stored there. The SiLK command that generated the
file is the rwfilter command described in Section 2.2.2.

<1>$ rwfileinfo --fields=count-records,file-size,command-lines \
flows.rw
flows.rw:
count -records 21864
file-size 365935
command-lines
1 rwfilter --start=2015/06/17T14 --end=2015/06/17T14 \
--sensor=81 --type=all --any-address=192.168.70.10 --pass=flows.rw

Example 2.5: rufileinfo Displays Flow Record File Characteristics

Help with rwfileinfo

Type rufileinfo --help for a full list of parameters.

Type man rwfileinfo for a detailed description of the rwfileinfo command and its parameters.

Other Useful rufileinfo Options

Keep the following in mind while using the rwfileinfo command:

e While rufileinfo is generally associated with flow record files, it can also show information on sets,
bags, and prefix maps (or pmaps). For more information, see Section 2.2.8, Section 4.2.4, and Sec-
tion 6.2.7, respectively.

e Be sure to use the --fields parameter to choose which network flow record fields are displayed. If no
fields are specified, rwfileinfo defaults to displaying a dozen fields—many of which are of no use to
analysts.

e For flow record files, the record count is the number of flow records in the file. For files with variable-
length records (indicated by a record-length of one) the field does not reflect the number of records;
instead it is the uncompressed size (in bytes) of the data section. Notably, count-records does not
reflect the number of addresses in an IPset file.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

2.2.5 Profile Flows With rwuniq and rwstats

The next step in our network analysis is to investigate network flows to and from the IP address of interest.
We will determine the most common protocols associated with these flows and find flows with low, medium,
and high byte counts.

Two SiLK commands can perform these tasks.

e rwuniq is a general-purpose counting tool. It reads binary SiLK flow records from a file (or standard
input) and counts the records, bytes, and packets for any combination of fields. rwuniq also groups
(or bins) the records by a time interval specified by the analyst.

In our example, this command is used to identify the hour-long time bins containing flows with low,
medium, and high byte counts.

e rwstats provides a collection of statistical summary and counting facilities that organize and rank
traffic according to various attributes. It reads binary SiLK flow records from a file (or standard
input) and then either computes summary statistics or groups them according to a key composed of
user-specified flow fields, such as address, port, protocol, or detected application.

rwstats can also bin the records by a user-specified start-time or end-time interval. For each bin, it
sums up the values of volumetric attributes, such as bytes, packets, flow records, or unique values of
flow attributes that are not part of the key, and sorts the bins by volumetric attribute. rwstats can
find the NV highest or N lowest bins. It also sums up the attribute values across all of the records it
counts and displays the count for each bin as a percentage of the total.

In our example, the rustats command is used to identify the most commonly-used protocols associated
with traffic to and from the TP address of interest.

rwuniq and rwstats overlap in their functions. Both assign flows to time bins by a key that is set by the
analyst. The key represents combinations of flow field values for the records collected, not the number of
records in each bin. For each value of a key (specified by the --fields parameter), a bin contains counts of
flows or some other measure (specified with the --values parameter). rwuniq displays one row of output
for every bin that falls within a threshold specified by the analyst. rwstats displays one row of output for
each bin in the top N or bottom N of the total count, and computes the percentages of each data types.
For a more detailed discussion of when to use each command, see Comparing rwstats to rwuniq (later in
this section).

Finding Low, Medium, and High-Byte Flows with rwuniq

First, use the rwuniq command to profile flows by byte count. It can find out how many network flow
records within an hour-long period have a low byte count (between zero and 300 bytes), a medium byte
count (between 300 and 100,000 bytes), or a high byte count (more than 100,000 bytes). This gives you an
estimate of the volume of network activity associated with the IP address of interest.

To perform this analysis, use the rwuniq command in conjunction with the rwfilter command.
1. Run rufilter on the flows.rw file. This file contains all traffic to and from the IP address of interest

during the time period of interest; it was extracted in Section 2.2.2. Running rwfilter on it a second
time pulls all of the records in the file with the specified byte ranges.

2. Use the Unix pipe (|) command to direct the resulting output to the rwuniq command. This command

counts the number of records with each range of bytes and directs the output to a file.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1> $ rwfilter flows.rw --bytes=0-300 --pass=stdout \

| rwuniq —-bin-time=3600 --fields=stime,type --values=records --sort-output \
> low-byte.txt

<2> $ rwfilter flows.rw —--bytes=300-100000 --pass=stdout \

| rwuniq —-bin-time=3600 --fields=stime,type --values=records --sort-output \
> medium-byte.txt

<3> $ rwfilter flows.rw --bytes=100000- --pass=stdout --values=records \
| rwuniq —-bin-time=3600 --fields=stime,type --sort-output \
> high-byte.txt

Parameters for the rufilter command include the following:

flows.rw contains the network flow records of interest.

--bytes specifies the range of byte counts for selecting records. Ranges are specified using a dash (e.g.,
0-300 selects all flows with byte counts between zero and 300). To specify an open-ended range, do
not include an upper bound on the range (e.g., 100000~ selects all flows with byte counts equal to or
greater than 100000).

--pass=stdout sends all records that pass the filter to standard output.

Parameters for the rwuniq command include the following:

flows.rw is the name of the file containing SiLK network flow records.
--bin-time=3600 defines a time bin that is one hour (3600 seconds) long.

--fields=stime, type specifies the fields to use as keys for counting network flows. This parameter
is required. We are looking at the values for stime (start time for the flow) and type (network flow

type).
--values=records counts the number of records that passed the rwfilter command.

--sort-output sorts the output of the rwuniq command in numerical order according to the value (or
values) of the key specified via the --fields parameter.

The shell command > directs the output of rwuniq into the file low-byte. txt.

— Hint 2.7: Use Unix Pipes To Improve SiLK Performance

We could have saved the rwfilter output to a file and run rwuniq on that file instead of
using the UNIX pipe (|) command to send the output directly to the rwuniq command.
However, one problem with generating such temporary files is that they slow down the
analysis. The rwfilter command would have written all the data to disk, and then the
subsequent rwuniq command would have read the data back from disk. Using UNIX pipes
to pass records from one process to another skips the time-consuming steps of writing and
reading data, speeding this up considerably. The SiLK tools can operate concurrently, using
memory (when possible) to pass data between them.

Additional techniques for improving SiLK performance are described in Chapter 9.

Example 2.6 shows the output from this series of SILK commands.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

<1>$ rwfilter flows.rw --bytes=0-300 --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type \

--values=records --sort-output >low-byte.txt
<2>$ cat low-byte.txt
sTime | type | Records |
2015/06/17T14:00:00]| in | 1449
2015/06/17T14:00:00 | out | 1500 |
2015/06/17T14:00:00| inweb| 12|
2015/06/17T14:00:00| outweb| 8339

<3>$ rwfilter flows.rw --bytes=300-100000 --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type \

--values=records --sort-output >medium-byte.txt
<4>$ cat medium-byte.txt
sTime | type | Records |
2015/06/17T14:00:00]| in| 66 |
2015/06/17T14:00:00| out | 96|
2015/06/17T14:00:00| inweb| 346 |
2015/06/17T14:00:00| outweb| 10051 |
<6>$ rwfilter flows.rw --bytes=100000- --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >high-byte.txt
<6>$ cat high-byte.txt
sTime | type | Records |
2015/06/17T14:00:00]| out | 31
2015/06/17T14:00:00| outweb | 2]

Example 2.6: Characterizing flow byte counts with rwuniq

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Help with rwuniq Type rwuniq --help for a full list of parameters.

Type man rwuniq for a detailed description of the rwuniq command and its parameters.

Other useful rwuniq options

e The --value parameter specifies which flow attributes are counted for a time bin. In addition to
counting bytes, rwuniq can count records, packets, and source and destination IP addresses.

e Flow records need not be sorted before being passed to rwuniq. If the records are sorted in the same
order as indicated by the --fields parameter to rwuniq, using the --presorted-input parameter
may reduce memory requirements for rwuniq.

Finding the Most Commonly-Used Protocols With rustats

Another way to characterize network flows is by protocol usage. By looking at the most commonly-used
protocols, we can get a sense of what types of traffic the network carries. Normal network traffic is TCP
(protocol 6) and UDP (protocol 17), with some ICMP (protocol 1). Networks with more confidential traffic
may use IPSEC (with AH [protocol 50] and ESP [protocol 51]) or site-specific encryption (protocol 99).

Use the rwstats command to identify the 10 most common protocols associated with traffic into and out
of the IP address of interest. rwstats groups records into time bins by field (or fields), similar to rwuniq.
However, rwstats can list the top NV or bottom N bins and compute summary percentages for each item.

rwstats —-fields=protocol --count=10 flows.rw

o —-fields=protocol counts the records that carry traffic with each protocol.
e ——count=10 computes statistics for the 10 bins with the most common protocols.

e flows.rw is the name of the file containing SiLK network flow records.

Example 2.7 shows the output from this command.

<1>$ rwstats --fields=protocol --count=10 flows.rw
INPUT: 21864 Records for 3 Bins and 21864 Total Records
OUTPUT: Top 10 Bins by Records

prol Records| %Records| cumul_%|
6| 18854| 86.233077| 86.233077|
17| 2909| 13.304976| 99.538053]|
1] 101 0.4619471100.000000 |

Example 2.7: Finding the top protocols with rustats

Notice that the output lists just three protocols, not ten. This is because only three protocols were used
during the time period of interest. rwstats also computes the number of records for each protocol and
summarizes the percentage of traffic for each protocol.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

o Protocol 6 (Transmission Control Protocol, or TCP) makes up approximately 86% of the traffic; it
is used by popular applications such as the World Wide Web, email, remote administration, and file
transfer programs.

e Protocol 17 (User Datagram Protocol, or UDP) makes up approximately 13% of the traffic; it is used
by the Domain Name System (DNS), the Routing Information Protocol (RIP), the Simple Network
Management Protocol (SNMP), and the Dynamic Host Configuration Protocol (DHCP). Voice and
video is also transmitted using UDP.

o Protocol 1 (Internet Control Message Protocol, or ICMP) makes up less than 1% of the traffic; it is
used by network devices (such as routers) to transmit error messages and other information.

Help with rwstats. Type rustats —-help for a full list of parameters.

Type man rwstats for a detailed description of the rwstats command and its parameters.

Other useful rwstats options. Each call to rustats must include exactly one of the following:

« a key containing one or more fields via the --fields parameter and an option to determine the number
of key values to show via --count (shown in Example 2.7), -—percentage, or —-threshold

o one of the summary parameters (--overall-stats or --detail-proto-stats)

The summary parameters for rustats offer a lot of information on network traffic. When invoked with
--overall-stats, rustats looks at all the traffic together, calculating profiles of bytes per flow, packets per
flow, and bytes per packet within each flow. The profiles include numerical values for minimum and maximum
values, quartiles, and quartile ranges. Following the numerical values, rustats presents a histogram for each
profile, with the data in ten bins to cover the distribution between 0 and the maximum value, with the
top bin covering values up to 232, the maximum possible. Example 2.8 shows the output of rwstats
--overall-stats.

For a detailed protocol-by-protocol summary, using -—~detail-proto-stats with a list of protocol numbers
augments the overall summary with a similar summary for each protocol. The output can be long since
rwstats generates a set of histograms for each protocol. In Example 2.9, Command 1 shows the start of the
overall summary generated by --detail-proto-stats, with values identical to those shown in Example 2.8.
Command 2 shows the profile generated for just the TCP flow records.

rwstats also has a —-values parameter that allows you to specify a different set of aggregate values to profile
when evaluating highest or lowest N bins. These aggregate values include records (the default), bytes,
packets, and distinct: followed by any flow record field except icmpTypeCode. This parameter does not
affect the summarizing parameters. The first counting characteristic listed after the --values parameter is
the one used to calculate the percentages associated with each bin.

Example 2.10 gives two ways to use the rwstats --values parameter to expand on the top-N protocols
analysis (shown in Example 2.7):

1. Command 1 uses the --values=bytes parameter to change the value counted per bin from the default
(records) to aggregate bytes in all flows. While this does not change the order of bins in this example,
it does show that the volume of transferred data from TCP is a much greater fraction of the total than
the count of flows.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwstats

FLOW STATISTICS--ALL PROTOCOLS:
max 210540
quartiles LQ 126.33764 Med 232.74008

interval_max | count<=max|% _of_input |

*BYTES min 51;

40 |

60|

100

150

256 |

1000
10000
100000 |
1000000
4294967295 |
*PACKETS min 1;

interval_max | count<=max |’ _of_input|

31

4]

10|

20|

50|

100]|

500

1000
10000
4294967295 |

--overall-stats flows.rw

21864 records

UQ 4906.22492 UQ-LQ 4779.88728
cumul _%]

0l 0.000000 | 0.000000 |
46 | 0.210392]| 0.210392|
409 | 1.870655| 2.081046 |
9513| 43.509879| 45.590926 |
1235 5.648555| 51.239480]|
1409 6.444383| 57.683864|
8723| 39.896634| 97.580498|
524 | 2.396634| 99.977131]|
5] 0.0228691100.000000|
0l 0.0000001100.000000 |
max 2232
quartiles LQ 1.51217 Med 3.15094 UQ 13.33673 UQ-LQ 11.82456

cumul_%|
10844| 49.597512| 49.597512]
583 | 2.666484| 52.263996/|
3662| 16.748994| 69.012989|
3923| 17.942737| 86.955726 |
1401 | 6.407794| 93.363520|
684 | 3.128430| 96.491950]|
714 | 3.265642| 99.757592]|
41| 0.187523| 99.945115]|
12] 0.054885|100.000000 |
0l 0.0000001100.000000 |

max 1251

*BYTES/PACKET min 40;
quartiles LQ 52.54317 Med 65.
interval_max | count<=max |’ _of_input|

96176 UQ 119.25022 UQR-LQ 66.70705
cumul _%]|

40| 62| 0.283571| 0.283571|
44| 17| 0.077753]| 0.361325|
60 | 10089 | 46.144347| 46.505671]|
100 5126| 23.444932| 69.950604|
200 | 5735| 26.230333| 96.180937|
400 | 718]| 3.283937| 99.464874|
600 | 971 0.443652| 99.908525|
800 | 13| 0.059458| 99.967984|
1500| 7] 0.032016/100.000000]|
4294967295 | 0] 0.000000/100.000000]|
Example 2.8: Finding overall traffic profile rustats --overall

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

36

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

<1>$ rwstats --detail-proto-stats=6 flows.rw \
| head -3
FLOW STATISTICS--ALL PROTOCOLS: 21864 records
*BYTES min 51; max 210540
quartiles LQ 126.33764 Med 232.74008 UQ 4906.22492 UQ-LQ 4779.88728
<2>$ rwstats --detail-proto-stats=6 flows.rw \
| tail -n +41

FLOW STATISTICS--PROTOCOL 6: 18854/21864 records
*BYTES min 80; max 210540
quartiles LQ 129.61289 Med 900.94675 UQ 5678.05941 UQ-LQ 5548.44652

interval_max | count<=max |’ _of_protol cumul_%|
40| 0l 0.000000 | 0.000000 |

60 | 0l 0.000000]| 0.000000 |

100 | 62| 0.328843]| 0.328843]|

150 7853| 41.651639| 41.980482|

256 | 340 1.803331| 43.783812]|

1000 | 1352 7.170892| 50.954705]|

10000 | 8719| 46.244829| 97.199533|
100000 524 | 2.779251| 99.978784]|
1000000 | 4] 0.021216]1100.000000]|
4294967295 0l 0.000000/100.000000]|

*PACKETS min 2; max 1474
quartiles LQ 1.78636 Med 5.57930 UQ 15.23493 UQ-LQ 13.44858

interval_max | count<=max|% _of_protol cumul_%|
3| 7915| 41.980482| 41.980482|

4| 561 | 2.975496| 44.955978]|

10| 3613| 19.163042| 64.119020]|

20| 3916| 20.770128| 84.889148|

50| 1399 7.420176| 92.309324]|

100| 684 | 3.627877| 95.937202|

500 | 714 | 3.786995| 99.724196]|

1000 41| 0.217460| 99.941657|

10000 11 0.058343|100.000000|

4294967295 ol 0.000000|1100.000000 |
*BYTES/PACKET min 40; max 1251
quartiles LQ 51.50445 Med 59.13846 UQ 122.73994 UQ-LQ 71.23549

interval_max | count<=max |’ _of_protol cumul _%]|
40| 62| 0.328843| 0.328843|

44| 17| 0.090167| 0.419009]|

60| 9880| 52.402673| 52.821682|

100 3038| 16.113292| 68.934974|

200 | 5022| 26.636258| 95.571232]|

400 | 718| 3.808210| 99.379442]|

600 | 97| 0.514480| 99.893922|

800 | 13| 0.068951| 99.962873|

1500 | 71 0.0371271100.000000|
4294967295 | 0l 0.000000/100.000000]|

Example 2.9: Summarizing traffic with one protocol via rustats --detail-proto-stats

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

2. Command 2 adds a count of unique source IP addresses of flows (--values=bytes,distinct:sip) to
the byte count in Command 1. Since bytes is listed first, bin order and percentages are still computed
using the aggregate byte count.

The results show that this traffic comes from only a few sources, which gives insight into the traffic pattern
for the host of interest.

<1>$ rwstats --fields=protocol --values=bytes --count=10 \
flows.rw

INPUT: 21864 Records for 3 Bins and 33313611 Total Bytes

OUTPUT: Top 10 Bins by Bytes

prol Bytes | %Bytes | cumul_7%|
61 32710148| 98.188539| 98.188539]|
17| 438235 | 1.315483| 99.504023]|
1] 165228| 0.495977|100.000000 |
<2>$ rwstats --fields=protocol --values=bytes,distinct:sip \

--count=10 flows.rw
INPUT: 21864 Records for 3 Bins and 33313611 Total Bytes
OUTPUT: Top 10 Bins by Bytes

pro | Bytes|sIP-Distin]| %Bytes | cumul _%|
61 327101438 5| 98.188539| 98.188539|
17| 438235 | 2] 1.315483| 99.504023]
1] 165228]| 2| 0.4959771100.000000 |

Example 2.10: Profiling protocol volumes with rwstats --values

Comparing rwstats to rwuniq

rwstats in top or bottom mode and rwuniq have much in common, especially since SiLK version 3.0.0. An
analyst can perform many tasks with either tool. Some guidelines follow for choosing the tool that best suits
a task. Generally speaking, rwstats is the workhorse data description tool, but rwuniq does have some
features that are absent from rwstats.

e Like rwcount, rwstats and rwuniq assign flows to bins. For each value of a key, specified by the
tool with the --fields parameter, a bin summarizes counts of flows, packets, or bytes, or some other
measure determined by the analyst with the --values parameter. rwuniq displays one row of output
for every bin except those not achieving optional thresholds specified by the analyst. rwstats displays
one row of output for each bin in the top N or bottom N, where N is determined directly by the
—--count parameter or indirectly by the ——threshold or --percentage parameters.

e If rwstats or rwuniq is initiated with multiple counts in the —-values parameter, the first count is
the primary count. rwstats can apply a threshold only to the primary count, while rwuniq can apply
thresholds to any or several counts.

e For display of all bins, rwuniq is easiest to use. However, a similar result can be obtained with
rwstats -—threshold=1. rwstats will run more slowly than rwuniq because it must sort the bins by
their summary values.

e rwstats always sorts bins by their primary count. rwuniq optionally sorts bins by their key.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

e rwstats normally displays the percentage of all input traffic accounted for in a bin, as well as the cumu-
lative percentage for all the bins displayed so far. This output can be suppressed with —-no-percents
to be more like rwuniq or when the primary count is not bytes, packets, or records.

o rwuniq has two counts that are not available with rwstats: sTime-Earliest and eTime-Latest.

o Network traffic frequently can be described as exponential, either increasing or decreasing. rwstats
is good for looking at the main part of the exponential curve, or the tail of the curve, depending on
which is more interesting. rwuniq provides more control of multi-dimensional data slicing, since its
thresholds can specify both a lower bound and an upper bound. rwuniq will be better at analyzing
multi-modal distributions that are commonly found when the x-axis represents time.

2.2.6 Characterize Traffic by Time Period With rwcount

A typical network analysis will examine network traffic by time period to see how it varies throughout the
event of interest. Unusual volumes of traffic, changes in byte and packet counts, and other deviations from
normal activity can help you to figure out what is causing the event to occur.

The rwcount command captures network activity that occurs during the time interval (or bin) that you
specify. It counts the number of records, bytes, and packets for flows occurring during a bin’s assigned time
period. You can then view these counts in a terminal window or graph them in a plotting package such as
gnuplot, a spreadsheet package such as Microsoft Excel, or another analysis tool.

Our analysis will examine network traffic to and from the target IP address during the time period of interest.
We will use rwcount to show this activity in ten-minute time bins.
rwcount —-bin-size=600 flows.rw
e —-bin-size specifies the time bin in seconds. In this example, the time bin is 600 seconds or ten
minutes.
e flows.rw contains the network flow records of interest.

Example 2.11 shows the output from this command. It counts the flow volume information gleaned from
the flows.rw file by ten-minute bins.

<1>$ rwcount --bin-size=600 flows.rw

Date | Records | Bytes | Packets |
2015/06/17T14:00:00]1 466.00 | 798757 .00 3423.00]
2015/06/17T14:10:00]| 394.00]| 104668.00 | 1622.00 |
2015/06/17T14:20:00] 382.43| 104159.18]| 1621.86 |
2015/06/17T14:30:00]1 393.57| 107100.82]| 1670.14|
2015/06/17T14:40:00]| 9335.01] 15559931.61 | 191709.67|
2015/06/17T14:50:00] 10885.11| 16541697 .17| 187619.55 |
2015/06/17T15:00:00]1 7.70]| 75830.56 | 897.45|
2015/06/17T15:10:00]| 0.171 21466.66 | 383.33|

Example 2.11: Counting Bytes, Packets and Flows with Respect to Time

By default, rwcount produces the table format shown in Example 2.11.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

e The first column is the timestamp for the earliest moment in the bin.

e The net three columns show the number of flow records, bytes, and packets counted in the bin.

Examining Bytes, Packets, and Flows

Counting by bytes, packets, and flows can reveal different traffic characteristics. As noted at the beginning
of this manual, the majority of traffic crossing wide area networks has very low packet counts. However, this
traffic, by virtue of being so small, does not make up a large volume of bytes crossing the enterprise network.
Certain activities, such as scanning and worm propagation, are more visible when considering packets, flows,
and various filtering criteria for flow records.

The traffic into and out of the TP address of interest (captured in the file flows.rw) jumps significantly
during the ten-minute time bins 2015/06/17T14:40:00 and 2015/06/17T14:50:00. Byte, packet, and
record counts all rise during this 20-minute time period.

Examining Traffic Over a Period of Time
rwcount is used frequently to provide graphs showing activity over long periods of time, giving a visual
representation of shifts in network traffic. Count data can be read by most plotting (graphing) applications.

The data from Example 2.11 is plotted using Microsoft Excel in Figure 2.3. The traffic spike that we saw in
the tabular data shows up clearly in the plots on the left-hand side of this figure.

For a more detailed look at network activity during this time period, we can change the —-bin-size from
600 seconds (ten minutes) to 60 seconds (one minute).

rwcount —-bin-size=60 flows.rw

Plots of this data are shown on the right-hand side of Figure 2.3. Looking at the data on a minute-by-minute
basis shows the variation in data flows during this event.

— Hint 2.8: Data Resolution Versus Bin Size

Whether you use a larger bin size or smaller bin size depends on your data. Smaller bin sizes
provide more data points to capture subtleties in traffic. If the bin size is too small, however,
it becomes harder to spot trends in the data. Larger bin sizes make it easier to spot regular
traffic patterns. If the bin size is too large, however, there will not be enough resolution in
the data to see what is happening on your network at a given point in time.

Help with rwcount

Type rucount --help for a full list of parameters.

Type man rwcount for a detailed description of the rwcount command and its parameters.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS
Other Useful rwcount Information

Keep the following in mind when using rwcount.

e The default bin size is 30 seconds.

e Bin counts that have zero flows, packets, and bytes can be suppressed by the —-skip-zeroes option
to reduce the length of the listing. However, do not skip rows with zero flows if the output is being
passed to a plotting program; if they are, those data points will not be plotted.

2.2.7 Sort Flow Records With rwsort

Sorting flow records can help you to organize them according to protocol, IP address, start time, and other
attributes. Use the rwsort command to sort binary flow records according to the value of the field(s) you
select.

rwsort is a high-speed sorting tool for SiLK flow records. It reads binary SiLK flow records from a file
(or standard input) and outputs the same records in a user-specified order. The output records are also
in binary (non-text) format and are not human-readable without interpretation by another SiLK tool such
as rwcut. rwsort is faster than the standard UNIX sort command, handles flow record fields directly
with understanding of the fields’ types, and is capable of handling very large numbers of SiLK flow records
provided sufficient memory and storage are available.

The following example sorts the network flow records in flows.rw by byte count, destination IP, and protocol
from the highest to the lowest value in each field, then displays the first ten records.

rwsort flows.rw -—fields=dip,protocol,bytes —-reverse
| rwcut --fields=dip,protocol,bytes,stime ——num-recs=10

e —--fields specifies the sort order. It identifies the fields that are used as sort keys and specifies their
precedence. In this example, rwsort first sorts the records by destination IP address (dip), then
protocol (protocol), then byte count (bytes).

e By default, rwsort sorts from the lowest to the highest values of each sort key. —-reverse sorts the
records from the highest to the lowest values.

o The file flows.rw contains the SiLK record files to be sorted.

e The Unix pipe command (|) sends the output of the rwsort command to the rwcut command. The
rwcut command and its parameters are described in Section 2.2.3.

Example 2.12 shows the results of this command. The records are first sorted from the highest destination
IP address to the lowest. They are then sorted according to their protocols, then their sizes in bytes. This
gives you an idea of the volume and types of traffic associated with the destination IPs.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwsort flows.rw --fields=dip,protocol ,bytes --reverse \
| rwcut --fields=dip,protocol ,bytes,stime --num-recs=10
dIP |pro | bytes | sTime |
216.207.68.32| 6] 96012015/06/17T14:53:15.707 |
216.207.68.32| 6| 96012015/06/17T14:54:30.604|
216.207.68.32| 6| 120/2015/06/17T14:54:14.405]|
216.207.68.32| 6] 120/2015/06/17T14:55:29.333]|
209.66.102.50| 6] 96012015/06/17T14:55:26.586|
209.66.102.50| 6| 96012015/06/17T14:56:42.465|
209.66.102.50| 6] 12012015/06/17T14:57:41.186 |
209.66.102.50| 6] 120/2015/06/17T14:56:25.264]|
208.206.41.61| 6| 96012015/06/17T14:58:20.666 |
208.206.41.61| 6] 96012015/06/17T14:46:17.427]|

Example 2.12: Sorting by Destination IP Address, Protocol, and Byte Count

Behavioral Analysis with rwsort, rwcut, and rwfilter

A behavioral analysis of protocol activity relies heavily on basic rwcut and rwfilter parameters. The
analysis requires the analyst to have a thorough understanding of how protocols are meant to function.
Some concept of baseline activity for a protocol on the network is needed for comparison.

To monitor the behavior of protocols, first take a sample of a particular protocol. Use rusort --fields=sTime,
and convert the results to ASCII text with rwcut. To produce byte and packet fields only, try rwcut with
—--fields=bytes and --fields=packets. Then, perform the UNIX commands sort and uniq -c.

Cutting in this manner (sorting by field or displaying select fields) can answer a number of questions:

1. Is there a standard bytes-per-packet ratio?
2. Do any bytes-per-packet ratios fall outside the baseline?

3. Do any sessions’ byte counts, packet counts, or other fields fall outside the norm?

There are many such questions to ask, but keep the focus of exploration on the behavior being examined.
Chasing down weird cases is tempting but can add little to your understanding of general network behavior.

Help with rwsort
Type rusort —-help for a full list of parameters.
Type man rwsort for a detailed description of the rwsort command and its parameters.
Other Useful rusort Information
Keep the following in mind when using rwsort.
e Sort keys can be specified by field numbers as well as field names; see Table 1.1 for a complete list.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

e Sort keys can be specified in any order. For example, -—fields=1, 3 results in flow records being sorted
by source IP address (1) and by source port (3) for each source IP address. -—-fields=3,1 results in
flow records being sorted by source port and by source IP address for each source port. (Since flow
records are not always entered into the repository in the order in which they were initiated, analyses
often involve sorting by start time at some point.)

e rwsort can also be used to sort multiple SiLK record files. If the flow records in the input files are al-
ready ordered in each file, using the -—presorted-input parameter can improve efficiency significantly
by just merging the files.

e If rwsort is processing large input files, disk space in the default temporary system space may be
insufficient or not located on the fastest storage available. To use an alternate space, specify the
-—temp-directory parameter with an argument specifying the alternate space. This may also improve
data privacy by specifying local, private storage instead of shared storage. See Chapter 9 for more
information on optimizing SiLK analytics.

2.2.8 Use IPsets to Gather IP Addresses

Up to this point, our single-path analysis has focused on selecting, storing, and examining flow records.
However, another common goal of single-path analysis is to compile lists of IP addresses that exhibit criteria
of interest to the analyst. This section will continue our analysis by gathering and summarizing single-path
criteria using named sets of IP addresses, or IPsets.

Create IPsets With rwset and rwsetbuild

rwset and rwsetbuild are two SiLK tools for creating sets of IP addresses (IPsets). rwset creates sets from
flow records. rwsetbuild creates them from lists of IP addresses in text files. Expanding on the profiling in
Section 2.2.5, rwfilter can be used to profile network flows by bytes. When combined, rwset and rwfilter
summarize the IP addresses that exhibit byte-threshold profiles to files with descriptive names.

rwfilter flows.rw —-bytes=0-300 --pass=stdout \
| ruset ——any-file=low-byte.set

Parameters for the rufilter command include the following:

o flows.rw contains the network flow records of interest.
e ——bytes=0-300 specifies the range of byte counts for selecting records (0-300 for this example).

e —-pass=stdout sends all records that pass the filter to standard output.
Parameters for the ruset command include the following:

o —-—any-file=low-bytes.set specifies source and destination IP addresses from flow records with a
range of 0-300 bytes to the IPset file low-bytes.set. Because -—any-file was used above, the IPset
file will include the IP address itself as well as any IP addresses that communicated with it.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwfilter flows.rw --bytes=0-300 --pass=stdout \

| ruset --any-file=low-byte.set

<2>$ file low-byte.set

low-byte.set: SiLK, IPSET v2, Little Endian, LZ0 compression

Example 2.13: Using rwuset to Gather IP Addresses

Example 2.13 shows the output from this series of rwfilter and rwset commands.

Analysis requiring defined IP addresses should use the rusetbuild tool. rwsetbuild creates SiLK IPsets
from textual input, including canonical IP addresses, CIDR notation, and IP ranges. This approach is useful
for creating whitelists and blacklists of IP addresses that may reside in network flow records presently or in
the future.

rwsetbuild --ip-ranges servers.txtservers.set

Parameters for the rusetbuild command include the following:

o —-ip-ranges specifies allowing the textual input file to contain IP ranges.
e servers.txt specifies the textual input file name.

e servers.set specifies the binary IPset output file name.

Example 2.14 shows the output from the rwsetbuild command.

<1>$ cat servers.txt

Text file of servers

192.168.2.1 # Single

192.168.3.0/24 # CIDR

192.168.4.1-192.168.4.128 # IP range

<2>$ rwsetbuild --ip-ranges servers.txt servers.set

<3>$ file servers.set

servers.set: SiLK, IPSET v2, Little Endian, LZ0 compression

Example 2.14: Using rusetbuild to Gather IP Addresses

Help with rwset and rwsetbuild

Type ruset --help or rusetbuild --help for a full list of parameters.

Type man rwset or man rwsetbuild for a detailed description of these commands and their parameters.
Other Useful rwset and rwsetbuild Options

Keep the following in mind while using the rwset command:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS
e rwset can assign IP addresses to IPsets by source, destination, and both source and destination
simultaneously.
o ruset and rwsetbuild can read input from files on disk or standard input (stdin).

o rwsetbuild supports SiLK IP address wildcard notation (10.x.1-2.4,5). This notation is not supported
when the --ip-ranges switch is specified.

Display IP Addresses, Counts, and Network Information With rwsetcat

Single-path analysis often requires the IP addresses in an IPset to be counted and displayed. This gives you
an opportunity to inspect the IP addresses that met specified analytic criteria, such as behavior and network
topology. rwsetcat can display the IP addresses in an IPset, count the number of IP addresses, display
information about the network, and show minimum and maximum IP addresses as well as other summary
data for the IPset.

We will continue our analysis of the low byte IP addresses from Section 2.2.8 by counting, listing, and
computing summary statistics for the IP addresses in the low-bytes.set IPset file.

To count the number of IP addresses that exhibited 0-300 byte flow records with the IP address 192.168.70. 10,
enter the following command:

rwsetcat --count-ips low-byte.set
Parameters for the rusetcat command include the following:

e ——count-ips specifies counting the number of IP addresses.

o low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.15 shows the count of IP addresses contained in low-byte.set.

<1>$ rwsetcat --count-ips low-byte.set
574

Example 2.15: Using rwsetcat to Count Gathered IP Addresses

Although general counting is helpful, an analysis commonly requires additional context regarding the net-
works and hosts contained in the IPset. rwsetcat prints analyst-specified subnet ranges and the number of
hosts in each subnet.

To summarize the /24 networks contained in low-byte.set:
rwsetcat --network-structure=24 low-byte.set
Parameters for the rusetcat command include the following:
e ——network-structure groups IP addresses by specified structure and prints the number of hosts

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

« low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.16 shows the first four /24 networks contained in low-byte.set and their respective host counts.

<1>$ rwsetcat --network-structure=24 low-byte.set | head -n 4
4.2.0.0/241| 1
6.7.1.0/24] 1
8.1.7.0/24| 1
10.0.20.0/24| 1

Example 2.16: Using rwsetcat to Print Networks and Host Counts

Complete statistical summaries are also common during an analysis and can be printed with rwsetcat.
Our previous /24 summary only prints the specified CIDR range and would require iterative commands to
determine multiple CIDR network ranges that may be contained in an IPset. Therefore, rwsetcat provides
the —-print-statistics switch for full statistical summaries of an IPset.

rwsetcat —--print-statistics low-byte.set

Parameters for the rusetcat command include the following:

e —-print-statistics specifies printing a statistical summary of IP addresses contained in an IPset.

o low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.17 shows the statistical summary of IP addresses in the low-byte.set file.

<1>$ rwsetcat --print-statistics low-byte.set
Network Summary
minimumIP = 4.2.0.58
maximumIP = 216.207.68.32

574 hosts (/32s), 0.000013% of 2732
87 occupied /8s, 33.984375% of 278
381 occupied /16s, 0.5813607% of 2716
521 occupied /24s, 0.003105% of 2724
551 occupied /27s, 0.000411% of 2727

Example 2.17: Using rwusetcat to Print IP Address Statistical Summaries

Help with rwsetcat

Type rusetcat —-help for a full list of parameters.

Type man rwsetcat for a detailed description of this command and its parameters.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Other Useful rusetcat Options

Keep the following in mind while using the rwsetcat command:

e rwsetcat can print CIDR blocks without specifying a desired network mask. rwsetcat will group
sequential IPs into the largest possible CIDR block and prints individual IP addresses. This switch
cannot be combined with the --network-structure switch.

e The --network-structure switch supports multiple CIDR masks for a single command execution.

2.2.9 Resolve IP Addresses to Domain Names With rwresolve

Use the ruresolve command to display the hostnames associated with the IP addresses of interest to our
network analysis. This command performs a reverse Domain Name Service (DNS) lookup on a list of IP
addresses to retrieve their host names. If the lookup is successful, it prints the name of the host; if not, it
prints the IP address. If an IP address resolves to multiple host names, it prints the first one found. The
result is a human-readable list of hostnames that is useful for further investigation and analysis.

rwresolve takes delimited text as input, not binary flow records. It is designed for use with the rwcut
command, although it can be used with any SiLK tool that produces delimited text.

Hint 2.9: Use rwresolve with Small Datasets

Since performing reverse DNS lookups is a time-consuming process, we strongly recommend
that you use rwresolve only on small datasets.

rwcut --fields=1,1 flows.rw | rwresolve —--ip-field=2

This command first uses the rwcut command to generate a list of source and destination IP addresses
(--fields=1,1). It redirects the resulting output to the rwresolve command, which looks up the host
names associated with the destination IP addresses.

Example 2.18 shows the default behavior of rwresolve. The output of the rwcut command is passed as
input to the rwresolve command. By default, rwresolve will attempt to resolve source and destination IP
addresses without the ——ip-field option. However, this example shows that DNS was not able to resolve
all source IP addresses.

rwresolve supports the c-ares and adns asynchronous DNS libraries and will automatically select what
is available when the SiLK tool suite is installed. The getnameinfo and gethostbyaddr C libraries are also
supported, however, these may impact DNS resolution speed. Analysts can select the desired resolver using
the —-resolver switch.

Example 2.19 shows how to display the destination IP address field with ruresolve. It is important to note
that field 2 is the default position for destination IP addresses in SiLK network flow records. Therefore,
if analysts decide to append a source IP address to rwcut output as a method for displaying the IP and
hostname (such as rwcut --fields=1-12,1), the ——ip-fields=13 would be a required option for rwresolve
to determine that the 13th flow record field should be resolved.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwcut --fields=sip,dip,sport,dport,protocol

--ipv6-policy=igno

| rwresolve
sIP|
10.0.40.83]|
socal202unl.div0.net|
socal202unil.div0.net |
10.0.40.83]|
socal202unl.div0.net |
socal202unl.div0.net |
10.0.40.83]|
socal202unl.div0.net|
socal202unl.div0.net|
10.0.40.83]|

re flows.rw \

divpx02un00001.
.divil
.divil
.divil
divpx02un00001.
.divil
.divil
.divil
.divil
divpx02un00001.

divpx02un00001
divpx02un00001
divpx02un00001

divpx02un00001
divpx02un00001
divpx02un00001
divpx02un00001

divi

divil

divi

dIP|sPort|dPort|prol

.net |53981| 8082| 6|

.net | 53158887 | 17|
.net | 53|55004| 17|
.net | 53982 8082| 6|
.net | 53|164408| 17|
.net | 53|57734| 17|
.net |53983| 8082| 6|
.net | 53163770 17|
.net | 53153374| 17|

.net |53984| 8082| 6|

--num-recs=10 \

Example 2.18

: Looking Up Source

and Destination Hostnames with rwresolve

<1>$ rwcut --fields=sip,dip,sport,dport,protocol

--ipv6-policy=igno

re flows.rw \

dIP|sPort|dPort|prol

divpx02un00001.divl.net|
divpx02un00001.divl.net |53982]

| rwresolve --ip-fields=2
sIP|

10.0.40.83]|

10.0.40.201

10.0.40.20]|

10.0.40.83]|

10.0.40.20]

10.0.40.20]| divpx02un00001

10.0.40.83]| divpx02un00001

10.0.40.20| divpx02un00001

10.0.40.20]| divpx02un00001.

10.0.40.83]| divpx02un00001

divpx02un00001.divl.net |
.divil.
.divil
.divl.
divi.

.divl.net |53984|

divpx02un00001.divl.net |53981]|
divpx02un00001.divl.net |

8082| 6l

53158887 | 17|
53155004 17|

8082| 6l

53164408| 17|
5357734 17|

.net | 53983

8082| 6l

53163770| 17|
53153374 17|

8082| 6|

--num-recs=10 \

Example 2.19: Looking Up Destination Hostnames with rwresolve

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

48

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Help with ruresolve

Type ruresolve —-help for a full list of parameters.

Type man rwresolve for a detailed description of this command and its parameters.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

49

BASIC SINGLE-PATH ANALYSIS

CHAPTER 2.

Records

Records

2500

12000

,'STISTLLT/90/G1L02
“ZTISTLLT/90/G1L02
:60:ST.LLT/90/STOT
190:ST1£1/90/5T02
"€0:STLLT/90/5102
00:ST1£1/90/ST0T
HLSYTLLT/90/ST0T
Y11L1/90/S102
YT1L1/90/102
8vYTLLT/90/GL02
TLLT/90/G102
TLLT/90/51L02
“6EWTLLT/90/GL0T
T1LT/90/G102
€EWTLLT/90/GL0T
0€:4T1£1/90/ST0T
LTYTLLT/90/ST0T
YZYTLLT/90/ST0T

"160:¥TLLT/90/STOT
90:YTLLT/90/ST0T
€0°VT1LT/90/ST0T
100:¥TLLT/90/STOT

2 9 g g o
8 8 8 8
38 & 8 &
& 4=

2 99299
888838
88888
§8 8% SR

Bytes

Bytes

3500000
3000000
2500000
2000000
1500000
1000000

18000000

y 'ST'STLLT/90/G102
“ZT:STLLT/90/S102

PSTLLT/90/GL0Z
“ISTLLT/90/GL0Z
“8Y:YTLLT/90/GL0Z
TSYPTLLT/90/GL0Z
ZYpTLLT/90/G1L02
"6€:0TLLT/90/510C
"9EPTLLT/90/510T
€€ PTLLT/90/510C
0€:4TLLT/90/STOT
“WTLLT/90/ST0T
T1£T/90/ST0T
"TZPTLLT/90/5102
"8TYTLLT/90/S102
STPTLLT/90/5102
ZUPTLLT/90/5102
160:TLLT/90/STOT
190:TLLT/90/ST0T
T1£T/90/ST0C
“HTLLT/90/STOT

4000000
2000000

Packets

Packets

250000

45000
40000
35000
30000
25000
20000

200000

150000

15000
10000

100000

5000

50000

"STISTLLT/90/G102

“ZTiSTLLT/90/S1.02
":60:STLLT/90/STOT

:90:ST1L1/90/ST0C
“€0'STLLT/90/G102

:00:STLLT/90/STOT

LS YTLLT/90/STOT

STLLT/90/G102

“ISWTLLT/90/G1L02
"8V TLLT/90/G1L0T

v:vT1LT/90/G102

T TLLT/90/G102

YT1£1/90/G1L02
YTLLT/90/G102
€EWTLLT/I0/SL0T
I0E Y TLLT/90/ST0T
1LZPT1LT/90/STOT
YTy TLLT/90/ST0T
“TEYTLLT/90/G1L02
“8TYTLLT/90/G1L02
"ST:VTLLT/90/S102
“ZTYTLLT/90/G102
160:7T1£T/90/STOT
190:7T1£1/90/ST0T
I€0:PTLLT/90/STOT

00:7TLL1/90/510C

ms

ing 10-Minute and 1-Minute B

Displaying rwcount Output Us

Figure 2.3

50

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

2.3 Situational Awareness and Single-Path Analysis

Situational Awareness

Situational awareness is the perception of environmental elements and events with respect to time or space,
the comprehension of their meaning, and the projection of their future status.® What does this mean for
cybersecurity? Analysts generally need to find answers to the following questions about their networks:

e What is currently present?
e What is currently threatening?

o What potential developments (either aggressive or defensive) might be expected?

This information can then be used as a basis for making decisions about the operation and defense of your
cyber infrastructure.

We'll examine how to apply SiLK’s single-path analysis workflow to gain better situational awareness by
looking at examples. Our example cybersecurity analyst named Arthur is asked to examine the web traffic
on his organization’s network. Arthur’s supervisor is concerned about abnormal traffic and is worried that
the organization’s web site might be maliciously redirected. Two possible ways of doing this redirection are
direct attacks on the web server and manipulation of the DNS cache to redirect otherwise-benign content
references.

Arthur can take several steps to gain awareness of the organization’s web service and the threats to that
web service. We'll discuss them later in this section.

2.3.1 Components of Situational Awareness

Situational awareness for cybersecurity has four main components.

o Know what should be (referred to as Desired awareness)
o Track what is—i.e., what is actually in use, not just installed (referred to as Actual awareness)
o Infer when “what should be” does not match “what is” (referred to as Differential awareness)

e Do something about the differences (referred to as Actionable awareness)

Desired awareness implies understanding the enterprise’s intent for required activities, whether from an
infrastructure or a mission-assurance point of view, including

e legitimate users of internal and public-facing systems and devices

o approved software and applications to be installed on network hosts

8Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

e expected communication patterns from internal systems to external systems and to other internal
systems

« specific anticipated changes that are currently happening

Actual awareness implies measured observation of the enterprise network and its traffic to determine the
current status, including

« observed devices, software or applications, and users
e which known vulnerabilities exist for the observed devices, software and applications
o how usage of the devices is changing

e usage patterns and cycles associated with systems, devices and users

Differential and actionable awareness most often involve multi-path or exploratory analyses and will be
discussed further in Section 4.3 and Section 6.3.

2.3.2 Single-Path Analysis for Desired Awareness: Validate Web and DNS
Servers

An analyst can do a lot with single-path analyses to gain desired awareness. Many network functions are
identified by specific applications, protocols, or IP addresses. Each of these functions can be addressed via
a specific analysis.

In Arthur’s case, he knows that the IP address of the primary web server is 10.0.40.21. He also knows that
the organization includes multiple branches, with DNS authoritative and recursive resolvers at IP addresses
192.168.20.58, 10.0.40.20, 10.0.20.58, and 192.168.40.20. Arthur needs to find out whether these
servers are operating as expected. Example 2.20 shows Arthur’s analysis to validate the expected servers.

Validate Primary Web Server

Command 1 in Example 2.20 uses a single-path combination of rwfilter and rwstats. The rufilter call
pulls more than three weeks of traffic, but most of that traffic is empty in the sample data. From these
records, the rwfilter call filters outbound web flows that came from port 443, the reserved port for https
service.

The results from Command 1 list the top 5 web servers that are active on the network. They validate that
the organization’s main web server, 10.0.40.21, is the most common web server.

Find Recursive and Authoritative DNS Resolvers

Profiling DNS service is slightly trickier. Arthur now needs to look at inbound and outbound DNS traffic
(UDP on port 53) to find recursive and authoritative resolvers. A recursive resolver is a server that generates
outbound DNS queries. An authoritative resolver is a server that responds to inbound DNS queries. The four
DNS servers should be acting as both recursive and authoritative resolvers if they are operating properly.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

Command 2 in Example 2.20 uses rwfilter and rwstats to look for recursive resolvers (source addresses
for flows found by --type=out, ——proto=17 (UDP), and --dport=53). The call identifies five servers: the
four expected, plus a relatively-small set of queries from the host 192.168.40.25.

Command 3 uses rwfilter and rwstats to look for authoritative resolvers (destination addresses for flows
found by --type=in, --proto=17 (UDP), and --dport=53). Only the four expected servers are listed in the
results. Since these four appear on both lists, they are acting as both authoritative and recursive resolvers,
just as expected. However, Arthur decides that host 192.168.40.25 needs a closer look, since it appears on
one list but not the other.

<1>$ rwfilter --start=2015/06/01 --end=2015/06/25 --type=outweb \
--sport=443 --pass=stdout \

| rwstats --fields=sip --values=flows --count=5

INPUT: 728080 Records for 5 Bins and 728080 Total Records

OUTPUT: Top 5 Bins by Records

sIP| Records| Y%Records| cumul _%]|
10.0.40.21]| 727902| 99.975552| 99.975552]|
192.168.40.24| 97 | 0.013323| 99.988875]|
192.168.40.91| 38| 0.005219| 99.994094|
192.168.40.27]| 27 | 0.003708| 99.997802]|
192.168.40.92]| 16| 0.002198]100.000000|

<2>$ rwfilter --start=2015/06/01 --end=2015/06/25 --type=out \
--proto=17 --dport=53 --pass=stdout \

| rwstats --fields=sip --values=flows --count=5

INPUT: 10741620 Records for 91 Bins and 10741620 Total Records

OUTPUT: Top 5 Bins by Records

sIP| Records| %Records| cumul_%|
192.168.20.58] 4838813| 45.047330| 45.047330]|
10.0.20.58| 2071459| 19.284419| 64.331749|
10.0.40.20] 1697322| 15.801360| 80.133108]|
192.168.40.20] 1135206| 10.568294| 90.701403]|
192.168.40.25]| 247595 | 2.305006| 93.0064009 |

<3>$ rwfilter --start=2015/06/01 --end=2015/06/25 --type=in \
--proto=17 --dport=53 --pass=stdout \

| rwustats --fields=dip --values=flows --count=10

INPUT: 2832800 Records for 4 Bins and 2832800 Total Records

OUTPUT: Top 10 Bins by Records

dIP | Records| %Records| cumul _%|
192.168.40.20]| 1558373| 55.011755| 55.011755]|
10.0.40.20] 984275| 34.745658| 89.757413]|
192.168.20.58]| 282775 9.982173| 99.739586 |
10.0.20.58]| 7377 | 0.260414]1100.000000]|

Example 2.20: Using rwfilter and rwstats to Profile Web and DNS Services

Profile the Anomalous DNS Server

Example 2.21 shows Arthur’s analysis of the anomalous host 192.168.40.25. To do a quick look at that
address’s activity, Arthur first has to find out which sensors this address lay behind, to minimize the amount
of duplication in later results.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Command 1 calls rwfilter to collect outgoing traffic (types out and outweb) with the source address of
this host (192.168.40.25). It found three sensors that detected this outgoing traffic: S3. S12. and S1.

Arthur can now put this information to use when he looks at activity associated with 192.168.40.25.
Command 2 calls rwfilter to pull all records involving this address from these sensors and then feeds the
records to rwuniq. The rwuniq command breaks out activity by type of flow and by the transport protocol
in use. The profile identifies the number of flows and the breadth of activity by counting both the source
and destination addresses and ports.

The results of Command 2 show that this host is performing quite a bit of activity besides the DNS queries.
It is using a lot of TCP and some ICMP traffic. Its profile is similar to one that is normally expected of
a workstation, but the number of hosts and ports it communicates with are both larger than the typical
workstation. However, this host does not seem to be further relevant to activity against the web server.

<1>$ rwfilter --start=2015/06/01 --end=2015/06/25 \
--type=out ,outweb --saddr=192.168.40.25 --pass=stdout \

| rwuniq --fields=sensor --values=flows
sen | Records |
S31 224254 |
S12| 18959
S1| 109067 |

<2>$ rwfilter --start=2015/06/01 --end=2015/06/25 \
--sensor=S51,583,512 --type=all --any-addr=192.168.40.25 \
--pass=stdout \
| rwuniq --fields=type,protocol \
--values=flows ,distinct:sip,distinct:dip,distinct:sport,distinct:dport \

--sort
type | pro | Records|sIP-Distin|dIP-Distin|sPort|dPort |
in| 1] 70| 7| 1] 1] 1]
in| 6] 76656 | 8| 1] 1201110178]|
in| 17| 248417 | 69| 1] 4116240
out | 6 | 75544 | 1] 8110179 1201
out| 17| 259080 | 1] 14216286 | 5|
inweb| 6] 18459 | 1] 1] 2| 5051]
outweb| 6] 17656 | 1] 1| 5052]| 2|
int2int| 1| 23549 11] 5| 1] 10|
int2int| 6] 28992 | 4| 5| 9484| 8793]|
int2int| 17| 159099 | 68| 142] 940]| 25 |

Example 2.21: Using rwuniq to Profile an Address

2.3.3 Single-Path Analysis for Actual Awareness: Examine Network Traffic

Arthur needs to do additional work to more fully validate the web and DNS behavior. This moves from
analyzing the network for desired awareness to analyzing it for actual awareness. It also sets up later analyses
for differential and actionable awareness, which involve more detailed examinations of network traffic to gain
a better understanding of the network’s current behavior.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

Profile Outbound Web Traffic

Arthur decides to profile outbound web traffic from the organization’s main web server (10.0.40.21). This
will show whether the server is carrying normal web traffic or is behaving in a way that might indicate
suspicious activity (e.g., signaling or probing attempts).

In Example 2.22, Command 1 uses rufilter to retrieve outbound web flows (--type=outweb and --sport=443)
for a single day. The query is limited to flows with an average of 60 or more bytes per packet (--bytes-per=60-)
— that is, flows with substantive data content. The rwufilter command displays the number of flows and
then outputs those flows to the rustats command.

To compute a statistical summary of the flows, Command 1 calls rwstats with the -—-detail parameter,
which requires a list of protocols as an argument. Although the results of the rwstats call include both
histograms and summary statistics, Command 1 calls the UNIX grep command to display only the statistics.
The results profile the total number of bytes per flow, the number of packets per flow, and the bytes per
packet average per flow.

Command 2 is similar to Command 1. It uses rufilter and rwstats to profile outbound web flows with
less than 60 bytes per packet (--bytes-per=1-59) — that is, flows that hold little or no data content.

The results of Commands 1 and 2 show that the two groups of flows are very different. The flows with data
involve both more packets and much larger bytes per packet averages. The flows with little to no data are
short (1-9 packets) and have small total bytes per flow (40-372 bytes).

These results support Arthur’s suspicion that the data-bearing flows are likely normal web traffic and the
non-data-bearing flows are likely either signalling or probing. The relatively large number of non-data-
bearing flows (more than twice the number of data-bearing flows) further supports his interpretation of
signalling or probing.

Whether the behavior of non-data-bearing flows becomes part of differential awareness requires exploratory
analysis. However, Arthur knows that it is a behavior that might not be expected by the enterprise.

<1>$ rwfilter --start=2015/06/17 --type=outweb --sport=443 \
--saddress=10.0.40.21 --print-stat --bytes-per=60- \
--pass=stdout \

| rwustats --detail=6 \

| grep "min"

Files 225. Read 3164253. Pass 128452. Fail 3035801.

*BYTES min 391; max 154201

*PACKETS min 3; max 118

*BYTES/PACKET min 82; max 1463

<2>$ rwfilter --start=2015/06/17 --type=outweb --sport=443 \
--saddress=10.0.40.21 --print-stat --bytes-per=1-59 \
--pass=stdout \

| rwstats --detail=6 \

| grep "min"

Files 225. Read 3164253. Pass 323660. Fail 2840593.

*BYTES min 40; max 372

*PACKETS min 1; max 9

*BYTES/PACKET min 40; max 58

Example 2.22: Using rwfilter and rwstats for Web Actual Awareness

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Characterize Traffic Between DNS Resolvers

The next step in Arthur’s analysis is to examine traffic between recursive and authoritative DNS resolvers.
In Example 2.23, the key set of statistics is the bytes per packet. Command 1 shows how to compute bytes
per packet for recursive resolvers. Command 2 shows how to compute bytes per packet for authoritative
resolvers.

These values are similar for both the recursive and authoritative resolvers. The results are very consistent
with the byte size of normal DNS requests and responses. In several cases, multiple requests (up to 216)
went to the authoritative resolver from the same recursive resolver within the active timeout window for flow
generation. This multiplicity led to the total byte and packet count statistics showing a wide range. While
this is somewhat unusual for an operational network, this data is from an exercise. The tight timeframe
of the exercise likely led to the multiplicity of queries. The sources and destinations of the traffic are as
expected.

<1>$ rwfilter --start=2015/06/17 --type=out --protocol=17 \
--dport=53 --sipset=aware_dns.set --pass=stdout \

| rwustats --detail=17 \

| grep "min"

*BYTES min 45; max 5370

*PACKETS min 1; max 73

*BYTES/PACKET min 45; max 261

<2>$ rwfilter --start=2015/06/17 --type=in --protocol=17 \
--dport=53 --dipset=aware_dns.set --pass=stdout \

| rwstats --detail=17 \

| grep "min"

*BYTES min 45; max 15889

*PACKETS min 1; max 216

*BYTES/PACKET min 45; max 261

Example 2.23: Using rwufilter and rwstats for DNS Actual Awareness

Conclusions from the Single-path Analysis for Situational Awareness

The web and DNS examples illustrate the use of SiLK for desired and actual situational awareness through
single-path analysis. In both cases, the analysis broke the behavior into cases that could be examined
separately to support more detailed analysis.

From the results of this analysis, Arthur concludes that the main web server might be exhibiting behavior
that indicates signalling or probing in addition to its normal activities. He’s also found a server that is
engaging in an anomalous pattern of activity. While these results show some unusual behavior, Arthur needs
to perform further analysis to find out whether they represent a threat to the security of the enterprise.

Another approach is to work from behavior that is known to be threatening, by focusing on IDS rules. The
next section discusses a specialized tool that supports using IDS rules as a basis for retrieving flow records.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

2.3.4 Translate IDS Signatures into rwfilter Calls with rwidsquery

Traditional intrusion detection depends heavily on the presence of payloads and signatures: distinctive packet
data that can be used to identify a particular intrusion tool. In general, the SiLK tool suite is intended
for examining trends. However, it it can also be used to identify specific intrusion tools. While targeted
intrusions are still a threat, tool-based, broad-scale intrusions are more common. Sometimes it is necessary
to translate an intrusion signature into SiLK filtering rules; this section describes some standard guidelines
to accomplish this task.

To convert signatures, consider the intrusion tool behavior as captured in a signature:

e What service is it targeting? This can be converted to a port number.
e What protocol does it use? This can be converted to a protocol number.

e Does it involve several protocols? Some tools, malicious and benign, will use multiple protocols, such
as TCP and ICMP.

e What about packets? Buffer overflows are a depressingly common form of attack and are a function
of the packet’s size as well as its contents. Identifying a specific packet size can help you to figure out
which intrusion tool (or tools) may have been employed for the attack.

Hint 2.10: SiLK Byte Counts Include Packet Headers

When working with packet sizes, remember that the SiLK suite includes packet headers. For
example, a 376-byte UDP payload will be 404 bytes long after adding 20 bytes for the IP
header and eight bytes for the UDP header.

o How large are sessions? An attack tool may use a distinctive session each time (for example, a session
of 14 packets with a total size of 2,080 bytes).

The rwidsquery command supports direct translation of rules and alert logs from the SNORT® intrusion
detection system (IDS) into rwfilter queries. This helps an analyst examine network behavior shortly
before, during, and after an alert is generated. Look for possible event triggers as well as behaviors that
show the alert to be a false positive.

In Example 2.24, a sample Snort rule from Emerging Threats is used as a basis for querying network flow
records. Command 1 shows the Snort rule (which looks for a VOIP attack). Command 2 invokes the
rwidsquery to translate this rule into a call to rwfilter, storing the identified flow records in out.rw,
while reporting how many records were found. Command 3 uses rwfileinfo to show the call to rufilter
produced by rwidsquery.

While the rwfilter calls produced by rwidsquery are somewhat redundant, this tool allows for a useful
starting point for moving from Snort rules and alerts to network flow records. Initially, the results are likely
to contain more than the records directly related to the suspicious activity. However, an analyst can add
parameters to the rwfilter call generated by rwidsquery, by using an empty parameter (--) followed by
the additional rwfilter parameters (shown in Command 2 for adding the —-type parameter). In this way,
flow sizes (bytes or packets), addresses (source or destination), and TCP flag combinations can be added to
reduce the extra records retrieved through rwidsquery. An analyst can also use additional SiLK commands
to profile and eliminate records.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ fmt tmp-rule.txt

alert tcp any any -
TCP";
threshold:

$id :2003192;
2010_07_30;)

rev:4;

flow:established ,to_server;
type both ,
reference:url,doc.emergingthreats.net/2003192;

> any 5060 (msg:"ET VOIP INVITE Message Flood
content :"INVITE"; depth:6;

count 100, seconds 60;
classtype:attempted-dos;
metadata:created_at 2010_07_30, updated_at

track by_src,

<2>$ rwidsquery --intype=rule \

--start=2015/06/
--config-file=./

--output-file=out.rw --

Files 460.

<3>$ rwfileinfo

| fmt

out .rw:
command-lines

Read
--f

17T0 --end=2015/06/17T23 \
snort .2091101. conf.txt tmp-rule.txt \

--type=in,out --print-stat

16661836. Pass 514. Fail 16661322.
ields=command-lines out.rw \
1 rwfilter --start-date=2015/06/17TO
--end-date=2015/06/17T23
--stime=2015/06/17T0-2015/06/17T23 --dport=5060

--type=in,out --print-stat --pass=out.rw

E

xample 2.24: Using rwidsquery for Snort Rule Translation

Getting Help with rwidsquery

For a list of rwidsquery

options, type rwidsquery —-help.

For a complete discussion of this command, type man rwidsquery.

2.4 Summary

of SiLK Commands in Chapter 2

Command Section Name Page
rwsiteinfo Get a List of Sensors With rwsiteinfo 19
rufilter Choose Flow Records With rufilter 23
rwcut View Flow Records With rwcut 27
rwfileinfo Viewing File Information with rwfileinfo 29
rwuniq and rwstats Profile Flows With rwuniq and rwstats 31
rwcount Characterize Traffic by Time Period With rwcount 39
rwsort Sort Flow Records With rwsort 41
rwset and rwsetbuild | Create IPsets With rwset and rwsetbuild 43
rusetcat Display IP Addresses, Counts, and Network Information With 45
rwsetcat
ruresolve Resolve TP Addresses to Domain Names With ruresolve 47
rwidsquery Translate IDS Signatures into rufilter Calls with rwidsquery 57
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Chapter 3

Case Studies: Basic Single-path
Analysis

The previous chapter introduced the process of single-path analysis and covered some of the commands
that are used in such analyses. This chapter walks through several detailed cases that serve as examples of
single-path analyses.

Upon completion of this chapter you will be able to

o describe a sequence of steps that analysts may use in approaching a task
e apply those steps to several tasks relevant to network traffic

e use SiLK tools to automate the analysis

The case studies in this chapter use the FCCX dataset described in Section 1.8.

3.1 Profile Traffic Around an Event

Incident Response

One view of a network security event is that some specific activity occurs on a particular host at an identified
time. In terms of the analysis in this handbook, a host is indicated by its IP address, and time is, at first
consideration, associated with a given hour. With this as a starting point, the analyst needs to develop a
high-level assessment of possible changes in behavior which then provides a guide to more detailed follow-on
assessments. The end goal is to answer some basic questions about the event:

e Did the event impact network performance or services?

e Was the impact sufficient to warrant dedicating resources to respond?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 3. BASIC CASE STUDY

e Was the event malicious?
e Did it demonstrate weaknesses that could enable malicious activity?

o Which entities were involved (both internal and external)?

Frequently, trying to answer such questions in detail involves too much effort. The alternative is to proceed
in a staged manner, and at each stage determine if analysis should proceed further. This section describes
an initial high-level analysis that can be done rapidly. It helps you to determine whether there could have
been some impact from the event, along with a rough feel as to the magnitude of that impact.

Working from the target IP address and the time frame as a start, there are several possible approaches to
gaining a high level indication of impact from the event:

o traffic—look at traffic on the targeted network and search for shifts in the size and frequency of
contacts involving the target, measuring before and after the event

« response time—look at the overall response time for service requests (the average interval between
request and response) into the network, then determine if it has increased during and following the
event

o contact rate—look at the relative rate of contact with services (indicated by port and protocol) on
the targeted network, searching for shifts in the contact rate and the size of traffic on those services

e hosts—Ilook at the set of hosts in contact with the target, and determine if it has shifted unusually
during and after the event.

This section will explore the first of these alternatives: looking at traffic shifts. (The other alternatives may
be useful to analysts, but are not covered here.)

3.1.1 Examining Shifts in Traffic

Sofia is a cybersecurity analyst who’s been asked to investigate changes in network traffic that occurred
before, during, and after a suspected incident. Her investigation applies the Formulate-Model-Analyze steps
in the SiLK workflow (described in Section 1.5) to perform a single-path analysis that looks at shifts in
network traffic around the event. Her results will help to guide her team’s investigation of and response to
the incident.

Sofia starts by knowing a tentative start and end time for the event (14:00-1500 on June 17, 2015), and
that the event involves covert data transfer. First, she will filter for network flow records associated with
the targeted host around the time of the event (the Formulate step). This involves pulling records from the
appropriate parts of the repository and isolating those that involve the targeted host. Next, she’ll divide the
set of records into bins according to volume and compute counts for each bin before, during, and after the
event (the Model step). Finally, she will interpret the counts to assess the potential impact of the event (the
Analyze step).

These steps are described in more detail below.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.1. PROFILE TRAFFIC AROUND AN EVENT

Filter Traffic Around the Event (Formulate)

Sofia structures the Formulate portion of her analysis as a query with the rwfilter tool. She knows when
the incident occurred and uses this information to determine which parts of the repository to query by date-
hour (using the parameters —-start and --end) and type (using the --type parameter). The association
with the target host and sensor are indicated by the host’s IP address (using the --any-address parameter)
and sensor name (using the --sensor parameter). The filtered records are then stored in a file (using the
--pass parameter) for later parts of the analysis.

Summarize Records (Model)

Next, Sofia summarizes the results of her initial query as part of the Model step in her analysis. After she
pulls the flow records via her query, she uses the rwuniq command to summarize them. Her goal is to filter
out the appropriate group of flows to summarize by volume. She will therefore create volume-based groups
at low, medium, and high values for both byte volume and flow duration.

For each group, Sofia uses another call to rwfilter to pull records from the file generated previously. It
extracts those with the volume measure for each group (using either —-bytes or -—duration). The output
goes to rwuniq to count the records. Her analytic generates separate counts for each hour and type of
flow record using the options --fields=stime,type and --bin-time=3600. The number of records in each
group are counted using --values=records.

Interpret Counts (Analyze)

Sofia’s investigation provides a high-level view of the variation in activity from an hour before the event to
an hour after it. She can now analyze these results to see how network activity varied during these time
periods. This will give her a better idea of the incident’s impact.

3.1.2 How to Profile Traffic

The resulting set of commands for Sofia’s analysis are shown in Example 3.1.

1. Sofia’s initial query is shown in Command 1. It calls the rufilter command to retrieve records from the
flow repository that were stored during the two hours surrounding the event (--start=2015/06/17T13
and --end=2015/06/17T15). It filters these records by type (--type=in,inweb,out,outweb) and
whether they show communication with the target host (--—any-address=192.168.70.1, which filters
flow records that have this IP address as either a source or a destination). It then saves the resulting
records to the file traffic.rw in the local directory. This file serves as the basis for profiling traffic
around the event.

2. Her next step is to summarize the flow records by volume. Command 2 calls rwfilter to find low-
volume flows in traffic.rw. It filters out flows with low byte counts (--bytes=0-300) and sends
them to standard output (--pass=stdout), then uses a pipe (|) to direct these records to the rwuniq
command. The rwuniq command divides the records into hour long (i.e., 3600 second long) bins
(--bin-time=3600) and counts the records in each bin according to their start time range and type
(--fields=stime,type). It then stores the resulting hourly counts in the file low-byte.txt.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 3. BASIC CASE STUDY

3. In Commands 3 and 4, she similarly uses rwfilter and rwuniq to generate hourly counts of medium
and high-volume flows. Command 3 counts records for medium-volume flows (--bytes=310-100000)
and stores the results in the file med-byte.txt. Command 4 counts records for high-volume flows
(--bytes=100001-, which does not specify an upper limit on byte counts) and stores the results in the
file high-byte. txt.

4. Sofia then uses rwfilter and rwuniq to summarize flows in traffic.rw by duration, as shown in
Command 5. Tt first calls rwufilter to filter flows that are up to a minute long (--duration=0-60).
As in Commands 2-4, it then calls rwuniq to divide these records into hour-long bins and count the
flows in each bin by start time and type. Finally, it stores the resulting hourly counts in the file
short-duration. txt.

5. In Commands 6 and 7, she again calls rwfilter and rwuniq to generate hourly counts of medium and
long-duration flows. Command 6 counts medium-duration flows (--duration=61-120) and stores the
results in the file med-duration.txt. Command 7 counts long-duration flows (-—duration=121-) and
stores the results in the file long-duration.txt.

<1>$ rwfilter --start=2015/06/17T13 --end=2015/06/17T15 \
--sensor=81 --type=in,inweb,out,outweb \
--any-address=192.168.70.10 --pass=traffic.rw

<2>$ rwfilter traffic.rw --bytes=0-300 --pass=stdout \

| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >low-byte.txt

<3>$ rwfilter traffic.rw --bytes=301-100000 --pass=stdout \

| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >med-byte.txt

<4>$ rwfilter traffic.rw --bytes=100001- --pass=stdout \

| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >high-byte.txt

<6>$ rwfilter traffic.rw --duration=0-60 --pass=stdout \

| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >short-duration.txt

<6>$ rwfilter traffic.rw --duration=61-120 --pass=stdout \

| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >med-duration.txt

<7>$ rwfilter traffic.rw --duration=121- --pass=stdout \

| rwuniq --bin-time=3600 --fields=stime,type \
--values=records --sort-output >long-duration.txt

Example 3.1: Using rwfilter and rwuniq to Profile Traffic Around an Event

The results of these commands are collated in Example 3.2. The counts show that there was a marked
increase in low-to-medium byte and short-to-medium duration web traffic during and after the event. There
was no corresponding increase in high byte or long duration traffic.

Based on these results, Sofia can start to focus her investigation on what common factors exist in the
increased traffic. Her goal is to build awareness of the impact of the event in a way that helps responders to
deal with that impact.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.2. GENERATE TOP N LISTS

stime | typel| sbytel| mbytel| hbytel sdur| mdur| 1ldur|
2015/06/17T13:00:00] in| 720 160 | | 880 | | |
2015/06/17T13:00:00| inweb | 5] 352 | 357 | |
2015/06/17T13:00:00| out | 764 | 192 9| 960 | 5] |
2015/06/17T13:00:00| outweb| 1| 400 | 401 | | |
2015/06/17T14:00:00| in| 1449 66 | | 1515 | |
2015/06/17T14:00:00| inweb| 12] 346 | | 358| | [
2015/06/17T14:00:00] out | 1500 96 | 31 1595 1] 1]
2015/06/17T14:00:00| outweb| 8339| 10051| 2| 18382] 9| 1]
2015/06/17T15:00:00| in| 2528]| 550 | | 3077 1] |
2015/06/17T15:00:00]| inweb | 14| 345 | 359 | |
2015/06/17T15:00:00| out | 2520 558 5| 3076 | 31 31
2015/06/17T15:00:00| outweb| 10309| 11072]| 71 21366 12] 9|

Example 3.2: Collated Profile of Traffic Around an Event

3.2 Generate Top N Lists

Incident

Filtering flow records by time, sensor, type, and volume characteristics often produces groups that contain
flow records of interest. However, these groups also contain extraneous flows that produce noise, which
makes it more difficult to spot patterns in the data.

One strategy for removing these extraneous flows is to identify the largest sub-groups, validate each sub-
group, and either set it aside or include it in the collection of flows of interest. The sub-groups are identified
by a combination of flow characteristics, such as the IP address of the source, the TCP flags present in the
flow, or the network service involved. The contribution of each sub-group is measured by the total bytes or
packets per sub-group, the number of records per sub-group, the number of distinct values present for some
field in the flow record, or another summary statistic.

The overall process of pulling a collection of flow records and then removing flows not related to the analysis
is sometimes referred to as top-down analysis. There is also a bottom-up analysis that involves starting with
a minimal set of records that are of interest, then basing further queries to isolate more records of interest
based on the field values in the minimal set.

Our analyst Sofia is continuing the investigation she began in Section 3.1. Her next task is to look into host
activity before, during, and after the event. She will again apply the Formulate-Model-Analyze workflow
described in Section 1.5 to perform a top-down analysis and generate top-IV lists of hosts that exhibit different
behaviors of interest.

3.2.1 Using rwstats to Create Top NN Lists

Sofia uses the rustats command to find the identity and relative size of the sub-groups of interest. This com-
mand explicitly includes parameters to limit output to the largest contributors and describes the contribution

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CHAPTER 3. BASIC CASE STUDY

of those categories to the overall flow collection”.

Without rwstats, Sofia could load flow records into a spreadsheet and then generate a pivot table to identify
the most common characteristics. rwstats is much faster and easier to use than a spreadsheet. It deals with
high numbers of flow records very efficiently in terms of storage and memory usage.

Removing Unwanted Flows and Finding Hosts of Interest (Formulate)

When generating top-IV lists, the Formulate stage involves eliminating flow records for network activity that
is not of interest. This activity, sometimes referred to as network chaff, may include connections with not
enough data exchanged to be significant, those involving services that are not important for an analysis,
or, in general, anything that could obfuscate the results by contaminating the flow records retrieved for the
event.

Sofia will filter the results from her earlier investigation to remove network chaff and find hosts with traffic
that’s relevant to her current investigation. Her analysis is shown in Commands 1 through 4 of Example 3.3.

1. In Command 1, Sofia looks at the first few flows in the traffic.rw file generated in Example 3.1. The
sequence of flows shown are DNS queries (i.e., flows from port 53). There is not enough information
at the flow level to indicate whether they are relevant to the event that she is investigating.

2. Command 2 uses a new call to rwfilter to exclude the unwanted DNS flows from traffic.rw and
sends the output to rwcut for further examination. The results show that the host at 192.168.70.10
is doing a lot of communication on TCP port 8082, which is associated with a file management utility
known as Utilistore. The larger-volume flows appear to be associated with the host at 10.0.40.83.

3. Command 3 queries the flow repository to look for flows showing communication on port 8082 with at
least 150 average bytes per packet across the full data set. The results of this query are then passed
to rwuniq to profile all of the locations to which data has been sent. The results of this profile show
three hosts receiving this traffic, including both 192.168.70.10 and another host at 192.168.200. 10.

4. In Command 4, Sofia makes a further call to rufilter to pull all of the traffic associated with the newly
located addresses 10.0.40.83 and 192.168.70.10. These addresses appear twice in the rufilter call
to specify that both the source and destination are constrained to these addresses. The results are
then stored in the file traffic2.rw to be examined further.

— Hint 3.1: CIDR Notation for IP Addresses

Note that the addresses in Command 4 of Example 3.3 are specified with --scidr (Source
CIDR block) and --dcidr (Destination CIDR block) instead of --saddress (source ad-
dress), --daddress (destination address), or —-any-address (both source and destination
addresses). The --scidr and --dcidr parameters accept comma-separated lists of addresses
in CIDR notation, whereas the other parameters accept only a single address. The /32 CIDR
notation specifies a single address and thus permits us to use a list of addresses.

L J

9rustats has further functions that facilitate describing collections of flows statistically; see the man page for rustats.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.2. GENERATE TOP N LISTS

<1>$ rwcut

10.
10.
10.
10.
10.

o O © o

--fields=1-3,protocol ,bytes

.40
.40.
.40
.40.

0.40.

sIP|

.20 192.
20| 192.
.20 192.
20| 192.
20| 192.

<2>$ rwfilter traffic.

168.
168.
168.
168.
168.

70

70

70.

70.
70.

--num-recs=5 traffic.rw

dIP|sPort|prol

.10
10|
.10
10|
10|

53|
53|
53|
531
53|

rw --aport=0,53

171
17|
17|
171
17|

bytes |

242
242
242 |
242
242

--fail=stdout \

| rwcut --fields=1-5,bytes --num-rec=5

sIP | dIP|sPort|dPort |prol bytes |
10.0.40.27| 192.168.70.10(/44358| 8082| 6| 332]
10.0.40.27| 192.168.70.10(44383| 8082| 6] 332]
10.0.40.83| 192.168.70.10|53596| 8082| 6| 838
10.0.40.83| 192.168.70.10153597| 8082| 6| 551 |
10.0.40.83| 192.168.70.10153598| 8082| 6] 10801

<3>$ rwfilter --start=2015/06/13 --end=2015/06/18 --type=all \
--proto=6 --dport=8082 --bytes-per=150- --pass=stdout \

| rwuniq --fields=dip

dIP|

165.6.3.1]|
192.168.200.10]
192.168.70.10]|

<4>$ rwfilter
--type=all

--pass=traffic2.rw
<5>$ rwstats
traffic2.rw

INPUT:
OUTPUT :

--fields=dip,dport

--values=flows ,distinct:bytes

80
113

1]
4|
2|

--start=2015/06/13

Top 6 Bins by Records

10.0.40
<6>$ rwstats
traffic2.rw

INPUT:

OUTPUT :
10.0.40
192.168.200
10.0.40.
10.0.40
10.0.40.
10.0.40.

dIP|dPort |
192.168.200.
10.0.40.
10.0.40.
192.168.200.
10.0.40.

10| 8082|
83156018 |
83155026 |
10| 137|
83| 771
.83156348|

--fields=dip,dport

Rec

Top 6 Bins by Bytes

dIP|dPort |

.83149375 |
.10| 8082]|
83154964 |
.83149408|
83154345]|
83154404 |

B

ords |
5906 |
45|
18|
15|
15]
31

ytes|

13139355]|

825
148
148
32
32

2849 |
8312|
8312|
8470
8470 |

Records |bytes-Dist |

1]

32|

37|
--end=2015/06/18 \
--scidr=10.0.40.83/32,192.168.200.10/32 \
--dcidr=10.0.40.83/32,192.168.200.10/32 \

Bytes |
8252849 |
6357 |
4653 |
3510
2520 |
3390

Records |

31

5906 |

3|
3|
3|
3|

--values=flows ,bytes

%Records |

49.

88,
20.
3.

3.
0.
0.

856492 |

.379875|
.151950/|
.126625 |
.126625 |
.025325|
--values=bytes ,flows

%Bytes |
223678 |
867843 |
763290 |
763290 |
830557 |
830557 |

11846 Records for 1954 Bins and 11846 Total Records

49.
50.
50.
50.
50.

50

88,
54.
57.

61
62

63.

--count=6 \

cumul _%|
856492
236367 |
388317
514942 |
641567 |
.666892|

--count=6 \

11846 Records for 1954 Bins and 39548165 Total Bytes

cumul_%]|
223678 |
091521
854811 |
.618100]|
.448657 |
279214 |

Example 3.3: Removing Unneeded Flows for Top NV

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

65

CHAPTER 3. BASIC CASE STUDY

Summarizing Destination Port Usage By Records and Bytes (Model)

After Sofia queries and filters the flow records to isolate those of interest, she can calculate values to clarify
her understanding of these data (the Model step). She could use either rwuniq or rwstats to understand
the contributors to these data, which fed into the filtering process. rwstats allows for more explicit limits
on the number of bins that are displayed. In contrast, rwuniq shows all of the bins for the input dataset.
rustats also shows the percentage contribution to the overall input of each bin and cumulatively across bins.
These limits are often expressed as a count of bins, but they can also be expressed in terms of percentage
contribution or a threshold on the count. The percentages are calculated based only on the first value
specified for the bin. This allows rwstats to be used flexibly to profile the contributors to the data.

Sofia’s investigation into the behavior of the hosts she found earlier is shown in Commands 5 and 6 of
Example 3.3.

1. Command 5 uses rwstats to profile the records in traffic2.rw. It looks at the destination port
utilization in these data by the flow count (as a rough measure for how often communication takes
place), with bytes also calculated as a supplementary value.

In the results, the largest contributor accounts for very close to half of the data. This is not surprising,
since she used this port to identify these hosts as being of interest during the filtering process. Three of
the other ports shown are ephemeral ports (officially, ports numbering 49,152 or more, although some
Linux versions use 32,768 to 61,000, and some Windows versions use 1,025-5,000). This port usage
indicates that 192.158.200.10 is the server and 10.0.40.83 is the client. These two IP addresses
account for at most a little over a third of one percent of the records. Port 137 is the Windows netbios
name service port; port 771 is an ICMP data artifact that will be discussed below.

2. For a contrasting look at the data, Command 6 calls rustats to summarize port utilization by the
number of bytes. This serves as a rough measure of the size of the communication taking place. By
this measure, the largest contributor is not the traffic on port 8082, but rather traffic on an ephemeral
port. This shows the need for analysts to examine the data from several perspectives to clarify its
interpretation.

3.2.2 Interpreting the Top-N Lists

Sofia can now interpret the top-N lists from Example 3.3 (the Analyze step in the SiILK workflow). One key
to interpreting these results is provided in the output from Command 3. The last column of results is the
count of distinct values for the bytes in each flow that is assigned to that bin. In this case, it is the number
of bytes in each flow going to a specific IP address. For the last two entries, the value is less than 10 percent
of the record count, indicating that communication with the same number of bytes is common. This in turn
suggests that this traffic is automated rather than human-driven.

In this light, Sofia interprets the results shown from Command 5 as suggesting that this traffic averages
about 1,400 bytes per flow to the server, with smaller acknowledgement traffic being returned to the client
via the ephemeral ports. This suggestion, however, is contradicted by the results shown from Command 6,
which show several very large-byte flows occur to the clients on the ephemeral port. This indicates to Sofia
that the data transfer is bi-directional.

Confirming the data transfer dynamics and determining if any indications of threat are present requires
further analysis—pulling more traffic to see if these hosts shift behavior across time as threats in their
contacts to additional hosts.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.2. GENERATE TOP N LISTS

When Sofia looks at the results for Command 5, she sees that the traffic to UDP port 137 (name service) is
not answered with service traffic. Instead, the response involves messages using protocol 1, ICMPv4 (which
appears with a 771 port number, although ICMP does not use ports). This is suggested by the common
number of flows associated with these ports. This interpretation was confirmed by an inspection of the data
using rwcut that was too long to show in the example. The flow generators encode the ICMP message type
and code in the dPort field of NetFlow and IPFIX records.

Sofia knows that the value of 771 corresponds to a message indicating that name service is unreachable. While
the number of repetitions is not extensive (15 across 3 days of traffic), that repetition despite unreachable
service indicates that the server is generating the port 137 traffic automatically.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This page intentionally left blank.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

68

Chapter 4

Intermediate Multi-path Analysis
with SiLK: Explaining and
Investigating

This chapter introduces intermediate multi-path analysis through application of the analytic development
process with the SiLK tool suite. It discusses iteration, conditional analysis steps, categorization, and
behavior identification.

Upon completion of this chapter you will be able to

e desc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>