
Paul Krystosek

Nancy Ott

Timothy Shimeall

CERT® Situational Awareness Group

Analysis with SiLK
Analyst’s Handbook for SiLK Version 3.15.0 and Later

AUGUST 2020

Network Traffic Analysis with SiLK
Analyst’s Handbook for SiLK Versions 3.15.0 and Later

Paul Krystosek
Nancy M. Ott
Geoffrey Sanders
Timothy Shimeall

August 2020

CERT® Situational Awareness Group

[DISTRIBUTION STATEMENT A]
This material has been approved for public release and unlimited distribution.

https://www.sei.cmu.edu

https://www.sei.cmu.edu

Copyright 2020 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,
MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROMUSE OF THEMATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT®, CERT Coordination Center® and FloCon® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM20-0675

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

Adobe is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries.
Akamai is a registered trademark of Akamai Technologies, Inc.
Apple and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.
Cisco Systems is a registered trademark of Cisco Systems, Inc. and/or its affiliates in the United States and
certain other countries.
DOCSIS is a registered trademark of CableLabs.
FreeBSD is a registered trademark of the FreeBSD Foundation.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
JABBER is a registered trademark and its use is licensed through the XMPP Standards Foundation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
MaxMind, GeoIP, GeoLite, and related trademarks are the trademarks of MaxMind, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or
other countries.
OpenVPN is a registered trademark of OpenVPN Technologies, Inc.
Perl is a registered trademark of The Perl Foundation.
Python is a registered trademark of the Python Software Foundation.
SNORT is a registered trademark of Cisco and/or its affiliates.
Solaris is a registered trademark of Oracle and/or its affiliates in the United States and other countries.
UNIX is a registered trademark of The Open Group.
VPNz is a registered trademark of Advanced Network Solutions, Inc.
Wireshark is a registered trademark of the Wireshark Foundation.
All other trademarks are the property of their respective owners.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

Contents

Contents v

List of Figures xi

List of Tables xiii

List of Examples xv

List of Hints xix

Acknowledgements xxi

Handbook Goals xxiii

1 Introduction to SiLK 1
1.1 What is SiLK? . 1
1.2 The SiLK Flow Repository . 2

1.2.1 What is Network Flow Data? . 2
1.2.2 Structure of a Flow Record . 3
1.2.3 Flow Generation and Collection . 3
1.2.4 Introduction to Flow Collection . 6
1.2.5 Where Network Flow Data Are Collected . 6
1.2.6 Types of Network Traffic . 7
1.2.7 The Collection System and Data Management . 7
1.2.8 How Network Flow Data Are Organized . 8

1.3 The SiLK Tool Suite . 8
1.4 How to Use SiLK for Analysis . 9

1.4.1 Single-path Analysis . 9
1.4.2 Multi-path Analysis . 9
1.4.3 Exploratory Analysis . 10

1.5 Workflow for SiLK Analysis . 10
1.5.1 Formulate . 10
1.5.2 Model . 11
1.5.3 Test . 12
1.5.4 Analyze . 12
1.5.5 Refine . 12

1.6 Applying the SiLK Workflow . 12
1.7 Avoiding Cognitive Biases . 13
1.8 Dataset for Single-path, Multi-path, and Exploratory Analysis Examples 14

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

CONTENTS

2 Basic Single-path Analysis with SiLK: Profiling and Reacting 17
2.1 Single-path Analysis: Concepts . 17

2.1.1 Scoping Queries of Network Flow Data . 18
2.1.2 Excluding Unwanted Network Traffic . 19
2.1.3 Example Single-Path Analysis . 19

2.2 Single-path Analysis: Analytics . 19
2.2.1 Get a List of Sensors With rwsiteinfo . 19
2.2.2 Choose Flow Records With rwfilter . 23
2.2.3 View Flow Records With rwcut . 27
2.2.4 Viewing File Information with rwfileinfo . 29
2.2.5 Profile Flows With rwuniq and rwstats . 31
2.2.6 Characterize Traffic by Time Period With rwcount . 39
2.2.7 Sort Flow Records With rwsort . 41
2.2.8 Use IPsets to Gather IP Addresses . 43
2.2.9 Resolve IP Addresses to Domain Names With rwresolve 47

2.3 Situational Awareness and Single-Path Analysis . 51
2.3.1 Components of Situational Awareness . 51
2.3.2 Single-Path Analysis for Desired Awareness: Validate Web and DNS Servers 52
2.3.3 Single-Path Analysis for Actual Awareness: Examine Network Traffic 54
2.3.4 Translate IDS Signatures into rwfilter Calls with rwidsquery 57

2.4 Summary of SiLK Commands in Chapter 2 . 58

3 Case Studies: Basic Single-path Analysis 59
3.1 Profile Traffic Around an Event . 59

3.1.1 Examining Shifts in Traffic . 60
3.1.2 How to Profile Traffic . 61

3.2 Generate Top N Lists . 63
3.2.1 Using rwstats to Create Top N Lists . 63
3.2.2 Interpreting the Top-N Lists . 66

4 Intermediate Multi-path Analysis with SiLK: Explaining and Investigating 69
4.1 Multi-path Analysis: Concepts . 69

4.1.1 What Is Multi-path Analysis? . 69
4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic 71
4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis 73
4.1.4 Integrating and Interpreting the Results of Multi-path Analysis 73
4.1.5 “Gotchas” for Multi-path Analysis . 74

4.2 Multi-path Analysis: Analytics . 74
4.2.1 Complex Filtering With rwfilter . 75
4.2.2 Finding Low-Packet Flows with rwfilter . 80
4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount 81
4.2.4 Summarizing Network Traffic with Bags . 88
4.2.5 Working with Bags and IPsets . 94
4.2.6 Masking IP Addresses . 95
4.2.7 Working With IPsets . 97
4.2.8 Indicating Flow Relationships . 104
4.2.9 Managing IPset, Bag, and Prefix Map Files . 111

4.3 Multi-path Analysis for Situational Awareness . 113
4.3.1 Structuring a Multi-path Analytic for Situational Awareness 113
4.3.2 Characterizing Threats . 114

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

CONTENTS

4.3.3 Profiling Data . 114
4.3.4 Multi-path Analysis for Differential Awareness: Investigate Abnormal Web Traffic . . 115

4.4 Summary of SiLK Commands in Chapter 4 . 120

5 Case Studies: Intermediate Multi-path Analysis 121
5.1 Building Inventories of Network Flow Sensors With IPsets . 121

5.1.1 Path 1: Associate Addresses with a Single Sensor . 122
5.1.2 Path 2: Associate Addresses of Remaining Sensors . 123
5.1.3 Path 3: Associate Shared Addresses . 123
5.1.4 Merge Address Results . 124

5.2 Automating IPset Inventories of Network Flow Sensors . 124
5.2.1 Program Header . 125
5.2.2 Program Loop . 125

6 Advanced Exploratory Analysis with SiLK: Exploring and Hunting 127
6.1 Exploratory Analysis: Concepts . 127

6.1.1 Exploring Network Behavior . 128
6.1.2 Starting Points for Exploratory Analysis . 129
6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity 129
6.1.4 Observations on Exploratory Analysis . 134

6.2 Exploratory Analysis: Analytics . 134
6.2.1 Using Tuple Files for Complex Filtering . 134
6.2.2 Manipulating Bags . 136
6.2.3 Sets Versus Bags: A Scanning Example . 141
6.2.4 Manipulating SiLK Flow Record Files . 143
6.2.5 Generate Flow Records From Text . 147
6.2.6 Using Aggregate Bags . 149
6.2.7 Labeling Data with Prefix Maps . 154

6.3 Exploratory Analysis for Situational Awareness . 163
6.3.1 Structuring an Exploratory Analysis for Situational Awareness 163
6.3.2 Situational Awareness for User-driven and Automated Services 164
6.3.3 Exploratory Analysis for Differential and Actionable Awareness: Investigate Abnormal

Web Traffic . 165
6.4 Summary of SiLK Commands in Chapter 6 . 171

7 Case Studies: Advanced Exploratory Analysis 173
7.1 Dataset for Exploratory Case Studies . 173
7.2 Case Study: Investigating Suspicious TCP Behavior . 174

7.2.1 Level 0: Which TCP Requests are Suspicious? . 174
7.2.2 Level 1: Which Requests are Illegitimate? . 176
7.2.3 Level 2: What are the Illegitimate Sources and Destinations Doing? 177
7.2.4 Level 3: What are the Commonalities Across The Cases? 181

7.3 Case Study: Exploring Network Messaging for Information Exposure 181
7.3.1 Prepare a Model of the Enterprise Network and Protocols 182
7.3.2 Pull Records Associated with ICMP Flows . 185
7.3.3 What Anomalies are in the ICMP Records? . 186
7.3.4 Exploring Attributes of ICMP Messaging . 187
7.3.5 Wrap Up Investigation and Identify Follow-On Analyses 193

8 Extending the Reach of SiLK with PySiLK 195

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii

CONTENTS

8.1 Using PySiLK . 196
8.1.1 PySiLK Requirements . 196
8.1.2 PySiLK Scripts and Plug-ins . 196

8.2 Extending rwfilter with PySiLK . 197
8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating Inconsistent

Sources . 198
8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting Port Knocking 199
8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Environment 201
8.2.4 Simple PySiLK with rwfilter --python-expr . 201
8.2.5 PySiLK with Complex Combinations of Rules . 202
8.2.6 Use of Data Structures in Partitioning . 202

8.3 Extending SiLK with Fields Defined with PySiLK . 205
8.4 Extending rwcut and rwsort with PySiLK . 205

8.4.1 Computing Values from Multiple Records . 206
8.4.2 Computing a Value Based on Multiple Fields in a Record 206
8.4.3 Defining a Character String Field for rwcut . 208
8.4.4 Defining a Character String Field for Five SiLK Tools 210

8.5 Defining Key Fields and Summary Value Fields for rwuniq and rwstats 212

9 Tuning SiLK for Improved Performance 215
9.1 Introduction . 216

9.1.1 Example: Reducing the Run Time of SiLK Analyses 216
9.1.2 Processor Contention, Data Contention, and Performance 216

9.2 Using Concurrent rwfilter Calls to Spread the Load Across Processors 217
9.2.1 Parallelizing rwfilter Calls By Type . 217
9.2.2 Parallelizing rwfilter Calls By Flow Time . 218

9.3 Combining Results From Concurrent rwfilter Calls via rwuniq, rwcount, and rwstats . . . 222
9.4 Parallelizing via the rwfilter --threads Parameter . 224

9.4.1 Improving rwfilter Performance with --threads . 224
9.4.2 Effect of --threads On Other rwfilter Parameters 224
9.4.3 Limitations On --threads Performance Improvements 227

9.5 Constructing Efficient Queries . 228
9.5.1 Pipelining Calls to SiLK commands . 228
9.5.2 Using Flow Characteristics To Improve rwfilter Efficiency 229
9.5.3 Specifying Fewer SiLK Types In rwfilter Calls . 231
9.5.4 Constraining rwfilter Output . 232
9.5.5 Merging the Results of Multiple rwfilter Calls . 232

9.6 Using Coarse Parallelism . 236
9.7 Using Named Pipes and Process Substitution . 238
9.8 Specifying Local Temporary Files . 240
9.9 Administrative Actions to Improve SiLK Performance . 240
9.10 Summary of Strategies to Improve SiLK Performance . 240

A TCP/IP, UDP and ICMP Headers 241
A.1 Structure of the IP Header . 241
A.2 Structure of the TCP Header . 243

A.2.1 TCP Flags . 243
A.2.2 Major TCP Services . 244

A.3 Structure of UDP and ICMP Headers . 244
A.3.1 UDP and ICMP Packet Structure . 244

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii

CONTENTS

A.3.2 Major UDP Services and ICMP Messages . 245

B Common Features of SiLK Commands 247
B.1 Getting Help with SiLK Tools . 247
B.2 Displaying the Current Version of SiLK . 247
B.3 Parameters Common to Important SiLK Commands . 247

C Additional Information on SiLK 251
C.1 SiLK Support and Documentation . 251
C.2 FloCon Conference and Social Media . 252
C.3 Email Addresses and Mailing Lists . 252

D Further Reading and Resources 253
D.1 Unix and Linux . 253

D.1.1 Useful UNIX Commands . 253
D.1.2 Online Tutorials on Unix and Linux . 253
D.1.3 Books on Unix and Linux . 253

D.2 Networking and TCP/IP . 255
D.2.1 Online Courses on Networking and TCP/IP Fundamentals 255
D.2.2 Books on Networking and TCP/IP Fundamentals . 255

D.3 Network Flow and Related Topics . 255
D.3.1 Technical Papers . 255
D.3.2 Books on Network Flow and Network Security . 256

D.4 Bash Scripting Resources . 256
D.4.1 Online Tutorial . 256
D.4.2 Books on Bash Scripting . 256

D.5 Visualizing SiLK Data . 257
D.5.1 Rayon . 257
D.5.2 FloViz . 258
D.5.3 Graphviz—Graph Visualization Software . 258
D.5.4 The Spinning Cube of Potential Doom . 258

D.6 Networking Standards . 258

Index 260

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY x

List of Figures

1.1 From Packets to Flows . 5
1.2 Default Traffic Types for Sensors . 6
1.3 SiLK Analysis Workflow . 11
1.4 FCC Network Diagram . 15
2.1 Single-Path Analysis . 18
2.2 rwfilter Parameter Relationships . 24
2.3 Displaying rwcount Output Using 10-Minute and 1-Minute Bins 50
4.1 Multi-Path Analysis . 70
4.2 Diagram of a Simple, Non-overlapping Manifold . 76
4.3 Diagram of a Complex, Overlapping Manifold . 76
4.4 Client and Server TCP flags . 78
4.5 Allocating Flows, Packets and Bytes via rwcount Load-Schemes 86
6.1 Exploratory Analysis . 128
6.2 Time Series Plot of NTP Traffic . 132
9.1 Response times for rwfilter parallelized by 6-hour time bins 221
9.2 Comparing response times for rwfilter --threads values . 226
9.3 Decreasing Response Time by Using rwfilter --threads Profiled by Number of Running

Processes . 227
9.4 Response times for rwfilter with all SiLK types and limited SiLK types 233
A.1 Structure of the IPv4 Header . 242
A.2 TCP Header . 243
A.3 UDP and ICMP Headers . 245

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xi

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xii

List of Tables

1.1 Fields in a SiLK Network Flow record . 4
4.1 Time distribution options for rwcount --load-scheme . 83
B.1 Common Parameters in Essential SiLK Tools . 248
B.2 Parameters Common to Several Commands . 249
B.3 --ip-format Values . 250
B.4 --timestamp-format format, modifier, and timezone Values . 250
D.1 Some Common UNIX Commands . 254

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xiii

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xiv

List of Examples

2.1 Using rwsiteinfo to List Sensors, Display Traffic Types, and Show Repository Information . 21
2.2 Using rwfilter to Retrieve Network Flow Records From The SiLK Repository 26
2.3 rwcut for Displaying the Contents of Ten Flow Records . 28
2.4 rwcut --fields to Rearrange Output . 29
2.5 rwfileinfo Displays Flow Record File Characteristics . 30
2.6 Characterizing flow byte counts with rwuniq . 33
2.7 Finding the top protocols with rwstats . 34
2.8 Finding overall traffic profile rwstats --overall . 36
2.9 Summarizing traffic with one protocol via rwstats --detail-proto-stats 37
2.10 Profiling protocol volumes with rwstats --values . 38
2.11 Counting Bytes, Packets and Flows with Respect to Time . 39
2.12 Sorting by Destination IP Address, Protocol, and Byte Count 42
2.13 Using rwset to Gather IP Addresses . 44
2.14 Using rwsetbuild to Gather IP Addresses . 44
2.15 Using rwsetcat to Count Gathered IP Addresses . 45
2.16 Using rwsetcat to Print Networks and Host Counts . 46
2.17 Using rwsetcat to Print IP Address Statistical Summaries 46
2.18 Looking Up Source and Destination Hostnames with rwresolve 48
2.19 Looking Up Destination Hostnames with rwresolve . 48
2.20 Using rwfilter and rwstats to Profile Web and DNS Services 53
2.21 Using rwuniq to Profile an Address . 54
2.22 Using rwfilter and rwstats for Web Actual Awareness . 55
2.23 Using rwfilter and rwstats for DNS Actual Awareness . 56
2.24 Using rwidsquery for Snort Rule Translation . 58
3.1 Using rwfilter and rwuniq to Profile Traffic Around an Event 62
3.2 Collated Profile of Traffic Around an Event . 63
3.3 Removing Unneeded Flows for Top N . 65
4.1 Examining Flows for Web Service Ports . 72
4.2 Simple Manifold to Select Inbound Client and Server Flows 76
4.3 Complex Manifold to Select Inbound Client and Server Flows 79
4.4 Extracting Low-Packet Flow Records . 82
4.5 Constraining Counts to a Threshold by using rwuniq --flows 84
4.6 Setting Minimum Flow Thresholds with rwuniq --values . 84
4.7 Constraining Flow and Packet Counts with rwuniq --flows and --packets 85
4.8 Profiling IP addresses with rwuniq --fields . 86
4.9 Profiling IP addresses with rwstats --fields . 87
4.10 Isolating DNS and Non-DNS Behavior with rwuniq . 88
4.11 Generating Bags with rwbag . 89
4.12 Summarizing Network Traffic with rwuniq . 89

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xv

LIST OF EXAMPLES

4.13 Summarizing Network Traffic with Bags . 90
4.14 Creating a Bag of Network Scanners with rwbagbuild and rwscan 91
4.15 Viewing the Contents of a Bag with rwbagcat . 92
4.16 Thresholding Results with rwbagcat --mincounter, --maxcounter, --minkey, and --maxkey 92
4.17 Displaying Unique IP Addresses per Value with rwbagcat --bin-ips 93
4.18 Displaying Decimal and Hexadecimal Output with rwbagcat --key-format 94
4.19 Creating an IP Set from a Bag with rwbagtool --coverset 95
4.20 Using rwbagtool --intersect to Extract a Subnet . 96
4.21 Abstracting Source IPv4 addresses with rwnetmask . 96
4.22 Generating a Monitored Address Space IPset with rwsetbuild 97
4.23 Generating a Broadcast Address Space IPset with rwsetbuild 97
4.24 Performing an IPset Union with rwsettool . 98
4.25 Displaying Repository Dates with rwsiteinfo . 98
4.26 Counting Outbound DNS Servers with rwset . 98
4.27 Finding IPset Differences with rwsettool . 99
4.28 Finding IPset Symmetric Difference with rwsettool . 99
4.29 Grouping Outbound DNS Servers by Sensor . 100
4.30 Identifying DNS Traffic Flow . 100
4.31 Identifying Shared DNS Monitoring . 101
4.32 rwsetcat Options for Showing Structure . 103
4.33 Grouping Flows of a Long Session with rwgroup . 106
4.34 Dropping Trivial Groups with rwgroup --rec-threshold . 106
4.35 Summarizing Groups with rwgroup --summarize . 107
4.36 Using rwgroup to Identify Specific Sessions . 108
4.37 Using rwmatch with Incomplete Relate Values . 109
4.38 Using rwmatch with Full TCP Fields . 110
4.39 rwfileinfo for Sets, Bags, and Prefix Maps . 112
4.40 Using rwstats --overall-stats for Summary Statistics . 116
4.41 Using rwbagcat --print-statistics for Summary Statistics 117
4.42 Using rwfilter and rwstats for Contrasting On-port and Off-port Web Connections 117
4.43 Using rwcut and rwuniq to Examine Off-port Web Connections 119
5.1 Building an IPset Inventory for Sensor S0 . 122
5.2 Automating IPset Inventories . 126
6.1 Using rwfilter to Profile NTP Activity . 130
6.2 Using rwuniq to examine NTP Activity . 131
6.3 Using rwcount to generate NTP Timelines . 131
6.4 Using rwuniq and Bags to Summarize Prior Traffic on NTP Clients 133
6.5 Using Multiple Data Pulls to Filter on Multiple Criteria . 135
6.6 Filtering on Multiple Criteria with a Tuple File . 136
6.7 Merging the Contents of Bags Using rwbagtool --add . 138
6.8 Using rwbagtool to Generate Percentages . 140
6.9 Using rwset to Filter for a Set of Scanners . 141
6.10 Using rwbagtool to Filter Out a Set of Scanners . 142
6.11 Combining Flow Record Files with rwcat to Count Overall Volumes 144
6.12 rwsplit for Coarse Parallel Execution . 146
6.13 rwsplit to Generate Statistics on Flow Record Files . 147
6.14 Simple File Anonymization with rwtuc . 148
6.15 Summarizing Source IP, Destination Port, and Protocol with rwaggbag 150
6.16 Summarizing Source IP, ICMP Type, and ICMP Code with rwaggbagbuild 152

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xvi

LIST OF EXAMPLES

6.17 Thresholding an aggregate bag with rwaggbagtool . 153
6.18 Extracting a bag from an aggregate bag with rwaggbagtool 153
6.19 Extracting an IPset from an aggregate bag with rwaggbagtool 154
6.20 Using rwpmapbuild to Create a FCC Pmap File . 156
6.21 Using Pmap Parameters with rwfilter . 159
6.22 Viewing Prefix Map Labels with rwcut . 160
6.23 Sorting by Prefix Map Labels . 161
6.24 Counting Records by Prefix Map Labels . 161
6.25 Query Addresses and Protocol/Ports with rwpmaplookup . 162
6.26 Contrasting User-driven vs. Autonomic Flows with rwcount 165
6.27 Isolating Low-byte Web Flows with rwfilter . 167
6.28 Pivoting with rwfilter and rwuniq to Explore Endpoint Behavior 168
6.29 Pivoting with rwfilter to Explore Contacts of Endpoints . 170
7.1 Looking for Service Ports with Higher Inbound than Outbound TCP Traffic 175
7.2 Identifying Abnormal TCP Flows and their Originating Hosts 177
7.3 Finding Activity of Illegitimate Destination IP Addresses . 179
7.4 Finding Changed Behavior in Destination IPs . 180
7.5 Building an RFC Compliant ICMP Type and Code Prefix Map 182
7.6 Building an IPset of FCCX-15 Internal Subnetworks . 184
7.7 Building an IPset of FCCX-15 Internal Subnetwork Gateways 185
7.8 Building an IPset of FCCX-15 Internal Network Service Subnetworks 185
7.9 Pulling ICMP Network Flow Data for a Specified Period . 185
7.10 Exploring Unique ICMP Types/Codes in a SiLK Raw File . 186
7.11 Counting Hosts that Send ICMP Timestamp Reply Messages 188
7.12 Counting Hosts that Send ICMP Timestamp Reply Messages Outside their Subnetwork . . . 189
7.13 Identifying Networks that Send ICMP Timestamp Reply Messages 190
7.14 Counting External Networks that Receive ICMP Echo Reply Messages 190
7.15 Identifying External Networks that Receive ICMP Echo Reply Messages 191
7.16 Counting Internal Non-Gateway Hosts that Send ICMP Echo Reply Messages Outside their

Subnetwork . 191
7.17 Building a Prefix Map of Service Subnetworks . 192
7.18 Identifying Internal Non-Gateway Hosts that Send ICMP Echo Reply Messages Outside their

Subnetwork . 192
8.1 ThreeOrMore.py: Using PySiLK for Memory in rwfilter Partitioning 198
8.2 portknock.py: Using PySiLK to Retain State in rwfilter Partitioning 200
8.3 Calling ThreeOrMore.py . 201
8.4 Using --python-expr for Partitioning . 202
8.5 vpn.py: Using PySiLK with rwfilter for Partitioning Alternatives 202
8.6 matchblock.py: Using PySiLK with rwfilter for Structured Conditions 204
8.7 Calling matchblock.py . 205
8.8 delta.py . 206
8.9 Calling delta.py . 207
8.10 payload.py: Using PySiLK for Conditional Fields with rwsort and rwcut 208
8.11 Calling payload.py . 209
8.12 decode_duration.py: A Program to Create a String Field for rwcut 209
8.13 Calling decode_duration.py . 210
8.14 sitefield.py: A Program to Create a String Field for Five SiLK Tools 211
8.15 Calling sitefield.py . 212
8.16 bpp.py . 212

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xvii

LIST OF EXAMPLES

8.17 Calling bpp.py . 213
9.1 Using Multiple rwfilter Processes to Parallelize by Type . 218
9.2 Using Concurrent rwfilter Processes by Hour . 219
9.3 Response Time for Sorting Records and File Parameters . 223
9.4 Using rwfilter --threads to Reduce Response Time . 225
9.5 Avoiding multiple rwfilter Commands to Increase Performance 230
9.6 Closely Defining Analysis Problem to Increase Performance 231
9.7 Using Only Needed rwfilter Types to Increase Performance 232
9.8 Using Additional Parameters with rwfilter to Increase Performance 233
9.9 Combining Flow Files with rwcat, rwappend, and rwsort . 235
9.10 Coarse Parallelism of rwuniq using rwsplit . 237
9.11 Pipes and Process Substitution to Improve Response Time 239

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xviii

List of Hints

2.1 Minimum Partitioning Parameters for rwfilter . 23
2.2 rwfilter File Naming Conventions . 24
2.3 SiLK Parameter Abbreviations . 25
2.4 rwfilter Output File Performance . 25
2.5 Keep Data in Binary Format Where Possible . 27
2.6 Format IP Addresses with SiLK Environment Variables . 28
2.7 Use Unix Pipes To Improve SiLK Performance . 32
2.8 Data Resolution Versus Bin Size . 40
2.9 Use rwresolve with Small Datasets . 47
2.10SiLK Byte Counts Include Packet Headers . 57
3.1 CIDR Notation for IP Addresses . 64
4.1 Use Named Pipes for Efficient Analytics . 71
4.2 An Example TCP Session . 77
4.3 How to Specify Ranges with rwuniq . 84
4.4 How to Use rwbagtool --coverset with Bag Files . 95
4.5 Scale Grouping Tools with Sorted Data . 104
6.1 Be Aware of Bag Types with rwbagtool . 137
6.2 Use Caution when Dividing Bags with rwbagtool . 139
6.3 SiLK Tools Can Use Multiple Flow Files . 143
6.4 Sorting and counting aggregate bag keys . 150
7.1 Limiting rwfilter Query Size . 185
9.1 Response Times and Processor Architectures . 215
9.2 Performance for IPv4 Versus IPv6 Addresses . 228

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xix

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xx

Acknowledgements

The authors wish to acknowledge the valuable contributions of all members of the CERT® Situational
Awareness group and the CERT Engineering Group, past and present, to the concept and execution of the
SiLK tool suite and to this handbook. Many individuals served as contributors, reviewers, and evaluators of
the material in this handbook.

The authors also gratefully acknowledge the many SiLK users who have contributed immensely to the
evolution of the tool suite.

Lastly, the authors wish to acknowledge their ongoing debt to the memory of Suresh L. Konda, PhD, who
led the initial concept and development of the SiLK tool suite as a means of gaining network situational
awareness.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xxi

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xxii

Goals for Network Traffic Analysis
with SiLK

How to Use This Handbook

Network Traffic Analysis with SiLK: Analyst’s Handbook for SiLK Versions 3.15.0 and Later (also known
as the SiLK Analyst’s Handbook) is an introduction to methods of analyzing network traffic, illustrated by
commands from the SiLK tool suite. The focus is on learning to identify traffic features important to the
security of information on the network. The handbook moves from a basic understanding of network flow
and the SiLK tool suite through a series of examples that illustrate how to use SiLK to analyze network
behavior.

The examples in this handbook are mainly command sequences that illustrate specific analysis concepts.
Examples are commonly discussed on a line-by-line basis in the text and presented as command and output
listings. In general, examples are also associated with a specific task (or tasks), indicated in the section and
in the example caption. Case studies take a deeper dive into specific topics for analysis.

For readers already familiar with SiLK, the explanations of SiLK commands in the text of this handbook are
kept short enough not to be redundant. More complete discussions of the commands and their parameters
are provided in the SiLK Reference Guide and the man pages for the SiLK commands. Readers who are
interested in analyzing network flow records with other tools than SiLK are encouraged to read the overall
description of the analysis approaches, then use the description of commands to find parallels using the tool
suite of their choice.

How This Handbook Is Organized

This handbook contains the following chapters:

1. Introduction to SiLK provides a short overview of some of the background necessary to begin using
the SiLK tools for analysis. It includes a brief introduction to the SiLK suite and describes the basics of
network flow capture by sensors and storage in the SiLK flow repository. It also discusses the analysis
process used in this handbook and its application to situational awareness, incident response, and
threat hunting. Finally, it describes the dataset used for the examples in this handbook.

2. Basic Single-path Analysis with SiLK: Profiling and Reacting describes the most straightfor-
ward analysis approach and applies it to several example analyses. It introduces some of the core SiLK
commands and uses them to analyze network traffic.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xxiii

HANDBOOK GOALS

3. Case Studies: Basic Single-path Analysis applies the single-path analysis approach to several
extended examples, focusing on how those examples were developed from an initial problem statement
through executable commands.

4. Intermediate Multi-path Analysis with SiLK: Explaining and Investigating explains a more
complex, intermediate form of analysis which applies basic, single-path analysis in a multi-pronged
structure. The chapter describes how multi-path analysis can be applied and includes a fuller explo-
ration of SiLK tools that may be useful for this type of analysis.

5. Case Studies: Intermediate Multi-path Analysis applies multi-path analysis to extended exam-
ples.

6. Advanced Exploratory Analysis with SiLK: Exploring and Hunting discusses the use of
SiLK to deal with open-ended, often iterative analyses that incorporate both single-path and multi-
path methods. It also describes more sophisticated uses of the SiLK tool suite that support complex
analyses of network behavior.

7. Case Studies: Advanced Exploratory Analysis applies exploratory analysis to an extended ex-
ample.

8. Extending the Reach of SiLK with PySiLK describes how to extend the functionality of the
SiLK tool suite by using the Python scripting language.

9. Tuning SiLK for Improved Performance discusses techniques to improve the efficiency and per-
formance of SiLK when working with very large datasets.

The appendices to this guide provide information about common network protocols, list useful Unix com-
mands, and give sources for additional information about the SiLK tool suite and network analysis.

What This Handbook Doesn’t Cover
This handbook does not contain an exhaustive description of all the tools in the SiLK tool suite or of all the
options in the described commands. Rather, it offers concepts and examples to allow analysts to accomplish
needed work while continuing to build their skills and familiarity with SiLK.

• Every SiLK tool includes a --help option that briefly describes the command and lists its parameters.

• Every tool also has a manual page (also called a man page) that provides detailed information about
the use of the tool. These pages may be available on your system by typing man command. For example,
type man rwfilter to see information about the rwfilter command.

• The SiLK Documentation page at https://tools.netsa.cert.org/silk/docs.html includes links to individ-
ual manual pages.

• The SiLK Reference Guide is a single document that bundles all of the SiLK manual pages. It is
available in HTML and PDF formats on the SiLK Documentation page (https://tools.netsa.cert.org/
silk/docs.html).

This handbook deals solely with the analysis of network flow record data using an existing installation of the
SiLK tool suite. For information on installing and configuring a new SiLK tool setup and on the collection
of network flow records for use in these analyses, see the “Installation Information” section of the SiLK
Documentation page at https://tools.netsa.cert.org/silk/docs.html#installation.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xxiv

https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html#installation

Chapter 1

Introduction to SiLK

Network analysts need to build an ongoing perspective on the traffic passing over their networks. This
perspective is often built on information about the traffic (such as volumes, timing, and communication
paths), rather than on the traffic itself. This chapter introduces the tools and techniques used to store such
information, particularly in the form known as network flow. It will help you to become familiar with the
structure of network flow data, how the SiLK collection system gathers those data from sensors, and how to
use those data.

Upon completion of this chapter you will be able to

• describe a network flow record and the conditions under which the collection of one begins and ends

• describe the types of SiLK flow records

• describe the structure of the SiLK flow repository

• understand the steps involved in analyzing network flow data

• describe common applications of the analysis process

• describe the dataset for the examples in this handbook

1.1 What is SiLK?

The System for internet-Level Knowledge1 (SiLK) tool suite is a highly scalable flow-data capture and anal-
ysis system developed by the CERT Situational Awareness group at Carnegie Mellon University’s Software
Engineering Institute (SEI). The SiLK tools provide network security analysts with the means to under-
stand, query, and summarize both recent and historical traffic data represented as network flow records (also
referred to as “network flow” or “network flow data” and occasionally just “flow”). These tools provide
network security analysts with a relatively complete high-level view of traffic across an enterprise network,
subject to placement of sensors.

Analyses using the SiLK tools provide insight into various aspects of network behavior. Some example
applications of this tool suite include:

1The suite name, and in particular the capitalization, were chosen in memory of Dr. Suresh L. Konda, who was the
inspirational leader for the creation of the initial suite prior to his sudden passing.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

CHAPTER 1. INTRODUCTION TO SILK

• supporting network forensics: identifying artifacts of intrusions, vulnerability exploits, worm behavior,
etc.

• providing service inventories for large and dynamic networks (on the order of a /8 Classless Inter-
Domain Routing (CIDR) block)

• generating profiles of network usage (bandwidth consumption) based on protocols and common com-
munication patterns

• enabling non-signature-based scan detection and worm detection, for detection of limited-release ma-
licious software and for identification of precursors

These examples, and others, are explained further in this handbook. By providing a common basis for these
analyses, the SiLK tools provide a framework for developing network situational awareness.

Common questions addressed via flow analyses include (but aren’t limited to)

• What is on my network?

• What constitutes typical network behavior?

• What happened before, during, and after an event?

• Where are policy violations occurring?

• Which are the most popular web servers?

• How much volume would be reduced by applying a blacklist?

• Do my users browse to known infected web servers?

• Is a spammer on my network?

• When did my web server stop responding to queries?

• Is my organization routing undesired traffic?

• Who uses my public Domain Name System (DNS) server?

1.2 The SiLK Flow Repository

1.2.1 What is Network Flow Data?

NetFlow is a traffic-summarizing format that was first implemented by Cisco Systems® primarily for account-
ing purposes. Network flow data (or network flow) is a generalization of NetFlow. Network flow collection
differs from direct packet capture (such as with tcpdump) in that it builds a summary of communications
between sources and destinations on a network. For NetFlow, this summary covers all traffic matching seven
relevant keys: the source and destination IP addresses, the source and destination ports, the transport layer
protocol, the type of service, and the router interface.

SiLK uses five of these attributes to constitute the flow label:

1. source IP address

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

1.2. THE SILK FLOW REPOSITORY

2. destination IP address

3. source port

4. destination port

5. transport layer protocol

These attributes (also known as the five-tuple), together with the start time of each network flow, distinguish
network flows from each other. The SiLK repository stores the accumulated flows from a network.

1.2.2 Structure of a Flow Record

A network flow often covers multiple packets that all match the fields of their common labels. A flow record
thus provides the label and statistics on the packets covered by the network flow, including the number of
packets covered by the flow, the total number of bytes, and the duration and timing of those packets (among
other fields). A flow file is a series of flow records.

The fields in the flow record are listed in Table 1.1 (deprecated fields removed for clarity). Every field is
identified by a name and number that can be used interchangeably. For example, the source IP address field
of a flow record can be identified by either its field name (sIP) or its field number (1). Capitalization does
not matter: sIP is equivalent to sip or SIP.

Because network flow is a summary of traffic, it does not contain packet payload data, which are expensive
to retain on a large, busy network. Each network flow record created by SiLK is very small: it can be as
little as 22 bytes (the exact size is determined by several configuration parameters). However, even at that
tiny size, a sensor may collect many gigabytes of flow records daily on a busy network.

Some of the fields are actually stored in the record, such as start time and duration. Some fields are
not actually stored; rather, they are derived either wholly from information in the stored fields or from a
combination of fields stored in the record and external data. For example, end time is derived by adding
the start time and the duration. Source country code is derived from the source IP address and a table that
maps IP addresses to country codes.

1.2.3 Flow Generation and Collection

To understand how to use SiLK for analysis, it helps to have some knowledge of how network flow data
are collected, stored, and managed. Understanding how the data are partitioned can produce faster queries
by reducing the amount of data searched. In addition, by understanding how the sensors complement each
other, it is possible to gather traffic data even when a specific sensor has failed.

Every day, SiLK may collect many gigabytes of network flow records from across the enterprise network.
This section reviews the collection process and shows how data are stored as network flow records.

A network flow record is generated by sensors throughout the enterprise network. Usually, the majority of
these sensors are routers. Specialized sensors such as yaf2 can be employed when a data feed from a router
is not available, such as on a home network or on an individual host. yaf can also be used to avoid artifacts
in a router’s implementation of network flow or to use non-device-specific network flow data formats such

2YAF (Yet Another Flowmeter). CERT NetSA Security Suite website. [Accessed May 14, 2020] https://tools.netsa.cert.
org/yaf/

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

https://tools.netsa.cert.org/yaf/
https://tools.netsa.cert.org/yaf/

CHAPTER 1. INTRODUCTION TO SILK

Field Field
Number Name Description

1 sIP Source IP address for flow
2 dIP Destination IP address for flow
3 sPort Source port for flow (or 0)
4 dPort Destination port for flow (or 0)
5 protocol Transport layer protocol number for flow
6 packets, pkts Number of packets in flow
7 bytes Number of bytes in flow (starting with IP header)
8 flags Cumulative TCP flag fields of flow (or blank)
9 sTime Start date and time of flow
10 duration Duration of flow
11 eTime End date and time of flow
12 sensor Sensor that collected the flow
13 in Ingress interface or VLAN on sensor (usually zero)
14 out Egress interface or VLAN on sensor (usually zero)
15 nhIP Next-hop IP address (usually zero)
16 sType Type of source IP address (pmap required)
17 dType Type of destination IP address (pmap required)
18 scc Source country code (pmap required)
19 dcc Destination country code (pmap required)
20 class Class of sensor that collected flow
21 type Type of flow for this sensor class
— iType ICMP type for ICMP and ICMPv6 flows (SiLK V3.8.1+)
— iCode ICMP code for ICMP and ICMPv6 flows (SiLK V3.8.1+)
25 icmpTypeCode Both ICMP type and code values (before SiLK V3.8.1)
26 initialFlags TCP flags in initial packet
27 sessionFlags TCP flags in remaining packets
28 attributes Termination conditions
29 application Standard port for application that produced the flow

Table 1.1: Fields in a SiLK Network Flow record

as IPFIX3. It provides more control over network flow record generation and can convert packet data to
network flow records via a script that automates this process.

A sensor generates network flow records by grouping together packets that are closely related in time and
have a common flow label. “Closely related” is defined by the sensor and typically set to around 30 seconds.
Figure 1.1 shows the generation of flows from packets. Case 1 in that figure diagrams flow record generation
when all the packets for a flow are contiguous and uninterrupted. Case 2 diagrams flow record generation
when several flows are collected in parallel. Case 3 diagrams flow record generation when timeout occurs, as
discussed below.

Network flow is an approximation of traffic. Routers and other sensors make a guess when they decide which
packets belong to a flow. These guesses are not perfect; there are several well-known phenomena in which a
long-lived session will be split into multiple flow records:

3See https://tools.ietf.org/html/rfc7011 for definitions of the IPFIX information elements; see the IPFIX protocol description
and https://www.iana.org/assignments/ipfix for their descriptions.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

https://tools.ietf.org/html/rfc7011
https://www.iana.org/assignments/ipfix

1.2. THE SILK FLOW REPOSITORY

Figure 1.1: From Packets to Flows

1. Active timeout is the most common cause of a split network flow. Network flow records are purged
from the sensor’s memory and restarted after a configurable period of activity. As a result, all network
flow records have an upper limit on their duration that depends on the local configuration. A typical
value would be around 30 minutes.

2. Cache flush is a common cause of split network flows for router-collected network flow records. Network
flows take up memory resources in the router, and the router regularly purges this cache of network
flows for housekeeping purposes. The cache flush takes place approximately every 30 minutes as well.
A plot of network flows over a long period of time shows many network flows terminate at regular
30-minute intervals, which is a result of the cache flush.

3. Router exhaustion also causes split network flows for router-collected flows. A router has limited
processing and memory resources devoted to network flow. During periods of stress, the flow cache
will fill and empty more frequently due to the number of network flows collected by the router.

Use of specialized flow sensors can avoid or minimize cache-flush and router-exhaustion issues. All of these

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

CHAPTER 1. INTRODUCTION TO SILK

cases involve network flows that are long enough to be split. As we show later, the majority of network flows
collected at the enterprise network border are small and short-lived.

1.2.4 Introduction to Flow Collection

An enterprise network comprises a variety of organizations and systems. The flow data to be handled by
SiLK are first processed by the collection system, which receives flow records from the sensors and organizes
them for later analysis. The collection system may collect data through a set of sensors that includes both
routers and specialized sensors that are positioned throughout the enterprise network. After records are
added to the flow repository by the collection system, analysis is performed using a custom set of software
called the SiLK analysis tool suite.

The SiLK project is active, meaning that the system is continually improved. These improvements include
new tools and revisions to existing collection and analysis software. See Appendix D for information on how
to obtain the most up-to-date version of SiLK.

1.2.5 Where Network Flow Data Are Collected

While complex networks may segregate flow records based on where the records were collected (e.g., the
network border, major points within the border, at other points), the generic implementation of the SiLK
collection system defaults to collection only at the network border, as shown in Figure 1.2. The default
implementation has only one class of sensors: all. Further segregation of the data is done by type of traffic.

Figure 1.2: Default Traffic Types for Sensors

The SiLK tool rwsiteinfo can produce a list of sensors in use for a specific installation, reflecting its
configuration. For more information on how to use this tool, see Section 2.2.1.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

1.2. THE SILK FLOW REPOSITORY

1.2.6 Types of Enterprise Network Traffic

In SiLK, the term type mostly refers to the direction of traffic, rather than a content-based characteristic.
In the generic implementation (as shown in Figure 1.2), there are six basic types and five additional types.
The basic types are

• in and inweb, which is traffic coming from the Internet service provider (ISP) to the enterprise network
through the border router. Web traffic is separated from other traffic due to its volume, making many
searches faster.

• out and outweb, which is traffic coming from the enterprise network to the ISP through the border
router.

• int2int, which is traffic going both from and to the enterprise network, but which passes by the sensor.

• ext2ext, which is traffic going both from and to the ISP, but which passes by the sensor. (The presence
of this type of traffic usually indicates a configuration problem either in the sensor or at the ISP.)

The additional SiLK types are

• inicmp and outicmp, which represent ICMP traffic entering or leaving the enterprise network. These
types are operational only if SiLK was compiled with the option to support them.

• innull and outnull, which only can be found when the sensor is a router and not a dedicated sensor.
They represent traffic from the upstream ISP or the enterprise network, respectively, that terminates
at the router’s IP address or is dropped by the router due to an access control list.

• other, which is assigned to traffic where one of the addresses (source or destination) is in neither the
internal nor the external networks.

• The constructed type all selects all types of flows associated with a class of sensors.

These types are configurable. Configurations vary as to which types are in actual use (see the discussion
below under Sensors: Class and Type).

1.2.7 The Collection System and Data Management

Data collection starts when a flow record is generated by one of the sensors: either a router or a dedicated
sensor. Flow records are generated when a packet relevant to the flow is seen, but a flow is not reported until
it is complete or flushed from the cache. Consequently, a flow can be seen some time after the start time of
the first packet in the flow, depending on timeout configuration and on sensor caching, among other factors.

Packed flows are stored into files indicated by class, type, sensor, and the hour in which the flow started. So
for traffic coming from the ISP through or past the sensor named SEN1 on March 1, 2018 for flows starting
between 3:00 and 3:59:59.999 p.m. Coordinated Universal Time (UTC), a sample path to the file could be
/data/SEN1/in/2018/03/01/in-SEN1_20180301.15.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

CHAPTER 1. INTRODUCTION TO SILK

1.2.8 How Network Flow Data Are Organized

The data repository is accessed via the SiLK tools, particularly the rwfilter command. An analyst uses
rwfilter to choose the type of data to be viewed by specifying a set of selection parameters. This handbook
discusses selection parameters in more detail in Section 2.2.2; this section briefly outlines how data are stored
in the repository.

Dates

The SiLK repository stores data in hourly divisions, which are referred to in the form yyyy/mm/ddThh in UTC.
Thus, the hour beginning 11 a.m. on February 23, 2018 in Pittsburgh would be referred to as 2018/2/23T16
when compensating for the difference between UTC and Eastern Standard Time (EST)—five hours.

In general, data for a particular hour starts being recorded at that hour and will continue recording until
some time after the end of the hour. Under ideal conditions, the last long-lived flows will be written to the
file soon after they time out (e.g., if the active timeout period is 30 minutes, the last flows will be written out
30 minutes plus propagation time after the end of the hour). Under adverse network conditions, however,
flows could accumulate on the sensor until they can be delivered. Under normal conditions, the file for
2018/3/7 20:00 UTC would have data starting at 3 p.m. in Pittsburgh and finish being updated after 4:30
p.m. in Pittsburgh.

Sensors: Class and Type

Data are divided by time and sensor. The class of a sensor is often associated with the sensor’s role as a
router: access layer, distribution layer, core (backbone) layer, or border (edge) router. The classes of sensors
that are available are determined by the installation. By default, there is only one class—all—but based on
analytical interest, other classes may be configured as needed. As shown in Figure 1.2, each class of sensor
has several types of traffic associated with it: typically in, inweb, out, and outweb.

Data types are used for two reasons:

1. They group data together into common directions.

2. They split off major query classes.

As shown in Figure 1.2, most data types have a companion web type (i.e., in and inweb, out and outweb).
Web traffic generally constitutes about 50% of the flows in any direction; by splitting the web traffic into a
separate type, we reduce query time.

Most queries to repository data access one class of data at a time but access multiple types simultaneously.

1.3 The SiLK Tool Suite

The SiLK analysis suite consists of over 60 command-line UNIX tools (including flow collection tools) that
rapidly process flow records or manipulate ancillary data. The tools can communicate with each other and
with scripting tools via pipes (both unnamed and named) or via intermediate files.

Flow analysis is generally input/output bound (I/O bound)—the amount of time required to perform an
analysis is proportional to the amount of data read from disk. A major goal of the SiLK tool suite is to

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

1.4. HOW TO USE SILK FOR ANALYSIS

minimize that access time. Some SiLK tools perform functions analogous to common UNIX command-line
tools and to higher level scripting languages such as Perl®. However, the SiLK tools process this data in
non-text (binary) form and use data structures specifically optimized for analysis.

Consequently, most SiLK analysis consists of a sequence of operations using the SiLK tools. These operations
typically start with an initial rwfilter call to retrieve data of interest and culminate in a final call to a text
output tool like rwstats or rwuniq to summarize the data for presentation.

Keeping data in binary for as many steps as possible greatly improves efficiency of processing. This is because
the structured binary records created by the SiLK tools are readily decomposed without parsing, their fields
are compact, and the fields are already in a format that is ready for calculations, such as computing netmasks.

In some ways, it is appropriate to think of SiLK as an awareness toolkit. The flow-record repository provides
large volumes of data, and the tool suite provides the capabilities needed to process these data. However,
the actual insights come from analysts.

1.4 How to Use SiLK for Analysis

The SiLK tool suite provides a robust collection of tools to facilitate network traffic analysis tasks. It is
designed to be very flexible in its support of analysis methods. Over time, different analysts have used a
variety of approaches in their use of SiLK. This section discusses three approaches that have been useful in
analyzing network flow records.

The chapters following this one expand on these approaches in more detail, focusing on the support that
network flow analysis can provide to such analyses. Being aware of and practicing multiple approaches to
analysis enables an analyst to gain insight into a wide variety of network traffic behaviors.

1.4.1 Single-path Analysis

The single-path approach is the most basic and most commonly-used approach to analyzing network behavior.
It makes use of a single sequence of commands to produce the analytic results. In this approach, the analyst
formulates an initial hypothesis, constructs a query to retrieve traffic of interest, produces a table, summary,
or series to profile this traffic, and then interprets this profile either numerically or through a graph. Iteration
can be used if needed (e.g., to refine the initial query), but may not be necessary for many simpler, more
straightforward analyses.

This approach could be used for service identification, network device inventories, incident response, or usage
studies. Chapter 2 provides an overview of single-path analysis, including the SiLK commands that are most
commonly used with it. Chapter 3 describes example case studies of single-path analyses.

1.4.2 Multi-path Analysis

The multi-path approach uses a sequence of tools that frequently involve several alternatives, and often
includes iterating over some steps. Although a multi-path approach can be done manually, it more often
involves scripting to select alternatives based on categories of data and then iterate until the desired traffic is
isolated or the desired summaries are produced. The alternatives are used as required for processing groups
of records in differing ways to reach results that profile behavior of interest.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

CHAPTER 1. INTRODUCTION TO SILK

This approach could be used for examining traffic using several protocols, each following its own alternative
set of characteristics, to accomplish the same goal. For example, there are multiple ways that malware can
beacon to its command-and-control network. Each of those ways could be examined separately via a chain
of SiLK commands, generating sets of results that contribute to overall awareness of beaconing.

Chapter 4 provides an overview of multi-path analysis, including the SiLK commands that are most com-
monly used with it. Chapter 5 describes an example case study of multi-path analysis.

1.4.3 Exploratory Analysis

We do not always know ahead of time what the scope of our analysis will be—or even what questions we
should be asking! Exploratory analysis is an open-ended approach to formulating, scoping, and conducting a
network analysis. It uses single-path and multi-path analyses as building blocks for investigating anomalous
network traffic. These simpler types of analysis help us to formulate different scenarios, investigate alternative
hypotheses, and explore multiple aspects of the data. Exploratory analysis is initially manual in nature, but
can transition to scripted analysis for ease of repetition and for regularity of results.

This approach is used for complex or emerging phenomena, where multiple indicators need to be combined
to gain understanding. An example of this approach to analysis would be a study of data exfiltration, which
can be performed in a wide variety of ways. Each of those exfiltration methods could be profiled using a set
of indicators, and the results of all such analyses combined to produce a composite understanding of traffic
being passed to various groups of suspicious addresses.

Chapter 6 provides an overview of exploratory analysis, including advanced SiLK commands and concepts.
Chapter 7 describes an example case study of exploratory analysis.

1.5 Workflow for SiLK Analysis

SiLK analyses share a common workflow, shown in Figure 1.3. While single-path, multi-path, and exploratory
analysis may incorporate different steps in this workflow, all follow its general sequence.

1.5.1 Formulate

The Formulate step investigates the context of the event. Essentially, it involves collecting information to
identify the unique attributes of the network, its operation, and the event. How large is the network? How is
it structured? Where are network sensors located? When did the event occur? Is it associated with specific
sensors, IP addresses, hosts, network spaces, ports, protocols, and so forth? Do any earlier analyses of the
network offer insight? The information may be incomplete at this point, but it serves as a starting point for
launching the analysis and establishing its scope. We can use it to formulate a hypothesis for the network’s
behavior. This hypothesis serves as the basis of our analysis. In more sophisticated exploratory analyses,
we can formulate multiple scenarios and hypotheses for investigation and analysis.

Information gleaned from exploring the event’s context helps us to establish which network behaviors should
be included in (or excluded from) our analysis. We can use this information to construct a query to select
and partition network flow records from the SiLK repository or a stored file. Queries typically incorporate
information such as where the flow was collected, the date of data collection, and the flow direction. Within
the SiLK community, query selection is commonly called a data pull.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

1.5. WORKFLOW FOR SILK ANALYSIS

Formulate

Establish context for
investigation
(Where? When?)

Research analytic

• vendor documentation

• published papers

• data feeds

Needs analysis – does a prior
analytic address this?

Identify unique attributes

• ports

• protocols

• associations

• behaviors

Build queries

Look at alternative
scenarios and hypotheses

Model

Can we quantify what
happened?

Build model

• isolate behavior

• find patterns

Lessons learned from prior
analytics

Program model

• shell

• python

• other

Test

Execute programmed
model

• monitor progress

• debug

Save test results

• ‘rw’ files

• ‘set’ files

• ‘bag’ files

• other file formats

Analyze

What did we find?

Does it match our
hypothesis?

Review test results

Reduce false positives

Reduce false negatives

Identify improvements

Refine

Re-evaluate hypothesis

Apply improvements

Update programs

Repeat

Mature the process

• templates

• regression testing

• code reuse/analytics
libraries

Figure 1.3: SiLK Analysis Workflow

Partitioning applies tests to selected flow records to separate (or partition) them into categories for further
inspection and investigation. A default set of tests is provided with SiLK. It includes IP addresses, ports,
protocols, time, and volumes. (If additional tests are needed for analyses, the SiLK tools can be extended
via plugins to provide them.)

The combination of selection and partitioning (commonly referred to as filtering) is performed with the
rwfilter command. Records that meet the filtering criteria are sent to pass destinations. Records that do
not are sent to fail destinations. Both can be combined into all destinations. This provides flexibile options
to either store query results in files or use pipes to send them to other commands for processing.

1.5.2 Model

The Model step summarizes data and investigates behaviors of interest. What is the network’s behavior
during normal operation? What happened during an event? What patterns and behaviors can we identify?
Are they similar to those observed during other events? By examining the information gathered during the
Formulate step, you can come up with a model of the event that perhaps explains what is going on.

SiLK provides a variety of tools for examining network flow data associated with an event. Each tool
offers different views into the data that can be considered independently or in combination for analysis.
For example, SiLK includes tools for generating time-series summaries of traffic (the rwcount command),
computing summary statistics (the rwstats command), and summing up the values of flow attributes for
user-defined time periods (the rwuniq command).

This step can be done manually. For analyses that are larger in scope, it can be automated by using shell
or Python scripts.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

CHAPTER 1. INTRODUCTION TO SILK

1.5.3 Test

The Test step runs the model that you created—either manually or by executing shell or Python scripts.
This gives you a chance to check the progress of the analysis.

SiLK includes commands for sorting flow records according to user-defined keys (the rwsort command),
creating sets of unique IP addresses from flow records (rwset and its related commands), and creating
groups of records by other criteria (rwbag and its related commands). These commands help you to organize
output from the various SiLK commands and save it for further use.

1.5.4 Analyze

The Analyze step reviews the results of the previous steps. What do these results tell us about the event?
What behaviors have been identified? What types of events are they associated with? What relationships
can we identify between flows? Do our initial hypotheses still hold up? Can we find and eliminate false
positives and false negatives?

This step involves examining and interpreting output from the analysis tools mentioned earlier. SiLK can also
translate binary flow records into text for analysis with graphics packages, spreadsheets, and mathematical
tools (the rwcut command).

1.5.5 Refine

The Refine step improves the analysis. Did we successfully explain the event? If not, what problems did we
encounter? Did we properly understand the event’s context? Did our query into the SiLK repository pull
too much data? Do we need to dig deeper into the data during the modeling and testing steps? Should we
take another look at the results to see if we missed or misinterpreted important patterns and behaviors?

The preceding steps in the workflow can be combined in an iterative pattern. For example, you may want to
isolate flow records of interest from unrelated network traffic by making additional queries with the rwfilter
command and repeating subsequent steps in the analysis. This narrows the data to focus on the time periods
and behaviors of interest and eliminate unneeded flow records.

The workflow described in this section gives us the flexiblity to begin our data exploration with a general
question, apply one or more analyses to the question, and complete the workflow with a repeatable analytic.
This flexiblity does come with trade-offs, however. Queries typically increase proportionally with the time
window and flow record attributes of an analysis. Therefore, a precise model of an analysis should be
produced to minimize the query results.

1.6 Applying the SiLK Workflow

The SiLK workflow can be applied in different ways to meet the requirements of analysis groups. Groups
that are primarily concerned with network operations will often focus on network monitoring or service and
device validation. Incident response groups commonly focus on changes in network behavior that may be
associated with an incident. Security improvement groups often focus on understanding problematic network
behavior and changes that identify the impact of improvements. While the SiLK suite offers features that
support all groups, the work required to use them will vary.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

1.7. AVOIDING COGNITIVE BIASES

The extended examples and case studies in this handbook apply the SiLK workflow to perform common
cybersecurity and network management operations. Most of them fall into three broad areas, each identified
by an icon. When you see these icons, you’ll know that the text that follows relates to these areas.

Situational awareness consists of understanding what is currently present on your network,
knowing what is currently threatening it, and predicting what might be expected to happen in
the future. The eye icon to the left identifies content related to situational awareness, including
detailed examples of how to apply the SiLK analysis workflow to improve your awareness of
what is happening on your network. Sections 2.3, 4.3, and 6.3 go into further detail abut using
SiLK for situational awareness.

Incident Response is an organized approach to addressing and managing the aftermath of
a security breach or cyberattack, also known as an IT incident, computer incident or security
incident.4 The magnifying glass icon to the left identifies content related to incident response,
including detailed examples of how to apply the SiLK workflow to investigate and respond to
security incidents.

Threat Hunting is proactively searching for malware or attackers that are lurking in a net-
work — and may have been there for some time.5 The binocular icon to the left identifies
content related to threat hunting, including detailed examples of how to apply the SiLK work-
flow to find active and potential threats to your network.

1.7 Avoiding Cognitive Biases

Cognitive biases are systematic errors in thinking that affect the decisions and judgments that people make.6
They grow out of limitations on how much information the human brain can process at a given time. Analysts
need to take common cognitive biases into account when investigating network behavior. If these biases are
not identified and countered, they can lead to analyses that are inaccurate or incomplete.

Common cognitive biases that can affect an analysis are listed below, along with strategies for avoiding them.

• Anchoring bias is where the analyst focuses too heavily on the initial profile or data within the
profile. This bias results in a premature judgment of the threat.
One way to fight anchoring bias is to assemble a balanced view across several datasets before making
even tentative conclusions.

• Selective perception bias is the tendency to not notice parts of the profile that do not support
assumptions about the threat. This bias results in an incomplete analysis of the threat.
One way to fight this bias is to consider multiple possible outcomes before doing the analysis. Highlight
data that supports each outcome before identifying the outcome with the strongest support.

• Information bias is where data is collected or analyzed improperly. This bias results in mistaken
conclusions from analysis.

4Definition of incident response, Techtarget Network website. [Accessed May 5, 2020] https://searchsecurity.techtarget.com/
definition/incident-response

5Byrne, Louse. A Beginner’s Guide to Threat Hunting. Security Intelligence website. September 12, 2018. [Accessed May
5, 2020] https://securityintelligence.com/a-beginners-guide-to-threat-hunting/

6Cherry, Kendra. How Cognitive Biases Influence How You Think and Act. VeryWellMind website. [Accessed February, 18,
2020] https://www.verywellmind.com/what-is-a-cognitive-bias-2794963

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

https://searchsecurity.techtarget.com/definition/incident-response
https://searchsecurity.techtarget.com/definition/incident-response
https://securityintelligence.com/a-beginners-guide-to-threat-hunting/
https://www.verywellmind.com/what-is-a-cognitive-bias-2794963

CHAPTER 1. INTRODUCTION TO SILK

One way to fight this bias is to double-check the collected data and use tested analytics to produce the
profile.

• Confirmation bias is where new data is only interpreted as supporting an existing assessment of the
threat. This bias prevents the analyst from considering alternative explanations and can result in an
unsupported conclusion.
One way to fight this bias is to consider multiple outcomes before analysis and highlight data that
supports each one. (This is similar to the method for avoiding selective perception bias.)

• Conservatism bias is where an analyst fails to sufficiently revise the current interpretation of the
threat when further information provides contrary evidence. This bias results in the analyst clinging
to prior interpretations that are no longer supported by the current data, which leads to unreliable
results.
One way to fight this bias is to avoid even tentative conclusions until all current data is incorporated
into the analysis. (This is similar to the method for avoiding anchoring bias.)

• Recency bias is when an analyst focuses too heavily on the most current results. This bias results in
ongoing trends being discounted in favor of more recent variations, producing misleading results.
One way to fight this bias is to examine both the longer-term trends and the recent variations before
making conclusions about the threat.

1.8 Dataset for Single-path, Multi-path, and Exploratory Analy-
sis Examples

The dataset used for the command examples and case studies of single-path, multi-path, and exploratory
analysis in this document is the FCCX-15 dataset7. It originates from a June, 2015 Cyber Exercise conducted
by the Software Engineering Institute at Carnegie Mellon University in a virtual environment.

The exercise network topology is shown in Figure 1.4 and is documented in the data download. It comprises
a distributed enterprise for the period from June 2-16, 2015. Internet and transport layer protocols such as
IPv4, TCP, UDP, and ICMP are well represented in the data. Link layer protocols such as IGMP and OSPF
are also included; however, they are not as prevalent as the Internet and transport layer protocols.

7SiLK Reference Data. CERT NetSA Security Suite website. [Accessed May 5, 2020] https://tools.netsa.cert.org/silk/
referencedata.html

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

https://tools.netsa.cert.org/silk/referencedata.html
https://tools.netsa.cert.org/silk/referencedata.html

1.8. DATASET FOR SINGLE-PATH, MULTI-PATH, AND EXPLORATORY ANALYSIS EXAMPLES

FLAMING CUPCAKE Challenge TOPOLOGY

TEAM ENVIRONMENT

Grey Network

(see Grey diagram)

192.168.170.0/24

Div0mgt

10.0.50.0/24

S0

Div0.EXT
S2

Div0.INT

Div0svc

10.0.40.0/24

10.0.30.0/24 10.0.10.0/24

192.168.10.0/24

Firewall

Mgmt: 10.0.40.92

VPN GW: X.X.3.11

External IDS

10.0.10.50

Mgmt: 10.0.40.61

External IDS

192.168.10.50

Mgmt: 10.0.40.63

Internal IDS

10.0.30.50

Mgmt: 10.0.40.62

Internal IDS

192.168.30.50

Mgmt: 10.0.40.64

Web Proxy

192.168.70.10

192.168.30.0/24

Firewall

Mgmt: 10.0.40.91

S4

Div1.INT2
192.168.130.0/24

S1

Div1.EXT

S3

Div1.INT1

192.168.60.0/24

Web Proxy

155.6.10.10

Div1log4

192.168.124.0/24

Div1log3

192.168.123.0/24

Div1log1

192.168.121.0/24

Div1log2

192.168.122.0/24

Div1dhq

192.168.111.0/24

Div1ops1

192.168.141.0/24

Div1ops2

192.168.142.0/24
Div1ops3

192.168.143.0/24

Div1intel1

192.168.161.0/24

Div1intel2

192.168.162.0/24

Div1intel3

192.168.163.0/24

Div1med

192.168.166.0/24

Div1mar

192.168.164.0/24

Div1nusr

192.168.165.0/24

Div1mgt

192.168.50.0/24
Div1svc

192.168.40.0/24

Div1dmz

192.168.20.0/24Div1svc

192.168.40.0/24

Backbone

Core

NOC Subnet

143.84.150.0/24

Div0mgt

155.6.6.0/24

VPN Client Pool

192.168.181.0/24

Figure 1.4: FCC Network Diagram

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Chapter 2

Basic Single-path Analysis with SiLK:
Profiling and Reacting

This chapter introduces basic single-path analysis through application of the analytic development process
with the SiLK tool suite. It discusses basic analysis of network flow data with SiLK, in addition to specific
tools and how they can be combined to form a workflow.

Upon completion of this chapter you will be able to

• describe basic single-path analysis and how it maps to the analytic development process

• understand SiLK tools commonly used with basic single-path analysis

• describe SiLK IPsets and their application

• describe the single-path analysis workflow using network flow data

• describe how to apply the single-path analysis workflow to situational awareness

2.1 Single-path Analysis: Concepts

Single-path analysis is the approach of combining data with methods that do not require conditional steps,
integration, or a great deal of refinement. In layman’s terms, single-path analysis can be described as the
’start-to-finish’ approach of combining one or more analytical steps to characterize network behavior. Its
output may contain multiple attributes and characteristics; however, it results in information that normally
does not need continued iteration. Figure 2.1 provides an overview of single-path analysis.

Single-path analysis typically incorporates the Formulate, Model, Test, and Analyze steps of the analysis
workflow described in Section 1.5. The Refine step can also be included—for instance, to change the scope
of a data pull from the SiLK repository—but is not always needed. The analysis begins by identifying the
context of an analysis and formulating a hypothesis to explain the behavior under investigation. Event
attributes such as hosts, networks, and time periods are used to identify, retrieve, and partition data for
analysis. Attributes such as frequency, volume, and supporting network services provide additional behavioral
context.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Single-path analysis then summarizes this data to produce sequences of event behavior. Data can be sepa-
rated into logical groups such as successful and unsuccessful contacts, scanning, and misconfiguration. This
enables analysts to produce known and unknown activity, trends, and differences for comprehensive analysis
of a network’s behavior.

Analysts also use single-path analyses as building blocks for broader, more complex analyses. See Chapter 4
and Chapter 6 for descriptions of analysis workflows that include single-path analyses as building blocks for
more comprehensive investigations of network activity.

Figure 2.1: Single-Path Analysis

2.1.1 Scoping Queries of Network Flow Data

Be careful when defining the scope of an initial query into the SiLK repository or a file. The natural tendency
is to make the partitioning criteria very inclusive, which has two drawbacks. It pulls over-large amounts of
data, consuming storage and other computer resources. Overly-broad queries may match behaviors other
than those of interest, which will complicate later steps in the analysis.

The preferred method for scoping queries is the opposite:

1. Make the partitioning criteria initially narrow, specific to the desired behaviors.

2. Once the traffic related to the behavior is retrieved, broaden the initial criteria to identify related
network traffic.

Starting narrow and broadening the scope of the data query as the analysis proceeds will use computing
resources more efficiently and facilitate clearer analysis by minimizing unwanted data.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

2.1.2 Excluding Unwanted Network Traffic

Despite narrowing the initial query, unrelated traffic is commonly included in the intially-retrieved records.
Analysis will often require isolating the desired activity from among the retrieved traffic. This may involve
studying the traffic to identify unrelated behaviors and constructing further criteria to exclude them. It may
also include eliminating traffic involving specific addresses (often by using the rwset tools to build IPsets),
traffic that does not occur in the proper timeframe (often by using a further rwfilter call), or traffic that
lacks specific protocol information associated with behavior of interest (again by using a further rwfilter
call).

2.1.3 Example Single-Path Analysis

This chapter documents an example single-path analysis using the SiLK tool suite. It serves as an indepen-
dent analysis, but could also depict the beginning of a multi-path (intermediate) or exploratory (advanced)
analysis workflow. The example begins with identifying the context of an event by using rwsiteinfo to
select relevant sensors and time periods for analysis. The time window is expanded beyond the event under
analysis to select data to compare against the event period. rwfilter is then used to retrieve network flow
records that apply to the defined sensor and period.

Traffic characteristics such as bytes, packets, and TCP flags options are then used with rwfilter on the
retrieved data to select sequences of behaviors such as successful and unsuccessful contacts, scanning, and
misconfigurations. The resulting network flow records are then displayed with tools such as rwcut, rwuniq,
rwcount, and rwstats. These tools summarize and display network flow records using specified bins in
order for analysts to verify and group data for traffic characterization and behavioral analysis. Top-N and
bottom-N statistics, time series, event sequence, and record-by-record displays are a few examples depicted
in this analysis.

Hosts that match specific characteristics or behaviors during an analysis are then saved to named SiLK IPsets.
IPsets are data structures that represent an arbitrary collection of individual addresses, and are commonly
named using a behavior, characteristic, or some other descriptive attribute. For example, webservers.set
could be a IPset file of the source IP addresses obtained from querying network flow data for flows where
the source IP address responded to a SYN scan on its port 80. These binary data structures enable analysts
to use the SiLK tool suite to describe network traffic and save, display, or query the hosts that match those
descriptions with tools such as rwset, rwsetbuild, rwsetcat, or rwfilter.

2.2 Single-path Analysis: Analytics

The commands, parameters, and examples described in this chapter serve as the building blocks for analyses
with the SiLK tool suite.

2.2.1 Get a List of Sensors With rwsiteinfo

The first step in a basic, single-path network analysis of the dataset described in Section 1.8 is to find out
which sensor recorded the data to be analyzed and narrow down the time period for our analysis. Since
routing is relatively static, data from a specific IP address generally enters or leaves through the same sensor.
You need to identify the sensor that covers the affected network and figure out when this sensor recorded
network flow data.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Use the rwsiteinfo command to view this information for the sensors on your network. rwsiteinfo prints
SiLK configuration file information for a site, its sensors, and the traffic they collect. The --fields parameter
is required and specifies what information is displayed. Run rwsiteinfo twice to do the following:

1. List the names and descriptions of all the sensors on the network. This helps to locate the sensor that
covers the affected network.

2. For the sensor of interest, list the types of SiLK traffic that it carries, the number of data files stored in
the SiLK repository for each type of traffic, and the start and end times for storing network flow data
in the repository. This identifies the direction and type of network traffic that the sensor recorded and
the time period when it was actively storing data.

Example 2.1 shows the two rwsiteinfo commands and their output. The results of these two calls to
rwsiteinfo will be used in Section 2.2.2 to build a query with the rwfilter command to select the network
flow records for our analysis.

Determine Which Sensor Covers the Affected IP Addresses

To start, run the rwsiteinfo command to find the names and locations of the sensors in the network.

rwsiteinfo --fields=sensor,describe-sensor

The --fields parameters requests the following information:

• sensor displays the name of each sensor in plain text.

• describe-sensor displays the description of each sensor from the site configuration file (normally
silk.conf in the root of the repository). A site’s owner can specify information about the sensor
configuration in this file. This gives you information (such as the sensor’s location) that can help you
to find which sensors recorded network traffic for the affected address block. (If the site’s owner did
not include this information in the site configuration file, nothing is displayed for this parameter.)

The output at the top of Example 2.1 lists the names and locations of the sensors. You need to find the
sensor that covers the affected network. We are interested in traffic through the subnetwork Div1Ext. The
sensor S1 is associated with this subnetwork, which we will examine more closely.

Find Traffic Types and Repository Storage Times

Once you have found the sensor of interest (S1), you can find out what kinds of traffic the sensor carries and
when it wrote data to the SiLK repository.

rwsiteinfo --sensor=S1 --fields=type,repo-file-count,repo-start-date,repo-end-date

• --sensor specifies which sensor to examine. In this example, it is the name of the sensor identified
via the first rwsiteinfo command (S1).

• --fields displays the following information in table format for sensor S1:

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

<1>$ rwsiteinfo --fields =sensor ,describe - sensor
Sensor |Sensor - Description |

S0| Div0Ext |
S1| Div1Ext |
S2| Div0Int |
S3| Div1Int1 |
S4| Div1Int2 |
S5| Div1log1 |
S6| Div1log2 |
S7| Div1log3 |
S8| Div1log4 |
S9| Div1ops1 |

S10| Div1ops2 |
S11| Div1ops3 |
S12| Div1svc |
S13| Div1dhq |
S14| Div1dmz |
S15| Div1mar |
S16| Div1med |
S17| Div1nusr |
S18| Div1mgt |
S19| Div1intel1 |
S20| Div1intel2 |
S21| Div1intel3 |

<2>$ rwsiteinfo --sensor =S1 \
--fields =type ,repo -file -count ,repo -start -date ,repo -end -date
Type|File -Count| Start -Date| End -Date|

in| 441|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
out| 512|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|

inweb| 328|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
outweb | 446|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
innull | 0| | |

outnull | 0| | |
int2int | 511|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
ext2ext | 204|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|

inicmp | 0| | |
outicmp | 0| | |

other| 0| | |

Example 2.1: Using rwsiteinfo to List Sensors, Display Traffic Types, and Show Repository Information

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

type—the types of enterprise network traffic that are associated with S1. This tells you the
direction and origin of the network traffic it carries. It is also useful for splitting off data of
interest (for instance, separating inbound Web traffic from other inbound traffic), which can
speed up SiLK queries. (To learn more about the basic SiLK network types, see Sections 1.2.6
and 1.2.8.)
repo-file-count—the number of files that S1 stored in the SiLK repository for each type of
network traffic. Each file represents one hour of recorded data.
repo-start-date—the time and date of the oldest file that S1 stored in the SiLK repository.
repo-end-date—the time and date of the most recent file that S1 stored in the SiLK repository.

The output at the bottom of Example 2.1 lists the different types of network traffic carried by S1. The bulk
of this traffic was recorded from 2015/06/02T13:00:00 through 2015/06/18T18:00:00. In the next step of
our analysis, we will therefore retrieve network flow records from S1 within this time period.

The output from Example 2.1 can also tell us whether S1 recorded enough data to support a meaningful
network analysis. The repository contains 441 files of inbound traffic from the ISP to the network (in),
representing 441 hours of recorded inbound traffic to the IP addresses covered by S1. Similarly, the repository
contains 512 hours of outbound traffic from these IP addresses to the ISP (out), 328 hours of inbound Web
traffic (inweb), and 446 hours of outbound web traffic (outweb). This is sufficient for our analysis.

This example shows the process described in Section 1.5. The formulation is to find which sensors recorded
the data. The model used the static nature of the data and applied rwsiteinfo. Example 2.1 provided the
test, producing data that was analyzed to yield the sensor. The refinement was to use further parameters
with rwsiteinfo to determine traffic types and date ranges.

Help with rwsiteinfo

For a full list of rwsiteinfo options, type rwsiteinfo --help.

For a detailed description of the rwsiteinfo command, type man rwsiteinfo at the command prompt.

Other Useful rwsiteinfo Options

Keep the following in mind when using this command:

• You must always specify parameters with rwsiteinfo; there is no default output.

• Enter rwsiteinfo --fields options in the order that you would like them to be displayed. For in-
stance, to view the sensor description before the sensor name, specify --fields=describe-sensor,sensor

• To find the classes and types supported by an installation, run rwsiteinfo --fields=class,type,mark-defaults.
This produces three columns labeled Class, Type, and Defaults. The Defaults column shows plus
signs (+) for all the types in the default class and asterisks (*) for the default types in each class.

• The rwsiteinfo command supports optional parameters to control the formatting of its output (disable
column spaces, change separation character, disable column headers, change field separators). It can
also limit output to specific network types of interest.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

2.2.2 Choose Flow Records With rwfilter

A key step in performing a network analysis is to find and retrieve network flow records associated with the
event from the SiLK repository. Use the rwfilter command to pull network flow records that were recorded
by the sensor of interest (S1) during the time period of interest. These records will be used in subsequent
steps in our analysis.

During this step in the analysis, rwfilter will be used to save network flow records of interest to a file.
Later, we’ll use rwfilter in conjunction with other SiLK commands to partition and explore this data.

About the rwfilter command

rwfilter is the most commonly used SiLK command and serves as the cornerstone for building a network
analysis. It selects records from the SiLK repository, then directs the output to either files or other SiLK
commands. Alternatively, rwfilter can select records from a pipe or file in a working directory (for instance,
the output of a prior rwfilter command). It can optionally compute basic statistics about the flow records
it reads from the repository or a file. rwfilter can be used on its own or in conjunction with other SiLK
analysis tools, including additional invocations of rwfilter.

The following is a high-level view of the rwfilter command and its options:

rwfilter {selection | input} partition output

Specify input to rwfilter by using either selection or input parameters.

• Selection parameters read (or pull) network flow records of interest that were recorded by sensors
and stored in the SiLK flow repository. They specify the attributes of records to be read from the
repository, such as the sensor that recorded the data, the type of network data, the start and end dates
for retrieving data, and the location of the repository.

• Input parameters read network flow records from pipes and/or named files in working directories
containing records previously extracted from the repository or created by other means. They can be
filenames (e.g., infile.rw) or pipe names (e.g., stdin or /tmp/my.fifo) to specify locations from
which to read records. As many names as desired may be given, with both files and pipes used in the
same command.

In this step of our network analysis, we will use rwfilter’s selection parameters to retrieve records from the
SiLK repository. In future steps, we will use rwfilter’s input parameters to read flow records from a file or
pipe.

Partitioning parameters create the “filter” part of rwfilter. These parameters specify which records pass
the filter and which fail. This enables you to find and isolate network flow records that match the parti-
tioning criteria you specify. rwfilter offers a variety of filtering parameters for specifying the criteria for
pass/fail filtering, including time period, value ranges for packets and bytes, IP address, protocol, source
and destination ports, and more.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Hint 2.1: Minimum Partitioning Parameters for rwfilter

An analysis will involve at least one call to rwfilter unless you are looking at records
saved from a previous analysis. Each rwfilter call must include at least one partitioning
parameter unless --all-destination is specified as an output parameter. Note that the
partitioning parameter does not have to filter anything; it just needs to be present. The
partitioning parameter --protocol=0- is often used in this situation since it will not filter
any records.

In this step of our network analysis, we will specify just one partitioning parameter: the IP address that
is associated with the event. In future steps, we will specify additional partitioning parameters to identify
records of interest and isolate them for further exploration with other SiLK commands.

Output parameters specify which group of records is returned from the call to rwfilter: those that “pass” the
filter, those that “fail” the filter, both, or neither. These records can be written to pipes and/or named files
in a working directory via the output parameters. (This also applies to statistics computed with rwfilter.)
Each call to rwfilter must have at least one output parameter.

In this step of our network analysis, we will use output parameters to specify the name of the file where
records are stored. In future steps, we will use pipes to direct rwfilter output to other SiLK commands
for further investigation and processing.

Hint 2.2: rwfilter File Naming Conventions

The examples in this guide store flow records in either *.rw or *.raw files (e.g., flows.rw,
external.raw). Both are commonly-accepted file extensions for rwfilter output.

Figure 2.2 shows how the rwfilter parameters interact.

Figure 2.2: rwfilter Parameter Relationships

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Retrieving network flow records and saving them to a file

Our sample single-path analysis pulls network flow records from the SiLK repository with rwfilter, saves
them to a binary file, then examines the data in the file. This is often much faster and more efficient than
pulling fresh data from the repository at every step in the analysis. rwfilter queries into large repositories
can take a long time to run—especially if you are investigating activity over an extended period of time. To
look at another group of records from the repository (for instance, from a different sensor or time period),
simply run rwfilter again to retrieve the desired records and create additional files for analysis.

Use the rwfilter command as follows to pull network flow records associated with the sensor, time period,
and IP address of interest to our analysis (demonstrated in Example 2.2):

rwfilter --start=2015/06/17T14 --end=2015/06/17T14 --sensor=S1 --type=all
--any-address=192.168.70.10 --pass=flows.rw

• --start and --end specify the time period for retrieving records from the SiLK repository (which was
found in Section 2.2.1). Times can be expressed in the form YYYY/MM/DDThh:mm:ss.mmm. While some
rwfilter parameters use the full format, --start and --end use an abbreviated time form, specifying
time to the day (2015/06/17) or to the hour 2015/06/17T14), but no finer resolution than the hour.
In this example, one hour of traffic is pulled from the repository, starting at UTC 14:00:00.000 and
ending at UTC 14:59:59.999 on June 17, 2015.

Hint 2.3: SiLK Parameter Abbreviations

The full parameter names are --start-date and --end-date. SiLK will recognize a param-
eter as long as you specify enough of its name to uniquely identify it.

• --sensor specifies which sensor’s records to retrieve (sensor S1, which was identified in Section 2.2.1)

• --type specifies the types of SiLK network traffic to retrieve. We will pull records for all network
traffic.

• --any-address sets up a simple pass/fail filter for partitioning the selected network flow records. We
are interested in traffic associated with the IP address 192.168.70.10. Records that match the specified
IP address pass the filter; records that do not, fail it.

• --pass specifies the destination of the selected records that pass the filter. In this case, they are stored
in the local disk file flows.rw.

Hint 2.4: rwfilter Output File Performance

Be aware that saving rwfilter output to a network disk file can slow down this command
considerably. The speed at which records are written to the file is limited by the speed of
the network. Saving to a local file is faster. (To learn more about strategies for speeding up
rwfilter performance, see Chapter 9.)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

The resulting binary file, flows.rw, contains network flow records from the time period, sensor, traffic
types, and IP address of interest. The ls command in Example 2.2 shows that this file has content after
the rwfilter command. In other words, the records in this file are a snapshot of the event that we will be
investigating over the course of our network analysis.

<1>$ rwfilter --start =2015/06/17 T14 --end =2015/06/17 T14 \
--sensor =S1 --type=all --any - address =192.168.70.10 \
--pass=flows.rw

<2>$ ls -l flows.rw
-rw -r--r--. 1 analyst analyst 365935 Nov 3 14:48 flows.rw

Example 2.2: Using rwfilter to Retrieve Network Flow Records From The SiLK Repository

Help with rwfilter

Type rwfilter --help for a full list of parameters.

Type man rwfilter for a detailed description of the rwfilter command and its parameters.

Other Useful rwfilter Options

Keep the following in mind when using rwfilter:

• Some selection parameters can be used as partitioning parameters when rwfilter is pulling network
flow records from a file or pipe. The --sensor, --type, --class, and --flowtype parameters can
perform double duty for selecting and partitioning records.

• When specifying selection parameters, experienced analysts include a --start-date to avoid having
rwfilter implicitly pull all records from the current day, potentially leading to inconsistent results.

• rwfilter partitioning parameters give analysts great flexibility in describing which flow records pass
or fail the filter. Figuring out how to partition data to filter out unwanted records can be the most
difficult part of using this command.

• Narrowing the selection of files from the repository always improves the performance of a query. On the
other hand, increasing the specificity of partitioning options could improve or diminish performance.
Increasing the number of partitioning parameters means more processing must be performed on each
flow record. Most partitioning options involve minimal processing, but some involve considerable
processing.
Generally, processing partitioning options is much less of a concern than the number of output oper-
ations, especially disk operations, and most especially network disk operations. Choosing to output
both the “pass” and “fail” sets of records will involve more output operations than choosing only one
set.

• The parameter --print-filenames lists, on the standard error file, the name of each file as rwfilter
opens it for reading. This provides assurance that the expected files were read and indicates the
command’s progress. (This is especially useful when many files are used as data sources and the
command will take a long time to complete.)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

• rwfilter can take multiple files and pipes as input. If the number of files exceeds what is convenient
to put in the command line, use the --xargs parameter. It specifies the name of a file containing
filenames from which to read flow records. This parameter also is used when another UNIX process is
generating the list of input files, as in

find . -name '*.rw' | --xargs=stdin . . .

2.2.3 View Flow Records With rwcut

Translating network flow records from binary format into human-readable text is a helpful part of a network
analysis. Use the rwcut command to translate the binary network flow records selected via the rwfilter
command as tables of ASCII text.

SiLK uses binary data to speed up queries, file manipulation, and other operations. However, these data
cannot be read using any of the standard text-processing UNIX tools. rwcut reads SiLK flow records and
translates this binary data into pipe-delimited (|) text output. You can then view the data directly in a
terminal window or read it into a text-processing, graphing, or mathematical analysis tool.

Hint 2.5: Keep Data in Binary Format Where Possible

Keep data in binary format (i.e., *.rw files) for as long as possible while performing an
analysis. Binary SiLK network flow records are more compact and offer faster performance
than the ASCII representation of these records. Use rwcut to inspect records or export data
to other tools for further analysis. See Chapter 9 for examples of text vs. binary processing.

rwcut can be invoked in two ways: by reading a file or by connecting it with another SiLK tool (such as
rwfilter or rwsort) via a pipe. When reading a file, specify the file name in the command line. The
--fields parameter selects, reorders, and formats SiLK data fields as text and separates them in different
ways.

Displaying Flow Records

As part of the network analysis, in Example 2.3 we will use rwcut to take a closer look at a set of flow
records from the file flows.rw (produced in Example 2.2).

rwcut --fields=sip,dip,sport,dport,protocol,stime --num-recs=10 flows.rw

• The --fields parameter specifies which fields in a SiLK record are shown. Field names are case-
insensitive. This example displays the following fields:

sip—source IP address for the flow
dip —destination IP address for the flow
sport—source port for the flow
dport—destination port for the flow
protocol—transport-layer protocol for the flow

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

stime—start time of the flow, formatted as YYYY/MM/DDThh:mm:ss.mmm

• The --num-recs parameter determines how many records rwcut displays. In this example, up to ten
records are shown (regardless of how many records are actually in the file). If the file were to contain
no records, rwcut only displays the column heading for each field.

• flows.rw is the name of the file containing SiLK network flow records.

<1>$ rwcut --fields =sip ,dip ,sport ,dport ,protocol ,stime \
--num -recs =10 --ipv6 - policy = ignore flows.rw

sIP| dIP|sPort|dPort|pro| sTime|
10.0.40.83| 192.168.70.10|53981| 8082| 6|2015/06/17 T14 :00:02.631|
10.0.40.20| 192.168.70.10| 53|58887| 17|2015/06/17 T14 :00:04.619|
10.0.40.20| 192.168.70.10| 53|55004| 17|2015/06/17 T14 :00:04.621|
10.0.40.83| 192.168.70.10|53982| 8082| 6|2015/06/17 T14 :00:12.673|
10.0.40.20| 192.168.70.10| 53|64408| 17|2015/06/17 T14 :00:14.685|
10.0.40.20| 192.168.70.10| 53|57734| 17|2015/06/17 T14 :00:14.689|
10.0.40.83| 192.168.70.10|53983| 8082| 6|2015/06/17 T14 :00:22.709|
10.0.40.20| 192.168.70.10| 53|63770| 17|2015/06/17 T14 :00:24.753|
10.0.40.20| 192.168.70.10| 53|53374| 17|2015/06/17 T14 :00:24.755|
10.0.40.83| 192.168.70.10|53984| 8082| 6|2015/06/17 T14 :00:32.741|

Example 2.3: rwcut for Displaying the Contents of Ten Flow Records

The six fields specified with the rwcut command are displayed in the order in which they are listed. Each
field is in a separate column with its own header. The source IP addresses (sip) for each record vary; two
addresses are shown in this example. The destination IP address (dip) is the same for all of these records
since we only pulled records associated with that IP address. The output in Example 2.3 shows that the
host of interest (192.168.70.10) is receiving DNS responses (protocol 17 (UDP), source port 53 (DNS))
and service requests to TCP (protocol 6) destination port 8082 (associated with a file server).

Hint 2.6: Format IP Addresses with SiLK Environment Variables

Your output may contain additional spaces in the IP address field. The environment variable
SILK_IPV6_POLICY=ignore ignores any flow record marked as IPv6, regardless of the IP
addresses it contains. Only records marked as IPv4 will be printed. Setting this environment
variable has the same effect as invoking rwcut with the --ipv6-policy=ignore parameter.

Help with rwcut

Type rwcut --help for a full list of parameters.

Type man rwcut for a detailed description of the rwcut command and its parameters.

Other Useful rwcut Options

Keep the following in mind while using the rwcut command:

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

• The --fields parameter selects which network flow record fields appear in rwcut output. Each field is
associated with a number as well as a name. Table 1.1 lists the field numbers and their corresponding
field names. Numbers can be specified individually or as ranges. Field names and numbers can be
combined and can be listed in arbitrary order. For instance, --fields=1-4,9,protocol produces the
same output as --fields=sip,dip,sport,dport,stime,protocol

• The --fields parameter also specifies the order in which fields are shown in output. Fields can be
displayed in any order. Example 2.4 displays the output fields in this order: source IP address, source
port, start time, destination IP address. This is useful to emphasize trends. By this rearrangement,
we can more easily see that the TCP traffic is using sequential ephemeral source ports, and being sent
at 10 second separations. Both of these features indicate that this is manufactured traffic.

<1>$ rwfilter flows.rw --protocol =6 --max -pass - records =4 \
--pass= stdout | rwcut --fields =1,3, sTime ,2

sIP|sPort| sTime| dIP|
10.0.40.83|53981|2015/06/17 T14 :00:02.631| 192.168.70.10|
10.0.40.83|53982|2015/06/17 T14 :00:12.673| 192.168.70.10|
10.0.40.83|53983|2015/06/17 T14 :00:22.709| 192.168.70.10|
10.0.40.83|53984|2015/06/17 T14 :00:32.741| 192.168.70.10|

Example 2.4: rwcut --fields to Rearrange Output

• If --fields is not specified, rwcut prints the source and destination IP address, source and destination
port, protocol, packet count, byte count, TCP flags, start time, duration, end time, and the sensor
name.

• The --delimited=C parameter changes the separator from a pipe (|) to any other single character,
where C is the delimiting character. It also removes spacing between fields. This is particularly
useful with --delimited=',' which produces comma-separated-value (CSV) output for easy import
into spreadsheet programs and other tools that accept CSV files. --delimited is the equivalent of
specifying --no-columns --no-final-delimiter --column-sep=C .

• When output is sent to a terminal, rwcut (and other text-outputting tools) automatically invoke the
command listed in the user’s PAGER environment variable to paginate the output. The command given
in the SILK_PAGER environment variable will override the user’s PAGER environment. If SILK_PAGER
contains the empty string, no paging will be performed. The paging program can be specified for an
individual command invocation by using its --pager parameter.

2.2.4 Viewing File Information with rwfileinfo

Analyses using the SiLK tool suite can become quite complex, with several intermediate files created while
isolating the behavior of interest. The rwfileinfo displays a variety of characteristics for each file format
produced by the SiLK tool suite, which helps you to manage these files. Use this command (demonstrated
in Example 2.5) to find out more information about the file flows.rw, which contains the SiLK records
associated with the IP address of interest.

For most analysts, the three most important file characteristics are the number of records in the file, the
size of the file, and the SiLK commands that produced the file. Enter the following rwfileinfo command
to view this information for flows.rw:

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

rwfileinfo --fields=count-records,file-size,command-lines flows.rw

• --fields specifies which SiLK file characteristics are displayed.

count-records—the total number of network flow records in a flow record file.
file-size—the size of the file in bytes.
command-lines—the commands used to generate the file. This can be very helpful when per-
forming an analysis that involves many steps and repeated applications of commands such as
rwfilter.

• flows.rw is the name of the file containing SiLK network flow records.

Output is shown in Example 2.5. flows.rw contains 21,864 network flow records; its size is 365,935 bytes.
This gives us an idea of how much network traffic is stored there. The SiLK command that generated the
file is the rwfilter command described in Section 2.2.2.

<1>$ rwfileinfo --fields =count -records ,file -size ,command -lines \
flows.rw

flows.rw:
count - records 21864
file -size 365935
command -lines

1 rwfilter --start =2015/06/17 T14 --end =2015/06/17 T14 \
--sensor =S1 --type=all --any - address =192.168.70.10 --pass=flows.rw

Example 2.5: rwfileinfo Displays Flow Record File Characteristics

Help with rwfileinfo

Type rwfileinfo --help for a full list of parameters.

Type man rwfileinfo for a detailed description of the rwfileinfo command and its parameters.

Other Useful rwfileinfo Options

Keep the following in mind while using the rwfileinfo command:

• While rwfileinfo is generally associated with flow record files, it can also show information on sets,
bags, and prefix maps (or pmaps). For more information, see Section 2.2.8, Section 4.2.4, and Sec-
tion 6.2.7, respectively.

• Be sure to use the --fields parameter to choose which network flow record fields are displayed. If no
fields are specified, rwfileinfo defaults to displaying a dozen fields—many of which are of no use to
analysts.

• For flow record files, the record count is the number of flow records in the file. For files with variable-
length records (indicated by a record-length of one) the field does not reflect the number of records;
instead it is the uncompressed size (in bytes) of the data section. Notably, count-records does not
reflect the number of addresses in an IPset file.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

2.2.5 Profile Flows With rwuniq and rwstats

The next step in our network analysis is to investigate network flows to and from the IP address of interest.
We will determine the most common protocols associated with these flows and find flows with low, medium,
and high byte counts.

Two SiLK commands can perform these tasks.

• rwuniq is a general-purpose counting tool. It reads binary SiLK flow records from a file (or standard
input) and counts the records, bytes, and packets for any combination of fields. rwuniq also groups
(or bins) the records by a time interval specified by the analyst.
In our example, this command is used to identify the hour-long time bins containing flows with low,
medium, and high byte counts.

• rwstats provides a collection of statistical summary and counting facilities that organize and rank
traffic according to various attributes. It reads binary SiLK flow records from a file (or standard
input) and then either computes summary statistics or groups them according to a key composed of
user-specified flow fields, such as address, port, protocol, or detected application.
rwstats can also bin the records by a user-specified start-time or end-time interval. For each bin, it
sums up the values of volumetric attributes, such as bytes, packets, flow records, or unique values of
flow attributes that are not part of the key, and sorts the bins by volumetric attribute. rwstats can
find the N highest or N lowest bins. It also sums up the attribute values across all of the records it
counts and displays the count for each bin as a percentage of the total.
In our example, the rwstats command is used to identify the most commonly-used protocols associated
with traffic to and from the IP address of interest.

rwuniq and rwstats overlap in their functions. Both assign flows to time bins by a key that is set by the
analyst. The key represents combinations of flow field values for the records collected, not the number of
records in each bin. For each value of a key (specified by the --fields parameter), a bin contains counts of
flows or some other measure (specified with the --values parameter). rwuniq displays one row of output
for every bin that falls within a threshold specified by the analyst. rwstats displays one row of output for
each bin in the top N or bottom N of the total count, and computes the percentages of each data types.
For a more detailed discussion of when to use each command, see Comparing rwstats to rwuniq (later in
this section).

Finding Low, Medium, and High-Byte Flows with rwuniq

First, use the rwuniq command to profile flows by byte count. It can find out how many network flow
records within an hour-long period have a low byte count (between zero and 300 bytes), a medium byte
count (between 300 and 100,000 bytes), or a high byte count (more than 100,000 bytes). This gives you an
estimate of the volume of network activity associated with the IP address of interest.

To perform this analysis, use the rwuniq command in conjunction with the rwfilter command.

1. Run rwfilter on the flows.rw file. This file contains all traffic to and from the IP address of interest
during the time period of interest; it was extracted in Section 2.2.2. Running rwfilter on it a second
time pulls all of the records in the file with the specified byte ranges.

2. Use the Unix pipe (|) command to direct the resulting output to the rwuniq command. This command
counts the number of records with each range of bytes and directs the output to a file.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1> $ rwfilter flows.rw --bytes=0-300 --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type --values=records --sort-output \
> low-byte.txt
<2> $ rwfilter flows.rw --bytes=300-100000 --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type --values=records --sort-output \
> medium-byte.txt
<3> $ rwfilter flows.rw --bytes=100000- --pass=stdout --values=records \
| rwuniq --bin-time=3600 --fields=stime,type --sort-output \
> high-byte.txt

Parameters for the rwfilter command include the following:

• flows.rw contains the network flow records of interest.

• --bytes specifies the range of byte counts for selecting records. Ranges are specified using a dash (e.g.,
0-300 selects all flows with byte counts between zero and 300). To specify an open-ended range, do
not include an upper bound on the range (e.g., 100000- selects all flows with byte counts equal to or
greater than 100000).

• --pass=stdout sends all records that pass the filter to standard output.

Parameters for the rwuniq command include the following:

• flows.rw is the name of the file containing SiLK network flow records.

• --bin-time=3600 defines a time bin that is one hour (3600 seconds) long.

• --fields=stime,type specifies the fields to use as keys for counting network flows. This parameter
is required. We are looking at the values for stime (start time for the flow) and type (network flow
type).

• --values=records counts the number of records that passed the rwfilter command.

• --sort-output sorts the output of the rwuniq command in numerical order according to the value (or
values) of the key specified via the --fields parameter.

• The shell command > directs the output of rwuniq into the file low-byte.txt.

Hint 2.7: Use Unix Pipes To Improve SiLK Performance

We could have saved the rwfilter output to a file and run rwuniq on that file instead of
using the UNIX pipe (|) command to send the output directly to the rwuniq command.
However, one problem with generating such temporary files is that they slow down the
analysis. The rwfilter command would have written all the data to disk, and then the
subsequent rwuniq command would have read the data back from disk. Using UNIX pipes
to pass records from one process to another skips the time-consuming steps of writing and
reading data, speeding this up considerably. The SiLK tools can operate concurrently, using
memory (when possible) to pass data between them.

Additional techniques for improving SiLK performance are described in Chapter 9.

Example 2.6 shows the output from this series of SiLK commands.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

<1>$ rwfilter flows.rw --bytes =0 -300 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >low -byte.txt
<2>$ cat low -byte.txt

sTime| type| Records |
2015/06/17 T14 :00:00| in| 1449|
2015/06/17 T14 :00:00| out| 1500|
2015/06/17 T14 :00:00| inweb| 12|
2015/06/17 T14 :00:00| outweb | 8339|
<3>$ rwfilter flows.rw --bytes =300 -100000 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >medium -byte.txt
<4>$ cat medium -byte.txt

sTime| type| Records |
2015/06/17 T14 :00:00| in| 66|
2015/06/17 T14 :00:00| out| 96|
2015/06/17 T14 :00:00| inweb| 346|
2015/06/17 T14 :00:00| outweb | 10051|
<5>$ rwfilter flows.rw --bytes =100000 - --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >high -byte.txt
<6>$ cat high -byte.txt

sTime| type| Records |
2015/06/17 T14 :00:00| out| 3|
2015/06/17 T14 :00:00| outweb | 2|

Example 2.6: Characterizing flow byte counts with rwuniq

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Help with rwuniq Type rwuniq --help for a full list of parameters.

Type man rwuniq for a detailed description of the rwuniq command and its parameters.

Other useful rwuniq options

• The --value parameter specifies which flow attributes are counted for a time bin. In addition to
counting bytes, rwuniq can count records, packets, and source and destination IP addresses.

• Flow records need not be sorted before being passed to rwuniq. If the records are sorted in the same
order as indicated by the --fields parameter to rwuniq, using the --presorted-input parameter
may reduce memory requirements for rwuniq.

Finding the Most Commonly-Used Protocols With rwstats

Another way to characterize network flows is by protocol usage. By looking at the most commonly-used
protocols, we can get a sense of what types of traffic the network carries. Normal network traffic is TCP
(protocol 6) and UDP (protocol 17), with some ICMP (protocol 1). Networks with more confidential traffic
may use IPSEC (with AH [protocol 50] and ESP [protocol 51]) or site-specific encryption (protocol 99).

Use the rwstats command to identify the 10 most common protocols associated with traffic into and out
of the IP address of interest. rwstats groups records into time bins by field (or fields), similar to rwuniq.
However, rwstats can list the top N or bottom N bins and compute summary percentages for each item.

rwstats --fields=protocol --count=10 flows.rw

• --fields=protocol counts the records that carry traffic with each protocol.

• --count=10 computes statistics for the 10 bins with the most common protocols.

• flows.rw is the name of the file containing SiLK network flow records.

Example 2.7 shows the output from this command.

<1>$ rwstats --fields = protocol --count =10 flows.rw
INPUT: 21864 Records for 3 Bins and 21864 Total Records
OUTPUT : Top 10 Bins by Records
pro| Records | % Records | cumul_ %|

6| 18854| 86.233077| 86.233077|
17| 2909| 13.304976| 99.538053|

1| 101| 0.461947|100.000000|

Example 2.7: Finding the top protocols with rwstats

Notice that the output lists just three protocols, not ten. This is because only three protocols were used
during the time period of interest. rwstats also computes the number of records for each protocol and
summarizes the percentage of traffic for each protocol.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

• Protocol 6 (Transmission Control Protocol, or TCP) makes up approximately 86% of the traffic; it
is used by popular applications such as the World Wide Web, email, remote administration, and file
transfer programs.

• Protocol 17 (User Datagram Protocol, or UDP) makes up approximately 13% of the traffic; it is used
by the Domain Name System (DNS), the Routing Information Protocol (RIP), the Simple Network
Management Protocol (SNMP), and the Dynamic Host Configuration Protocol (DHCP). Voice and
video is also transmitted using UDP.

• Protocol 1 (Internet Control Message Protocol, or ICMP) makes up less than 1% of the traffic; it is
used by network devices (such as routers) to transmit error messages and other information.

Help with rwstats. Type rwstats --help for a full list of parameters.

Type man rwstats for a detailed description of the rwstats command and its parameters.

Other useful rwstats options. Each call to rwstats must include exactly one of the following:

• a key containing one or more fields via the --fields parameter and an option to determine the number
of key values to show via --count (shown in Example 2.7), --percentage, or --threshold

• one of the summary parameters (--overall-stats or --detail-proto-stats)

The summary parameters for rwstats offer a lot of information on network traffic. When invoked with
--overall-stats, rwstats looks at all the traffic together, calculating profiles of bytes per flow, packets per
flow, and bytes per packet within each flow. The profiles include numerical values for minimum and maximum
values, quartiles, and quartile ranges. Following the numerical values, rwstats presents a histogram for each
profile, with the data in ten bins to cover the distribution between 0 and the maximum value, with the
top bin covering values up to 232, the maximum possible. Example 2.8 shows the output of rwstats
--overall-stats.

For a detailed protocol-by-protocol summary, using --detail-proto-stats with a list of protocol numbers
augments the overall summary with a similar summary for each protocol. The output can be long since
rwstats generates a set of histograms for each protocol. In Example 2.9, Command 1 shows the start of the
overall summary generated by --detail-proto-stats, with values identical to those shown in Example 2.8.
Command 2 shows the profile generated for just the TCP flow records.

rwstats also has a --values parameter that allows you to specify a different set of aggregate values to profile
when evaluating highest or lowest N bins. These aggregate values include records (the default), bytes,
packets, and distinct: followed by any flow record field except icmpTypeCode. This parameter does not
affect the summarizing parameters. The first counting characteristic listed after the --values parameter is
the one used to calculate the percentages associated with each bin.

Example 2.10 gives two ways to use the rwstats --values parameter to expand on the top-N protocols
analysis (shown in Example 2.7):

1. Command 1 uses the --values=bytes parameter to change the value counted per bin from the default
(records) to aggregate bytes in all flows. While this does not change the order of bins in this example,
it does show that the volume of transferred data from TCP is a much greater fraction of the total than
the count of flows.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwstats --overall -stats flows.rw
FLOW STATISTICS --ALL PROTOCOLS : 21864 records
*BYTES min 51; max 210540

quartiles LQ 126.33764 Med 232.74008 UQ 4906.22492 UQ -LQ 4779.88728
interval_max |count <= max |% _of_input | cumul_ %|

40| 0| 0.000000| 0.000000|
60| 46| 0.210392| 0.210392|

100| 409| 1.870655| 2.081046|
150| 9513| 43.509879| 45.590926|
256| 1235| 5.648555| 51.239480|

1000| 1409| 6.444383| 57.683864|
10000| 8723| 39.896634| 97.580498|

100000| 524| 2.396634| 99.977131|
1000000| 5| 0.022869|100.000000|

4294967295| 0| 0.000000|100.000000|
* PACKETS min 1; max 2232

quartiles LQ 1.51217 Med 3.15094 UQ 13.33673 UQ -LQ 11.82456
interval_max |count <= max |% _of_input | cumul_ %|

3| 10844| 49.597512| 49.597512|
4| 583| 2.666484| 52.263996|

10| 3662| 16.748994| 69.012989|
20| 3923| 17.942737| 86.955726|
50| 1401| 6.407794| 93.363520|

100| 684| 3.128430| 96.491950|
500| 714| 3.265642| 99.757592|

1000| 41| 0.187523| 99.945115|
10000| 12| 0.054885|100.000000|

4294967295| 0| 0.000000|100.000000|
*BYTES/ PACKET min 40; max 1251

quartiles LQ 52.54317 Med 65.96176 UQ 119.25022 UQ -LQ 66.70705
interval_max |count <= max |% _of_input | cumul_ %|

40| 62| 0.283571| 0.283571|
44| 17| 0.077753| 0.361325|
60| 10089| 46.144347| 46.505671|

100| 5126| 23.444932| 69.950604|
200| 5735| 26.230333| 96.180937|
400| 718| 3.283937| 99.464874|
600| 97| 0.443652| 99.908525|
800| 13| 0.059458| 99.967984|

1500| 7| 0.032016|100.000000|
4294967295| 0| 0.000000|100.000000|

Example 2.8: Finding overall traffic profile rwstats --overall

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

<1>$ rwstats --detail -proto -stats =6 flows.rw \
| head -3
FLOW STATISTICS --ALL PROTOCOLS : 21864 records
*BYTES min 51; max 210540

quartiles LQ 126.33764 Med 232.74008 UQ 4906.22492 UQ -LQ 4779.88728
<2>$ rwstats --detail -proto -stats =6 flows.rw \
| tail -n +41

FLOW STATISTICS -- PROTOCOL 6: 18854/21864 records
*BYTES min 80; max 210540

quartiles LQ 129.61289 Med 900.94675 UQ 5678.05941 UQ -LQ 5548.44652
interval_max |count <= max |% _of_proto | cumul_ %|

40| 0| 0.000000| 0.000000|
60| 0| 0.000000| 0.000000|

100| 62| 0.328843| 0.328843|
150| 7853| 41.651639| 41.980482|
256| 340| 1.803331| 43.783812|

1000| 1352| 7.170892| 50.954705|
10000| 8719| 46.244829| 97.199533|

100000| 524| 2.779251| 99.978784|
1000000| 4| 0.021216|100.000000|

4294967295| 0| 0.000000|100.000000|
* PACKETS min 2; max 1474

quartiles LQ 1.78636 Med 5.57930 UQ 15.23493 UQ -LQ 13.44858
interval_max |count <= max |% _of_proto | cumul_ %|

3| 7915| 41.980482| 41.980482|
4| 561| 2.975496| 44.955978|

10| 3613| 19.163042| 64.119020|
20| 3916| 20.770128| 84.889148|
50| 1399| 7.420176| 92.309324|

100| 684| 3.627877| 95.937202|
500| 714| 3.786995| 99.724196|

1000| 41| 0.217460| 99.941657|
10000| 11| 0.058343|100.000000|

4294967295| 0| 0.000000|100.000000|
*BYTES/ PACKET min 40; max 1251

quartiles LQ 51.50445 Med 59.13846 UQ 122.73994 UQ -LQ 71.23549
interval_max |count <= max |% _of_proto | cumul_ %|

40| 62| 0.328843| 0.328843|
44| 17| 0.090167| 0.419009|
60| 9880| 52.402673| 52.821682|

100| 3038| 16.113292| 68.934974|
200| 5022| 26.636258| 95.571232|
400| 718| 3.808210| 99.379442|
600| 97| 0.514480| 99.893922|
800| 13| 0.068951| 99.962873|

1500| 7| 0.037127|100.000000|
4294967295| 0| 0.000000|100.000000|

Example 2.9: Summarizing traffic with one protocol via rwstats --detail-proto-stats

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

2. Command 2 adds a count of unique source IP addresses of flows (--values=bytes,distinct:sip) to
the byte count in Command 1. Since bytes is listed first, bin order and percentages are still computed
using the aggregate byte count.

The results show that this traffic comes from only a few sources, which gives insight into the traffic pattern
for the host of interest.

<1>$ rwstats --fields = protocol --values =bytes --count =10 \
flows.rw

INPUT: 21864 Records for 3 Bins and 33313611 Total Bytes
OUTPUT : Top 10 Bins by Bytes
pro| Bytes| %Bytes| cumul_ %|

6| 32710148| 98.188539| 98.188539|
17| 438235| 1.315483| 99.504023|

1| 165228| 0.495977|100.000000|
<2>$ rwstats --fields = protocol --values =bytes , distinct :sip \

--count =10 flows.rw
INPUT: 21864 Records for 3 Bins and 33313611 Total Bytes
OUTPUT : Top 10 Bins by Bytes
pro| Bytes|sIP - Distin | %Bytes| cumul_ %|

6| 32710148| 5| 98.188539| 98.188539|
17| 438235| 2| 1.315483| 99.504023|

1| 165228| 2| 0.495977|100.000000|

Example 2.10: Profiling protocol volumes with rwstats --values

Comparing rwstats to rwuniq

rwstats in top or bottom mode and rwuniq have much in common, especially since SiLK version 3.0.0. An
analyst can perform many tasks with either tool. Some guidelines follow for choosing the tool that best suits
a task. Generally speaking, rwstats is the workhorse data description tool, but rwuniq does have some
features that are absent from rwstats.

• Like rwcount, rwstats and rwuniq assign flows to bins. For each value of a key, specified by the
tool with the --fields parameter, a bin summarizes counts of flows, packets, or bytes, or some other
measure determined by the analyst with the --values parameter. rwuniq displays one row of output
for every bin except those not achieving optional thresholds specified by the analyst. rwstats displays
one row of output for each bin in the top N or bottom N , where N is determined directly by the
--count parameter or indirectly by the --threshold or --percentage parameters.

• If rwstats or rwuniq is initiated with multiple counts in the --values parameter, the first count is
the primary count. rwstats can apply a threshold only to the primary count, while rwuniq can apply
thresholds to any or several counts.

• For display of all bins, rwuniq is easiest to use. However, a similar result can be obtained with
rwstats --threshold=1. rwstats will run more slowly than rwuniq because it must sort the bins by
their summary values.

• rwstats always sorts bins by their primary count. rwuniq optionally sorts bins by their key.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

• rwstats normally displays the percentage of all input traffic accounted for in a bin, as well as the cumu-
lative percentage for all the bins displayed so far. This output can be suppressed with --no-percents
to be more like rwuniq or when the primary count is not bytes, packets, or records.

• rwuniq has two counts that are not available with rwstats: sTime-Earliest and eTime-Latest.

• Network traffic frequently can be described as exponential, either increasing or decreasing. rwstats
is good for looking at the main part of the exponential curve, or the tail of the curve, depending on
which is more interesting. rwuniq provides more control of multi-dimensional data slicing, since its
thresholds can specify both a lower bound and an upper bound. rwuniq will be better at analyzing
multi-modal distributions that are commonly found when the x-axis represents time.

2.2.6 Characterize Traffic by Time Period With rwcount

A typical network analysis will examine network traffic by time period to see how it varies throughout the
event of interest. Unusual volumes of traffic, changes in byte and packet counts, and other deviations from
normal activity can help you to figure out what is causing the event to occur.

The rwcount command captures network activity that occurs during the time interval (or bin) that you
specify. It counts the number of records, bytes, and packets for flows occurring during a bin’s assigned time
period. You can then view these counts in a terminal window or graph them in a plotting package such as
gnuplot, a spreadsheet package such as Microsoft Excel, or another analysis tool.

Our analysis will examine network traffic to and from the target IP address during the time period of interest.
We will use rwcount to show this activity in ten-minute time bins.

rwcount --bin-size=600 flows.rw

• --bin-size specifies the time bin in seconds. In this example, the time bin is 600 seconds or ten
minutes.

• flows.rw contains the network flow records of interest.

Example 2.11 shows the output from this command. It counts the flow volume information gleaned from
the flows.rw file by ten-minute bins.

<1>$ rwcount --bin -size =600 flows.rw
Date| Records | Bytes| Packets |

2015/06/17 T14 :00:00| 466.00| 798757.00| 3423.00|
2015/06/17 T14 :10:00| 394.00| 104668.00| 1622.00|
2015/06/17 T14 :20:00| 382.43| 104159.18| 1621.86|
2015/06/17 T14 :30:00| 393.57| 107100.82| 1670.14|
2015/06/17 T14 :40:00| 9335.01| 15559931.61| 191709.67|
2015/06/17 T14 :50:00| 10885.11| 16541697.17| 187619.55|
2015/06/17 T15 :00:00| 7.70| 75830.56| 897.45|
2015/06/17 T15 :10:00| 0.17| 21466.66| 383.33|

Example 2.11: Counting Bytes, Packets and Flows with Respect to Time

By default, rwcount produces the table format shown in Example 2.11.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

• The first column is the timestamp for the earliest moment in the bin.

• The net three columns show the number of flow records, bytes, and packets counted in the bin.

Examining Bytes, Packets, and Flows

Counting by bytes, packets, and flows can reveal different traffic characteristics. As noted at the beginning
of this manual, the majority of traffic crossing wide area networks has very low packet counts. However, this
traffic, by virtue of being so small, does not make up a large volume of bytes crossing the enterprise network.
Certain activities, such as scanning and worm propagation, are more visible when considering packets, flows,
and various filtering criteria for flow records.

The traffic into and out of the IP address of interest (captured in the file flows.rw) jumps significantly
during the ten-minute time bins 2015/06/17T14:40:00 and 2015/06/17T14:50:00. Byte, packet, and
record counts all rise during this 20-minute time period.

Examining Traffic Over a Period of Time

rwcount is used frequently to provide graphs showing activity over long periods of time, giving a visual
representation of shifts in network traffic. Count data can be read by most plotting (graphing) applications.

The data from Example 2.11 is plotted using Microsoft Excel in Figure 2.3. The traffic spike that we saw in
the tabular data shows up clearly in the plots on the left-hand side of this figure.

For a more detailed look at network activity during this time period, we can change the --bin-size from
600 seconds (ten minutes) to 60 seconds (one minute).

rwcount --bin-size=60 flows.rw

Plots of this data are shown on the right-hand side of Figure 2.3. Looking at the data on a minute-by-minute
basis shows the variation in data flows during this event.

Hint 2.8: Data Resolution Versus Bin Size

Whether you use a larger bin size or smaller bin size depends on your data. Smaller bin sizes
provide more data points to capture subtleties in traffic. If the bin size is too small, however,
it becomes harder to spot trends in the data. Larger bin sizes make it easier to spot regular
traffic patterns. If the bin size is too large, however, there will not be enough resolution in
the data to see what is happening on your network at a given point in time.

Help with rwcount

Type rwcount --help for a full list of parameters.

Type man rwcount for a detailed description of the rwcount command and its parameters.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Other Useful rwcount Information

Keep the following in mind when using rwcount.

• The default bin size is 30 seconds.

• Bin counts that have zero flows, packets, and bytes can be suppressed by the --skip-zeroes option
to reduce the length of the listing. However, do not skip rows with zero flows if the output is being
passed to a plotting program; if they are, those data points will not be plotted.

2.2.7 Sort Flow Records With rwsort

Sorting flow records can help you to organize them according to protocol, IP address, start time, and other
attributes. Use the rwsort command to sort binary flow records according to the value of the field(s) you
select.

rwsort is a high-speed sorting tool for SiLK flow records. It reads binary SiLK flow records from a file
(or standard input) and outputs the same records in a user-specified order. The output records are also
in binary (non-text) format and are not human-readable without interpretation by another SiLK tool such
as rwcut. rwsort is faster than the standard UNIX sort command, handles flow record fields directly
with understanding of the fields’ types, and is capable of handling very large numbers of SiLK flow records
provided sufficient memory and storage are available.

The following example sorts the network flow records in flows.rw by byte count, destination IP, and protocol
from the highest to the lowest value in each field, then displays the first ten records.

rwsort flows.rw --fields=dip,protocol,bytes --reverse
| rwcut --fields=dip,protocol,bytes,stime --num-recs=10

• --fields specifies the sort order. It identifies the fields that are used as sort keys and specifies their
precedence. In this example, rwsort first sorts the records by destination IP address (dip), then
protocol (protocol), then byte count (bytes).

• By default, rwsort sorts from the lowest to the highest values of each sort key. --reverse sorts the
records from the highest to the lowest values.

• The file flows.rw contains the SiLK record files to be sorted.

• The Unix pipe command (|) sends the output of the rwsort command to the rwcut command. The
rwcut command and its parameters are described in Section 2.2.3.

Example 2.12 shows the results of this command. The records are first sorted from the highest destination
IP address to the lowest. They are then sorted according to their protocols, then their sizes in bytes. This
gives you an idea of the volume and types of traffic associated with the destination IPs.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwsort flows.rw --fields =dip ,protocol ,bytes --reverse \
| rwcut --fields =dip ,protocol ,bytes ,stime --num -recs =10

dIP|pro| bytes| sTime|
216.207.68.32| 6| 960|2015/06/17 T14 :53:15.707|
216.207.68.32| 6| 960|2015/06/17 T14 :54:30.604|
216.207.68.32| 6| 120|2015/06/17 T14 :54:14.405|
216.207.68.32| 6| 120|2015/06/17 T14 :55:29.333|
209.66.102.50| 6| 960|2015/06/17 T14 :55:26.586|
209.66.102.50| 6| 960|2015/06/17 T14 :56:42.465|
209.66.102.50| 6| 120|2015/06/17 T14 :57:41.186|
209.66.102.50| 6| 120|2015/06/17 T14 :56:25.264|
208.206.41.61| 6| 960|2015/06/17 T14 :58:20.666|
208.206.41.61| 6| 960|2015/06/17 T14 :46:17.427|

Example 2.12: Sorting by Destination IP Address, Protocol, and Byte Count

Behavioral Analysis with rwsort, rwcut, and rwfilter

A behavioral analysis of protocol activity relies heavily on basic rwcut and rwfilter parameters. The
analysis requires the analyst to have a thorough understanding of how protocols are meant to function.
Some concept of baseline activity for a protocol on the network is needed for comparison.

To monitor the behavior of protocols, first take a sample of a particular protocol. Use rwsort --fields=sTime,
and convert the results to ASCII text with rwcut. To produce byte and packet fields only, try rwcut with
--fields=bytes and --fields=packets. Then, perform the UNIX commands sort and uniq -c.

Cutting in this manner (sorting by field or displaying select fields) can answer a number of questions:

1. Is there a standard bytes-per-packet ratio?

2. Do any bytes-per-packet ratios fall outside the baseline?

3. Do any sessions’ byte counts, packet counts, or other fields fall outside the norm?

There are many such questions to ask, but keep the focus of exploration on the behavior being examined.
Chasing down weird cases is tempting but can add little to your understanding of general network behavior.

Help with rwsort

Type rwsort --help for a full list of parameters.

Type man rwsort for a detailed description of the rwsort command and its parameters.

Other Useful rwsort Information

Keep the following in mind when using rwsort.

• Sort keys can be specified by field numbers as well as field names; see Table 1.1 for a complete list.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

• Sort keys can be specified in any order. For example, --fields=1,3 results in flow records being sorted
by source IP address (1) and by source port (3) for each source IP address. --fields=3,1 results in
flow records being sorted by source port and by source IP address for each source port. (Since flow
records are not always entered into the repository in the order in which they were initiated, analyses
often involve sorting by start time at some point.)

• rwsort can also be used to sort multiple SiLK record files. If the flow records in the input files are al-
ready ordered in each file, using the --presorted-input parameter can improve efficiency significantly
by just merging the files.

• If rwsort is processing large input files, disk space in the default temporary system space may be
insufficient or not located on the fastest storage available. To use an alternate space, specify the
--temp-directory parameter with an argument specifying the alternate space. This may also improve
data privacy by specifying local, private storage instead of shared storage. See Chapter 9 for more
information on optimizing SiLK analytics.

2.2.8 Use IPsets to Gather IP Addresses

Up to this point, our single-path analysis has focused on selecting, storing, and examining flow records.
However, another common goal of single-path analysis is to compile lists of IP addresses that exhibit criteria
of interest to the analyst. This section will continue our analysis by gathering and summarizing single-path
criteria using named sets of IP addresses, or IPsets.

Create IPsets With rwset and rwsetbuild

rwset and rwsetbuild are two SiLK tools for creating sets of IP addresses (IPsets). rwset creates sets from
flow records. rwsetbuild creates them from lists of IP addresses in text files. Expanding on the profiling in
Section 2.2.5, rwfilter can be used to profile network flows by bytes. When combined, rwset and rwfilter
summarize the IP addresses that exhibit byte-threshold profiles to files with descriptive names.

rwfilter flows.rw --bytes=0-300 --pass=stdout \
| rwset --any-file=low-byte.set

Parameters for the rwfilter command include the following:

• flows.rw contains the network flow records of interest.

• --bytes=0-300 specifies the range of byte counts for selecting records (0-300 for this example).

• --pass=stdout sends all records that pass the filter to standard output.

Parameters for the rwset command include the following:

• --any-file=low-bytes.set specifies source and destination IP addresses from flow records with a
range of 0-300 bytes to the IPset file low-bytes.set. Because --any-file was used above, the IPset
file will include the IP address itself as well as any IP addresses that communicated with it.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwfilter flows.rw --bytes =0 -300 --pass= stdout \
| rwset --any -file=low -byte.set
<2>$ file low -byte.set
low -byte.set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 2.13: Using rwset to Gather IP Addresses

Example 2.13 shows the output from this series of rwfilter and rwset commands.

Analysis requiring defined IP addresses should use the rwsetbuild tool. rwsetbuild creates SiLK IPsets
from textual input, including canonical IP addresses, CIDR notation, and IP ranges. This approach is useful
for creating whitelists and blacklists of IP addresses that may reside in network flow records presently or in
the future.

rwsetbuild --ip-ranges servers.txtservers.set

Parameters for the rwsetbuild command include the following:

• --ip-ranges specifies allowing the textual input file to contain IP ranges.

• servers.txt specifies the textual input file name.

• servers.set specifies the binary IPset output file name.

Example 2.14 shows the output from the rwsetbuild command.

<1>$ cat servers .txt
Text file of servers
192.168.2.1 # Single
192.168.3.0/24 # CIDR
192.168.4.1 -192.168.4.128 # IP range
<2>$ rwsetbuild --ip - ranges servers .txt servers .set
<3>$ file servers .set
servers .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 2.14: Using rwsetbuild to Gather IP Addresses

Help with rwset and rwsetbuild

Type rwset --help or rwsetbuild --help for a full list of parameters.

Type man rwset or man rwsetbuild for a detailed description of these commands and their parameters.

Other Useful rwset and rwsetbuild Options

Keep the following in mind while using the rwset command:

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

• rwset can assign IP addresses to IPsets by source, destination, and both source and destination
simultaneously.

• rwset and rwsetbuild can read input from files on disk or standard input (stdin).

• rwsetbuild supports SiLK IP address wildcard notation (10.x.1-2.4,5). This notation is not supported
when the --ip-ranges switch is specified.

Display IP Addresses, Counts, and Network Information With rwsetcat

Single-path analysis often requires the IP addresses in an IPset to be counted and displayed. This gives you
an opportunity to inspect the IP addresses that met specified analytic criteria, such as behavior and network
topology. rwsetcat can display the IP addresses in an IPset, count the number of IP addresses, display
information about the network, and show minimum and maximum IP addresses as well as other summary
data for the IPset.

We will continue our analysis of the low byte IP addresses from Section 2.2.8 by counting, listing, and
computing summary statistics for the IP addresses in the low-bytes.set IPset file.

To count the number of IP addresses that exhibited 0-300 byte flow records with the IP address 192.168.70.10,
enter the following command:

rwsetcat --count-ips low-byte.set

Parameters for the rwsetcat command include the following:

• --count-ips specifies counting the number of IP addresses.

• low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.15 shows the count of IP addresses contained in low-byte.set.

<1>$ rwsetcat --count -ips low -byte.set
574

Example 2.15: Using rwsetcat to Count Gathered IP Addresses

Although general counting is helpful, an analysis commonly requires additional context regarding the net-
works and hosts contained in the IPset. rwsetcat prints analyst-specified subnet ranges and the number of
hosts in each subnet.

To summarize the /24 networks contained in low-byte.set:

rwsetcat --network-structure=24 low-byte.set

Parameters for the rwsetcat command include the following:

• --network-structure groups IP addresses by specified structure and prints the number of hosts

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

• low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.16 shows the first four /24 networks contained in low-byte.set and their respective host counts.

<1>$ rwsetcat --network - structure =24 low -byte.set | head -n 4
4.2.0.0/24| 1
6.7.1.0/24| 1
8.1.7.0/24| 1

10.0.20.0/24| 1

Example 2.16: Using rwsetcat to Print Networks and Host Counts

Complete statistical summaries are also common during an analysis and can be printed with rwsetcat.
Our previous /24 summary only prints the specified CIDR range and would require iterative commands to
determine multiple CIDR network ranges that may be contained in an IPset. Therefore, rwsetcat provides
the --print-statistics switch for full statistical summaries of an IPset.

rwsetcat --print-statistics low-byte.set

Parameters for the rwsetcat command include the following:

• --print-statistics specifies printing a statistical summary of IP addresses contained in an IPset.

• low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.17 shows the statistical summary of IP addresses in the low-byte.set file.

<1>$ rwsetcat --print - statistics low -byte.set
Network Summary

minimumIP = 4.2.0.58
maximumIP = 216.207.68.32

574 hosts (/32s), 0.000013% of 2^32
87 occupied /8s, 33.984375% of 2^8

381 occupied /16s, 0.581360% of 2^16
521 occupied /24s, 0.003105% of 2^24
551 occupied /27s, 0.000411% of 2^27

Example 2.17: Using rwsetcat to Print IP Address Statistical Summaries

Help with rwsetcat

Type rwsetcat --help for a full list of parameters.

Type man rwsetcat for a detailed description of this command and its parameters.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Other Useful rwsetcat Options

Keep the following in mind while using the rwsetcat command:

• rwsetcat can print CIDR blocks without specifying a desired network mask. rwsetcat will group
sequential IPs into the largest possible CIDR block and prints individual IP addresses. This switch
cannot be combined with the --network-structure switch.

• The --network-structure switch supports multiple CIDR masks for a single command execution.

2.2.9 Resolve IP Addresses to Domain Names With rwresolve

Use the rwresolve command to display the hostnames associated with the IP addresses of interest to our
network analysis. This command performs a reverse Domain Name Service (DNS) lookup on a list of IP
addresses to retrieve their host names. If the lookup is successful, it prints the name of the host; if not, it
prints the IP address. If an IP address resolves to multiple host names, it prints the first one found. The
result is a human-readable list of hostnames that is useful for further investigation and analysis.

rwresolve takes delimited text as input, not binary flow records. It is designed for use with the rwcut
command, although it can be used with any SiLK tool that produces delimited text.

Hint 2.9: Use rwresolve with Small Datasets

Since performing reverse DNS lookups is a time-consuming process, we strongly recommend
that you use rwresolve only on small datasets.

rwcut --fields=1,1 flows.rw | rwresolve --ip-field=2

This command first uses the rwcut command to generate a list of source and destination IP addresses
(--fields=1,1). It redirects the resulting output to the rwresolve command, which looks up the host
names associated with the destination IP addresses.

Example 2.18 shows the default behavior of rwresolve. The output of the rwcut command is passed as
input to the rwresolve command. By default, rwresolve will attempt to resolve source and destination IP
addresses without the --ip-field option. However, this example shows that DNS was not able to resolve
all source IP addresses.

rwresolve supports the c-ares and adns asynchronous DNS libraries and will automatically select what
is available when the SiLK tool suite is installed. The getnameinfo and gethostbyaddr C libraries are also
supported, however, these may impact DNS resolution speed. Analysts can select the desired resolver using
the --resolver switch.

Example 2.19 shows how to display the destination IP address field with rwresolve. It is important to note
that field 2 is the default position for destination IP addresses in SiLK network flow records. Therefore,
if analysts decide to append a source IP address to rwcut output as a method for displaying the IP and
hostname (such as rwcut --fields=1-12,1), the --ip-fields=13 would be a required option for rwresolve
to determine that the 13th flow record field should be resolved.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ rwcut --fields =sip ,dip ,sport ,dport , protocol --num -recs =10 \
--ipv6 - policy = ignore flows.rw \

| rwresolve
sIP| dIP|sPort|dPort|pro|

10.0.40.83| divpx02un00001 .div1.net |53981| 8082| 6|
soca1202un1 .div0.net| divpx02un00001 .div1.net| 53|58887| 17|
soca1202un1 .div0.net| divpx02un00001 .div1.net| 53|55004| 17|

10.0.40.83| divpx02un00001 .div1.net |53982| 8082| 6|
soca1202un1 .div0.net| divpx02un00001 .div1.net| 53|64408| 17|
soca1202un1 .div0.net| divpx02un00001 .div1.net| 53|57734| 17|

10.0.40.83| divpx02un00001 .div1.net |53983| 8082| 6|
soca1202un1 .div0.net| divpx02un00001 .div1.net| 53|63770| 17|
soca1202un1 .div0.net| divpx02un00001 .div1.net| 53|53374| 17|

10.0.40.83| divpx02un00001 .div1.net |53984| 8082| 6|

Example 2.18: Looking Up Source and Destination Hostnames with rwresolve

<1>$ rwcut --fields =sip ,dip ,sport ,dport , protocol --num -recs =10 \
--ipv6 - policy = ignore flows.rw \

| rwresolve --ip - fields =2
sIP| dIP|sPort|dPort|pro|

10.0.40.83| divpx02un00001 .div1.net |53981| 8082| 6|
10.0.40.20| divpx02un00001 .div1.net| 53|58887| 17|
10.0.40.20| divpx02un00001 .div1.net| 53|55004| 17|
10.0.40.83| divpx02un00001 .div1.net |53982| 8082| 6|
10.0.40.20| divpx02un00001 .div1.net| 53|64408| 17|
10.0.40.20| divpx02un00001 .div1.net| 53|57734| 17|
10.0.40.83| divpx02un00001 .div1.net |53983| 8082| 6|
10.0.40.20| divpx02un00001 .div1.net| 53|63770| 17|
10.0.40.20| divpx02un00001 .div1.net| 53|53374| 17|
10.0.40.83| divpx02un00001 .div1.net |53984| 8082| 6|

Example 2.19: Looking Up Destination Hostnames with rwresolve

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

2.2. SINGLE-PATH ANALYSIS: ANALYTICS

Help with rwresolve

Type rwresolve --help for a full list of parameters.

Type man rwresolve for a detailed description of this command and its parameters.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

0

2000

4000

6000

8000

10000

12000

Records

0
2000000
4000000
6000000
8000000
10000000
12000000
14000000
16000000
18000000

Bytes

0

50000

100000

150000

200000

250000

Packets

0

500

1000

1500

2000

2500

20
15
/0
6/
17
T1
4:
00
:…

20
15
/0
6/
17
T1
4:
03
:…

20
15
/0
6/
17
T1
4:
06
:…

20
15
/0
6/
17
T1
4:
09
:…

20
15

/0
6/
17

T1
4:
12

…
20

15
/0
6/
17

T1
4:
15

…
20

15
/0
6/
17

T1
4:
18

…
20

15
/0
6/
17

T1
4:
21

…
20
15
/0
6/
17
T1
4:
24
:…

20
15
/0
6/
17
T1
4:
27
:…

20
15
/0
6/
17
T1
4:
30
:…

20
15

/0
6/
17

T1
4:
33

…
20

15
/0
6/
17

T1
4:
36

…
20

15
/0
6/
17

T1
4:
39

…
20

15
/0
6/
17

T1
4:
42

…
20

15
/0
6/
17

T1
4:
45

…
20

15
/0
6/
17

T1
4:
48

…
20

15
/0
6/
17

T1
4:
51

…
20

15
/0
6/
17

T1
4:
54

…
20
15
/0
6/
17
T1
4:
57
:…

20
15
/0
6/
17
T1
5:
00
:…

20
15

/0
6/
17

T1
5:
03

…
20
15
/0
6/
17
T1
5:
06
:…

20
15
/0
6/
17
T1
5:
09
:…

20
15

/0
6/
17

T1
5:
12

…
20

15
/0
6/
17

T1
5:
15

…

Records

0
500000
1000000
1500000
2000000
2500000
3000000
3500000

20
15
/0
6/
17
T1
4:
00
:…

20
15
/0
6/
17
T1
4:
03
:…

20
15
/0
6/
17
T1
4:
06
:…

20
15
/0
6/
17
T1
4:
09
:…

20
15

/0
6/
17

T1
4:
12

…
20

15
/0
6/
17

T1
4:
15

…
20

15
/0
6/
17

T1
4:
18

…
20

15
/0
6/
17

T1
4:
21

…
20
15
/0
6/
17
T1
4:
24
:…

20
15
/0
6/
17
T1
4:
27
:…

20
15
/0
6/
17
T1
4:
30
:…

20
15

/0
6/
17

T1
4:
33

…
20

15
/0
6/
17

T1
4:
36

…
20

15
/0
6/
17

T1
4:
39

…
20

15
/0
6/
17

T1
4:
42

…
20

15
/0
6/
17

T1
4:
45

…
20

15
/0
6/
17

T1
4:
48

…
20

15
/0
6/
17

T1
4:
51

…
20

15
/0
6/
17

T1
4:
54

…
20
15
/0
6/
17
T1
4:
57
:…

20
15
/0
6/
17
T1
5:
00
:…

20
15

/0
6/
17

T1
5:
03

…
20
15
/0
6/
17
T1
5:
06
:…

20
15
/0
6/
17
T1
5:
09
:…

20
15

/0
6/
17

T1
5:
12

…
20

15
/0
6/
17

T1
5:
15

…

Bytes

0
5000
10000
15000
20000
25000
30000
35000
40000
45000

20
15
/0
6/
17
T1
4:
00
:…

20
15
/0
6/
17
T1
4:
03
:…

20
15
/0
6/
17
T1
4:
06
:…

20
15
/0
6/
17
T1
4:
09
:…

20
15

/0
6/
17

T1
4:
12

…
20

15
/0
6/
17

T1
4:
15

…
20

15
/0
6/
17

T1
4:
18

…
20

15
/0
6/
17

T1
4:
21

…
20
15
/0
6/
17
T1
4:
24
:…

20
15
/0
6/
17
T1
4:
27
:…

20
15
/0
6/
17
T1
4:
30
:…

20
15

/0
6/
17

T1
4:
33

…
20

15
/0
6/
17

T1
4:
36

…
20

15
/0
6/
17

T1
4:
39

…
20

15
/0
6/
17

T1
4:
42

…
20

15
/0
6/
17

T1
4:
45

…
20

15
/0
6/
17

T1
4:
48

…
20

15
/0
6/
17

T1
4:
51

…
20

15
/0
6/
17

T1
4:
54

…
20
15
/0
6/
17
T1
4:
57
:…

20
15
/0
6/
17
T1
5:
00
:…

20
15

/0
6/
17

T1
5:
03

…
20
15
/0
6/
17
T1
5:
06
:…

20
15
/0
6/
17
T1
5:
09
:…

20
15

/0
6/
17

T1
5:
12

…
20

15
/0
6/
17

T1
5:
15

…

Packets

Figure 2.3: Displaying rwcount Output Using 10-Minute and 1-Minute Bins

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

2.3 Situational Awareness and Single-Path Analysis

Situational awareness is the perception of environmental elements and events with respect to time or space,
the comprehension of their meaning, and the projection of their future status.8 What does this mean for
cybersecurity? Analysts generally need to find answers to the following questions about their networks:

• What is currently present?

• What is currently threatening?

• What potential developments (either aggressive or defensive) might be expected?

This information can then be used as a basis for making decisions about the operation and defense of your
cyber infrastructure.

We’ll examine how to apply SiLK’s single-path analysis workflow to gain better situational awareness by
looking at examples. Our example cybersecurity analyst named Arthur is asked to examine the web traffic
on his organization’s network. Arthur’s supervisor is concerned about abnormal traffic and is worried that
the organization’s web site might be maliciously redirected. Two possible ways of doing this redirection are
direct attacks on the web server and manipulation of the DNS cache to redirect otherwise-benign content
references.

Arthur can take several steps to gain awareness of the organization’s web service and the threats to that
web service. We’ll discuss them later in this section.

2.3.1 Components of Situational Awareness

Situational awareness for cybersecurity has four main components.

• Know what should be (referred to as Desired awareness)

• Track what is—i.e., what is actually in use, not just installed (referred to as Actual awareness)

• Infer when “what should be” does not match “what is” (referred to as Differential awareness)

• Do something about the differences (referred to as Actionable awareness)

Desired awareness implies understanding the enterprise’s intent for required activities, whether from an
infrastructure or a mission-assurance point of view, including

• legitimate users of internal and public-facing systems and devices

• approved software and applications to be installed on network hosts
8Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

• expected communication patterns from internal systems to external systems and to other internal
systems

• specific anticipated changes that are currently happening

Actual awareness implies measured observation of the enterprise network and its traffic to determine the
current status, including

• observed devices, software or applications, and users

• which known vulnerabilities exist for the observed devices, software and applications

• how usage of the devices is changing

• usage patterns and cycles associated with systems, devices and users

Differential and actionable awareness most often involve multi-path or exploratory analyses and will be
discussed further in Section 4.3 and Section 6.3.

2.3.2 Single-Path Analysis for Desired Awareness: Validate Web and DNS
Servers

An analyst can do a lot with single-path analyses to gain desired awareness. Many network functions are
identified by specific applications, protocols, or IP addresses. Each of these functions can be addressed via
a specific analysis.

In Arthur’s case, he knows that the IP address of the primary web server is 10.0.40.21. He also knows that
the organization includes multiple branches, with DNS authoritative and recursive resolvers at IP addresses
192.168.20.58, 10.0.40.20, 10.0.20.58, and 192.168.40.20. Arthur needs to find out whether these
servers are operating as expected. Example 2.20 shows Arthur’s analysis to validate the expected servers.

Validate Primary Web Server

Command 1 in Example 2.20 uses a single-path combination of rwfilter and rwstats. The rwfilter call
pulls more than three weeks of traffic, but most of that traffic is empty in the sample data. From these
records, the rwfilter call filters outbound web flows that came from port 443, the reserved port for https
service.

The results from Command 1 list the top 5 web servers that are active on the network. They validate that
the organization’s main web server, 10.0.40.21, is the most common web server.

Find Recursive and Authoritative DNS Resolvers

Profiling DNS service is slightly trickier. Arthur now needs to look at inbound and outbound DNS traffic
(UDP on port 53) to find recursive and authoritative resolvers. A recursive resolver is a server that generates
outbound DNS queries. An authoritative resolver is a server that responds to inbound DNS queries. The four
DNS servers should be acting as both recursive and authoritative resolvers if they are operating properly.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

Command 2 in Example 2.20 uses rwfilter and rwstats to look for recursive resolvers (source addresses
for flows found by --type=out, --proto=17 (UDP), and --dport=53). The call identifies five servers: the
four expected, plus a relatively-small set of queries from the host 192.168.40.25.

Command 3 uses rwfilter and rwstats to look for authoritative resolvers (destination addresses for flows
found by --type=in, --proto=17 (UDP), and --dport=53). Only the four expected servers are listed in the
results. Since these four appear on both lists, they are acting as both authoritative and recursive resolvers,
just as expected. However, Arthur decides that host 192.168.40.25 needs a closer look, since it appears on
one list but not the other.

<1>$ rwfilter --start =2015/06/01 --end =2015/06/25 --type= outweb \
--sport =443 --pass= stdout \

| rwstats --fields =sip --values =flows --count =5
INPUT: 728080 Records for 5 Bins and 728080 Total Records
OUTPUT : Top 5 Bins by Records

sIP| Records | % Records | cumul_ %|
10.0.40.21| 727902| 99.975552| 99.975552|

192.168.40.24| 97| 0.013323| 99.988875|
192.168.40.91| 38| 0.005219| 99.994094|
192.168.40.27| 27| 0.003708| 99.997802|
192.168.40.92| 16| 0.002198|100.000000|

<2>$ rwfilter --start =2015/06/01 --end =2015/06/25 --type=out \
--proto =17 --dport =53 --pass= stdout \

| rwstats --fields =sip --values =flows --count =5
INPUT: 10741620 Records for 91 Bins and 10741620 Total Records
OUTPUT : Top 5 Bins by Records

sIP| Records | % Records | cumul_ %|
192.168.20.58| 4838813| 45.047330| 45.047330|

10.0.20.58| 2071459| 19.284419| 64.331749|
10.0.40.20| 1697322| 15.801360| 80.133108|

192.168.40.20| 1135206| 10.568294| 90.701403|
192.168.40.25| 247595| 2.305006| 93.006409|

<3>$ rwfilter --start =2015/06/01 --end =2015/06/25 --type=in \
--proto =17 --dport =53 --pass= stdout \

| rwstats --fields =dip --values =flows --count =10
INPUT: 2832800 Records for 4 Bins and 2832800 Total Records
OUTPUT : Top 10 Bins by Records

dIP| Records | % Records | cumul_ %|
192.168.40.20| 1558373| 55.011755| 55.011755|

10.0.40.20| 984275| 34.745658| 89.757413|
192.168.20.58| 282775| 9.982173| 99.739586|

10.0.20.58| 7377| 0.260414|100.000000|

Example 2.20: Using rwfilter and rwstats to Profile Web and DNS Services

Profile the Anomalous DNS Server

Example 2.21 shows Arthur’s analysis of the anomalous host 192.168.40.25. To do a quick look at that
address’s activity, Arthur first has to find out which sensors this address lay behind, to minimize the amount
of duplication in later results.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Command 1 calls rwfilter to collect outgoing traffic (types out and outweb) with the source address of
this host (192.168.40.25). It found three sensors that detected this outgoing traffic: S3. S12. and S1.

Arthur can now put this information to use when he looks at activity associated with 192.168.40.25.
Command 2 calls rwfilter to pull all records involving this address from these sensors and then feeds the
records to rwuniq. The rwuniq command breaks out activity by type of flow and by the transport protocol
in use. The profile identifies the number of flows and the breadth of activity by counting both the source
and destination addresses and ports.

The results of Command 2 show that this host is performing quite a bit of activity besides the DNS queries.
It is using a lot of TCP and some ICMP traffic. Its profile is similar to one that is normally expected of
a workstation, but the number of hosts and ports it communicates with are both larger than the typical
workstation. However, this host does not seem to be further relevant to activity against the web server.

<1>$ rwfilter --start =2015/06/01 --end =2015/06/25 \
--type=out , outweb --saddr =192.168.40.25 --pass= stdout \

| rwuniq --fields = sensor --values =flows
sen| Records |

S3| 224254|
S12| 18959|

S1| 109067|
<2>$ rwfilter --start =2015/06/01 --end =2015/06/25 \

--sensor =S1 ,S3 ,S12 --type=all --any -addr =192.168.40.25 \
--pass= stdout \

| rwuniq --fields =type , protocol \
--values =flows , distinct :sip , distinct :dip , distinct :sport , distinct :dport \
--sort
type|pro| Records |sIP - Distin |dIP - Distin |sPort|dPort|

in| 1| 70| 7| 1| 1| 1|
in| 6| 76656| 8| 1| 1201|10178|
in| 17| 248417| 69| 1| 4|16240|

out| 6| 75544| 1| 8|10179| 1201|
out| 17| 259080| 1| 142|16286| 5|

inweb| 6| 18459| 1| 1| 2| 5051|
outweb | 6| 17656| 1| 1| 5052| 2|

int2int | 1| 23549| 11| 5| 1| 10|
int2int | 6| 28992| 4| 5| 9484| 8793|
int2int | 17| 159099| 68| 142| 940| 25|

Example 2.21: Using rwuniq to Profile an Address

2.3.3 Single-Path Analysis for Actual Awareness: Examine Network Traffic

Arthur needs to do additional work to more fully validate the web and DNS behavior. This moves from
analyzing the network for desired awareness to analyzing it for actual awareness. It also sets up later analyses
for differential and actionable awareness, which involve more detailed examinations of network traffic to gain
a better understanding of the network’s current behavior.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

Profile Outbound Web Traffic

Arthur decides to profile outbound web traffic from the organization’s main web server (10.0.40.21). This
will show whether the server is carrying normal web traffic or is behaving in a way that might indicate
suspicious activity (e.g., signaling or probing attempts).

In Example 2.22, Command 1 uses rwfilter to retrieve outbound web flows (--type=outweb and --sport=443)
for a single day. The query is limited to flows with an average of 60 or more bytes per packet (--bytes-per=60-)
— that is, flows with substantive data content. The rwfilter command displays the number of flows and
then outputs those flows to the rwstats command.

To compute a statistical summary of the flows, Command 1 calls rwstats with the --detail parameter,
which requires a list of protocols as an argument. Although the results of the rwstats call include both
histograms and summary statistics, Command 1 calls the UNIX grep command to display only the statistics.
The results profile the total number of bytes per flow, the number of packets per flow, and the bytes per
packet average per flow.

Command 2 is similar to Command 1. It uses rwfilter and rwstats to profile outbound web flows with
less than 60 bytes per packet (--bytes-per=1-59) — that is, flows that hold little or no data content.

The results of Commands 1 and 2 show that the two groups of flows are very different. The flows with data
involve both more packets and much larger bytes per packet averages. The flows with little to no data are
short (1-9 packets) and have small total bytes per flow (40-372 bytes).

These results support Arthur’s suspicion that the data-bearing flows are likely normal web traffic and the
non-data-bearing flows are likely either signalling or probing. The relatively large number of non-data-
bearing flows (more than twice the number of data-bearing flows) further supports his interpretation of
signalling or probing.

Whether the behavior of non-data-bearing flows becomes part of differential awareness requires exploratory
analysis. However, Arthur knows that it is a behavior that might not be expected by the enterprise.

<1>$ rwfilter --start =2015/06/17 --type= outweb --sport =443 \
--saddress =10.0.40.21 --print -stat --bytes -per =60- \
--pass= stdout \

| rwstats --detail =6 \
| grep "min"
Files 225. Read 3164253. Pass 128452. Fail 3035801.
*BYTES min 391; max 154201
* PACKETS min 3; max 118
*BYTES/ PACKET min 82; max 1463

<2>$ rwfilter --start =2015/06/17 --type= outweb --sport =443 \
--saddress =10.0.40.21 --print -stat --bytes -per =1 -59 \
--pass= stdout \

| rwstats --detail =6 \
| grep "min"
Files 225. Read 3164253. Pass 323660. Fail 2840593.
*BYTES min 40; max 372
* PACKETS min 1; max 9
*BYTES/ PACKET min 40; max 58

Example 2.22: Using rwfilter and rwstats for Web Actual Awareness

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Characterize Traffic Between DNS Resolvers

The next step in Arthur’s analysis is to examine traffic between recursive and authoritative DNS resolvers.
In Example 2.23, the key set of statistics is the bytes per packet. Command 1 shows how to compute bytes
per packet for recursive resolvers. Command 2 shows how to compute bytes per packet for authoritative
resolvers.

These values are similar for both the recursive and authoritative resolvers. The results are very consistent
with the byte size of normal DNS requests and responses. In several cases, multiple requests (up to 216)
went to the authoritative resolver from the same recursive resolver within the active timeout window for flow
generation. This multiplicity led to the total byte and packet count statistics showing a wide range. While
this is somewhat unusual for an operational network, this data is from an exercise. The tight timeframe
of the exercise likely led to the multiplicity of queries. The sources and destinations of the traffic are as
expected.

<1>$ rwfilter --start =2015/06/17 --type=out --protocol =17 \
--dport =53 --sipset = aware_dns .set --pass= stdout \

| rwstats --detail =17 \
| grep "min"
*BYTES min 45; max 5370
* PACKETS min 1; max 73
*BYTES/ PACKET min 45; max 261

<2>$ rwfilter --start =2015/06/17 --type=in --protocol =17 \
--dport =53 --dipset = aware_dns .set --pass= stdout \

| rwstats --detail =17 \
| grep "min"
*BYTES min 45; max 15889
* PACKETS min 1; max 216
*BYTES/ PACKET min 45; max 261

Example 2.23: Using rwfilter and rwstats for DNS Actual Awareness

Conclusions from the Single-path Analysis for Situational Awareness

The web and DNS examples illustrate the use of SiLK for desired and actual situational awareness through
single-path analysis. In both cases, the analysis broke the behavior into cases that could be examined
separately to support more detailed analysis.

From the results of this analysis, Arthur concludes that the main web server might be exhibiting behavior
that indicates signalling or probing in addition to its normal activities. He’s also found a server that is
engaging in an anomalous pattern of activity. While these results show some unusual behavior, Arthur needs
to perform further analysis to find out whether they represent a threat to the security of the enterprise.

Another approach is to work from behavior that is known to be threatening, by focusing on IDS rules. The
next section discusses a specialized tool that supports using IDS rules as a basis for retrieving flow records.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

2.3. SITUATIONAL AWARENESS AND SINGLE-PATH ANALYSIS

2.3.4 Translate IDS Signatures into rwfilter Calls with rwidsquery

Traditional intrusion detection depends heavily on the presence of payloads and signatures: distinctive packet
data that can be used to identify a particular intrusion tool. In general, the SiLK tool suite is intended
for examining trends. However, it it can also be used to identify specific intrusion tools. While targeted
intrusions are still a threat, tool-based, broad-scale intrusions are more common. Sometimes it is necessary
to translate an intrusion signature into SiLK filtering rules; this section describes some standard guidelines
to accomplish this task.

To convert signatures, consider the intrusion tool behavior as captured in a signature:

• What service is it targeting? This can be converted to a port number.

• What protocol does it use? This can be converted to a protocol number.

• Does it involve several protocols? Some tools, malicious and benign, will use multiple protocols, such
as TCP and ICMP.

• What about packets? Buffer overflows are a depressingly common form of attack and are a function
of the packet’s size as well as its contents. Identifying a specific packet size can help you to figure out
which intrusion tool (or tools) may have been employed for the attack.

Hint 2.10: SiLK Byte Counts Include Packet Headers

When working with packet sizes, remember that the SiLK suite includes packet headers. For
example, a 376-byte UDP payload will be 404 bytes long after adding 20 bytes for the IP
header and eight bytes for the UDP header.

• How large are sessions? An attack tool may use a distinctive session each time (for example, a session
of 14 packets with a total size of 2,080 bytes).

The rwidsquery command supports direct translation of rules and alert logs from the SNORT® intrusion
detection system (IDS) into rwfilter queries. This helps an analyst examine network behavior shortly
before, during, and after an alert is generated. Look for possible event triggers as well as behaviors that
show the alert to be a false positive.

In Example 2.24, a sample Snort rule from Emerging Threats is used as a basis for querying network flow
records. Command 1 shows the Snort rule (which looks for a VOIP attack). Command 2 invokes the
rwidsquery to translate this rule into a call to rwfilter, storing the identified flow records in out.rw,
while reporting how many records were found. Command 3 uses rwfileinfo to show the call to rwfilter
produced by rwidsquery.

While the rwfilter calls produced by rwidsquery are somewhat redundant, this tool allows for a useful
starting point for moving from Snort rules and alerts to network flow records. Initially, the results are likely
to contain more than the records directly related to the suspicious activity. However, an analyst can add
parameters to the rwfilter call generated by rwidsquery, by using an empty parameter (--) followed by
the additional rwfilter parameters (shown in Command 2 for adding the --type parameter). In this way,
flow sizes (bytes or packets), addresses (source or destination), and TCP flag combinations can be added to
reduce the extra records retrieved through rwidsquery. An analyst can also use additional SiLK commands
to profile and eliminate records.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

<1>$ fmt tmp -rule.txt
alert tcp any any -> any 5060 (msg :"ET VOIP INVITE Message Flood
TCP "; flow: established , to_server ; content :" INVITE "; depth :6;
threshold : type both , track by_src , count 100, seconds 60;
reference :url ,doc. emergingthreats .net /2003192; classtype :attempted -dos;
sid :2003192; rev :4; metadata : created_at 2010 _07_30 , updated_at
2010 _07_30 ;)
<2>$ rwidsquery --intype =rule \

--start =2015/06/17 T0 --end =2015/06/17 T23 \
--config -file =./ snort .2091101. conf.txt tmp -rule.txt \
--output -file=out.rw -- --type=in ,out --print -stat

Files 460. Read 16661836. Pass 514. Fail 16661322.
<3>$ rwfileinfo --fields =command -lines out.rw \
| fmt
out.rw:

command -lines
1 rwfilter --start -date =2015/06/17 T0
--end -date =2015/06/17 T23
--stime =2015/06/17 T0 -2015/06/17 T23 --dport =5060
--type=in ,out --print -stat --pass=out.rw

Example 2.24: Using rwidsquery for Snort Rule Translation

Getting Help with rwidsquery

For a list of rwidsquery options, type rwidsquery --help.

For a complete discussion of this command, type man rwidsquery.

2.4 Summary of SiLK Commands in Chapter 2

Command Section Name Page
rwsiteinfo Get a List of Sensors With rwsiteinfo 19
rwfilter Choose Flow Records With rwfilter 23
rwcut View Flow Records With rwcut 27
rwfileinfo Viewing File Information with rwfileinfo 29
rwuniq and rwstats Profile Flows With rwuniq and rwstats 31
rwcount Characterize Traffic by Time Period With rwcount 39
rwsort Sort Flow Records With rwsort 41
rwset and rwsetbuild Create IPsets With rwset and rwsetbuild 43
rwsetcat Display IP Addresses, Counts, and Network Information With

rwsetcat
45

rwresolve Resolve IP Addresses to Domain Names With rwresolve 47
rwidsquery Translate IDS Signatures into rwfilter Calls with rwidsquery 57

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

Chapter 3

Case Studies: Basic Single-path
Analysis

The previous chapter introduced the process of single-path analysis and covered some of the commands
that are used in such analyses. This chapter walks through several detailed cases that serve as examples of
single-path analyses.

Upon completion of this chapter you will be able to

• describe a sequence of steps that analysts may use in approaching a task

• apply those steps to several tasks relevant to network traffic

• use SiLK tools to automate the analysis

The case studies in this chapter use the FCCX dataset described in Section 1.8.

3.1 Profile Traffic Around an Event

One view of a network security event is that some specific activity occurs on a particular host at an identified
time. In terms of the analysis in this handbook, a host is indicated by its IP address, and time is, at first
consideration, associated with a given hour. With this as a starting point, the analyst needs to develop a
high-level assessment of possible changes in behavior which then provides a guide to more detailed follow-on
assessments. The end goal is to answer some basic questions about the event:

• Did the event impact network performance or services?

• Was the impact sufficient to warrant dedicating resources to respond?

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

CHAPTER 3. BASIC CASE STUDY

• Was the event malicious?

• Did it demonstrate weaknesses that could enable malicious activity?

• Which entities were involved (both internal and external)?

Frequently, trying to answer such questions in detail involves too much effort. The alternative is to proceed
in a staged manner, and at each stage determine if analysis should proceed further. This section describes
an initial high-level analysis that can be done rapidly. It helps you to determine whether there could have
been some impact from the event, along with a rough feel as to the magnitude of that impact.

Working from the target IP address and the time frame as a start, there are several possible approaches to
gaining a high level indication of impact from the event:

• traffic—look at traffic on the targeted network and search for shifts in the size and frequency of
contacts involving the target, measuring before and after the event

• response time—look at the overall response time for service requests (the average interval between
request and response) into the network, then determine if it has increased during and following the
event

• contact rate—look at the relative rate of contact with services (indicated by port and protocol) on
the targeted network, searching for shifts in the contact rate and the size of traffic on those services

• hosts—look at the set of hosts in contact with the target, and determine if it has shifted unusually
during and after the event.

This section will explore the first of these alternatives: looking at traffic shifts. (The other alternatives may
be useful to analysts, but are not covered here.)

3.1.1 Examining Shifts in Traffic

Sofia is a cybersecurity analyst who’s been asked to investigate changes in network traffic that occurred
before, during, and after a suspected incident. Her investigation applies the Formulate-Model-Analyze steps
in the SiLK workflow (described in Section 1.5) to perform a single-path analysis that looks at shifts in
network traffic around the event. Her results will help to guide her team’s investigation of and response to
the incident.

Sofia starts by knowing a tentative start and end time for the event (14:00-1500 on June 17, 2015), and
that the event involves covert data transfer. First, she will filter for network flow records associated with
the targeted host around the time of the event (the Formulate step). This involves pulling records from the
appropriate parts of the repository and isolating those that involve the targeted host. Next, she’ll divide the
set of records into bins according to volume and compute counts for each bin before, during, and after the
event (the Model step). Finally, she will interpret the counts to assess the potential impact of the event (the
Analyze step).

These steps are described in more detail below.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

3.1. PROFILE TRAFFIC AROUND AN EVENT

Filter Traffic Around the Event (Formulate)

Sofia structures the Formulate portion of her analysis as a query with the rwfilter tool. She knows when
the incident occurred and uses this information to determine which parts of the repository to query by date-
hour (using the parameters --start and --end) and type (using the --type parameter). The association
with the target host and sensor are indicated by the host’s IP address (using the --any-address parameter)
and sensor name (using the --sensor parameter). The filtered records are then stored in a file (using the
--pass parameter) for later parts of the analysis.

Summarize Records (Model)

Next, Sofia summarizes the results of her initial query as part of the Model step in her analysis. After she
pulls the flow records via her query, she uses the rwuniq command to summarize them. Her goal is to filter
out the appropriate group of flows to summarize by volume. She will therefore create volume-based groups
at low, medium, and high values for both byte volume and flow duration.

For each group, Sofia uses another call to rwfilter to pull records from the file generated previously. It
extracts those with the volume measure for each group (using either --bytes or --duration). The output
goes to rwuniq to count the records. Her analytic generates separate counts for each hour and type of
flow record using the options --fields=stime,type and --bin-time=3600. The number of records in each
group are counted using --values=records.

Interpret Counts (Analyze)

Sofia’s investigation provides a high-level view of the variation in activity from an hour before the event to
an hour after it. She can now analyze these results to see how network activity varied during these time
periods. This will give her a better idea of the incident’s impact.

3.1.2 How to Profile Traffic

The resulting set of commands for Sofia’s analysis are shown in Example 3.1.

1. Sofia’s initial query is shown in Command 1. It calls the rwfilter command to retrieve records from the
flow repository that were stored during the two hours surrounding the event (--start=2015/06/17T13
and --end=2015/06/17T15). It filters these records by type (--type=in,inweb,out,outweb) and
whether they show communication with the target host (--any-address=192.168.70.1, which filters
flow records that have this IP address as either a source or a destination). It then saves the resulting
records to the file traffic.rw in the local directory. This file serves as the basis for profiling traffic
around the event.

2. Her next step is to summarize the flow records by volume. Command 2 calls rwfilter to find low-
volume flows in traffic.rw. It filters out flows with low byte counts (--bytes=0-300) and sends
them to standard output (--pass=stdout), then uses a pipe (|) to direct these records to the rwuniq
command. The rwuniq command divides the records into hour long (i.e., 3600 second long) bins
(--bin-time=3600) and counts the records in each bin according to their start time range and type
(--fields=stime,type). It then stores the resulting hourly counts in the file low-byte.txt.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

CHAPTER 3. BASIC CASE STUDY

3. In Commands 3 and 4, she similarly uses rwfilter and rwuniq to generate hourly counts of medium
and high-volume flows. Command 3 counts records for medium-volume flows (--bytes=310-100000)
and stores the results in the file med-byte.txt. Command 4 counts records for high-volume flows
(--bytes=100001-, which does not specify an upper limit on byte counts) and stores the results in the
file high-byte.txt.

4. Sofia then uses rwfilter and rwuniq to summarize flows in traffic.rw by duration, as shown in
Command 5. It first calls rwfilter to filter flows that are up to a minute long (--duration=0-60).
As in Commands 2-4, it then calls rwuniq to divide these records into hour-long bins and count the
flows in each bin by start time and type. Finally, it stores the resulting hourly counts in the file
short-duration.txt.

5. In Commands 6 and 7, she again calls rwfilter and rwuniq to generate hourly counts of medium and
long-duration flows. Command 6 counts medium-duration flows (--duration=61-120) and stores the
results in the file med-duration.txt. Command 7 counts long-duration flows (--duration=121-) and
stores the results in the file long-duration.txt.

<1>$ rwfilter --start =2015/06/17 T13 --end =2015/06/17 T15 \
--sensor =S1 --type=in ,inweb ,out , outweb \
--any - address =192.168.70.10 --pass= traffic .rw

<2>$ rwfilter traffic .rw --bytes =0 -300 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >low -byte.txt
<3>$ rwfilter traffic .rw --bytes =301 -100000 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >med -byte.txt
<4>$ rwfilter traffic .rw --bytes =100001 - --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >high -byte.txt
<5>$ rwfilter traffic .rw --duration =0 -60 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >short - duration .txt
<6>$ rwfilter traffic .rw --duration =61 -120 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >med - duration .txt
<7>$ rwfilter traffic .rw --duration =121 - --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >long - duration .txt

Example 3.1: Using rwfilter and rwuniq to Profile Traffic Around an Event

The results of these commands are collated in Example 3.2. The counts show that there was a marked
increase in low-to-medium byte and short-to-medium duration web traffic during and after the event. There
was no corresponding increase in high byte or long duration traffic.

Based on these results, Sofia can start to focus her investigation on what common factors exist in the
increased traffic. Her goal is to build awareness of the impact of the event in a way that helps responders to
deal with that impact.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

3.2. GENERATE TOP N LISTS

stime| type| sbyte| mbyte| hbyte| sdur| mdur| ldur|
2015/06/17 T13 :00:00| in| 720| 160| | 880| | |
2015/06/17 T13 :00:00| inweb| 5| 352| | 357| | |
2015/06/17 T13 :00:00| out| 764| 192| 9| 960| 5| |
2015/06/17 T13 :00:00| outweb | 1| 400| | 401| | |
2015/06/17 T14 :00:00| in| 1449| 66| | 1515| | |
2015/06/17 T14 :00:00| inweb| 12| 346| | 358| | |
2015/06/17 T14 :00:00| out| 1500| 96| 3| 1595| 1| 1|
2015/06/17 T14 :00:00| outweb | 8339| 10051| 2| 18382| 9| 1|
2015/06/17 T15 :00:00| in| 2528| 550| | 3077| 1| |
2015/06/17 T15 :00:00| inweb| 14| 345| | 359| | |
2015/06/17 T15 :00:00| out| 2520| 558| 5| 3076| 3| 3|
2015/06/17 T15 :00:00| outweb | 10309| 11072| 7| 21366| 12| 9|

Example 3.2: Collated Profile of Traffic Around an Event

3.2 Generate Top N Lists

Filtering flow records by time, sensor, type, and volume characteristics often produces groups that contain
flow records of interest. However, these groups also contain extraneous flows that produce noise, which
makes it more difficult to spot patterns in the data.

One strategy for removing these extraneous flows is to identify the largest sub-groups, validate each sub-
group, and either set it aside or include it in the collection of flows of interest. The sub-groups are identified
by a combination of flow characteristics, such as the IP address of the source, the TCP flags present in the
flow, or the network service involved. The contribution of each sub-group is measured by the total bytes or
packets per sub-group, the number of records per sub-group, the number of distinct values present for some
field in the flow record, or another summary statistic.

The overall process of pulling a collection of flow records and then removing flows not related to the analysis
is sometimes referred to as top-down analysis. There is also a bottom-up analysis that involves starting with
a minimal set of records that are of interest, then basing further queries to isolate more records of interest
based on the field values in the minimal set.

Our analyst Sofia is continuing the investigation she began in Section 3.1. Her next task is to look into host
activity before, during, and after the event. She will again apply the Formulate-Model-Analyze workflow
described in Section 1.5 to perform a top-down analysis and generate top-N lists of hosts that exhibit different
behaviors of interest.

3.2.1 Using rwstats to Create Top N Lists

Sofia uses the rwstats command to find the identity and relative size of the sub-groups of interest. This com-
mand explicitly includes parameters to limit output to the largest contributors and describes the contribution

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

CHAPTER 3. BASIC CASE STUDY

of those categories to the overall flow collection9.

Without rwstats, Sofia could load flow records into a spreadsheet and then generate a pivot table to identify
the most common characteristics. rwstats is much faster and easier to use than a spreadsheet. It deals with
high numbers of flow records very efficiently in terms of storage and memory usage.

Removing Unwanted Flows and Finding Hosts of Interest (Formulate)

When generating top-N lists, the Formulate stage involves eliminating flow records for network activity that
is not of interest. This activity, sometimes referred to as network chaff, may include connections with not
enough data exchanged to be significant, those involving services that are not important for an analysis,
or, in general, anything that could obfuscate the results by contaminating the flow records retrieved for the
event.

Sofia will filter the results from her earlier investigation to remove network chaff and find hosts with traffic
that’s relevant to her current investigation. Her analysis is shown in Commands 1 through 4 of Example 3.3.

1. In Command 1, Sofia looks at the first few flows in the traffic.rw file generated in Example 3.1. The
sequence of flows shown are DNS queries (i.e., flows from port 53). There is not enough information
at the flow level to indicate whether they are relevant to the event that she is investigating.

2. Command 2 uses a new call to rwfilter to exclude the unwanted DNS flows from traffic.rw and
sends the output to rwcut for further examination. The results show that the host at 192.168.70.10
is doing a lot of communication on TCP port 8082, which is associated with a file management utility
known as Utilistore. The larger-volume flows appear to be associated with the host at 10.0.40.83.

3. Command 3 queries the flow repository to look for flows showing communication on port 8082 with at
least 150 average bytes per packet across the full data set. The results of this query are then passed
to rwuniq to profile all of the locations to which data has been sent. The results of this profile show
three hosts receiving this traffic, including both 192.168.70.10 and another host at 192.168.200.10.

4. In Command 4, Sofia makes a further call to rwfilter to pull all of the traffic associated with the newly
located addresses 10.0.40.83 and 192.168.70.10. These addresses appear twice in the rwfilter call
to specify that both the source and destination are constrained to these addresses. The results are
then stored in the file traffic2.rw to be examined further.

Hint 3.1: CIDR Notation for IP Addresses

Note that the addresses in Command 4 of Example 3.3 are specified with --scidr (Source
CIDR block) and --dcidr (Destination CIDR block) instead of --saddress (source ad-
dress), --daddress (destination address), or --any-address (both source and destination
addresses). The --scidr and --dcidr parameters accept comma-separated lists of addresses
in CIDR notation, whereas the other parameters accept only a single address. The /32 CIDR
notation specifies a single address and thus permits us to use a list of addresses.

9rwstats has further functions that facilitate describing collections of flows statistically; see the man page for rwstats.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

3.2. GENERATE TOP N LISTS

<1>$ rwcut --fields =1-3, protocol ,bytes --num -recs =5 traffic .rw
sIP| dIP|sPort|pro| bytes|

10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|

<2>$ rwfilter traffic .rw --aport =0 ,53 --fail= stdout \
| rwcut --fields =1-5, bytes --num -rec =5

sIP| dIP|sPort|dPort|pro| bytes|
10.0.40.27| 192.168.70.10|44358| 8082| 6| 332|
10.0.40.27| 192.168.70.10|44383| 8082| 6| 332|
10.0.40.83| 192.168.70.10|53596| 8082| 6| 838|
10.0.40.83| 192.168.70.10|53597| 8082| 6| 551|
10.0.40.83| 192.168.70.10|53598| 8082| 6| 1080|

<3>$ rwfilter --start =2015/06/13 --end =2015/06/18 --type=all \
--proto =6 --dport =8082 --bytes -per =150 - --pass= stdout \

| rwuniq --fields =dip --values =flows , distinct :bytes
dIP| Records |bytes -Dist|

155.6.3.1| 1| 1|
192.168.200.10| 804| 32|

192.168.70.10| 1132| 37|
<4>$ rwfilter --start =2015/06/13 --end =2015/06/18 \

--type=all --scidr =10.0.40.83/32 ,192.168.200.10/32 \
--dcidr =10.0.40.83/32 ,192.168.200.10/32 \
--pass= traffic2 .rw

<5>$ rwstats --fields =dip ,dport --values =flows ,bytes --count =6 \
traffic2 .rw

INPUT: 11846 Records for 1954 Bins and 11846 Total Records
OUTPUT : Top 6 Bins by Records

dIP|dPort| Records | Bytes| % Records | cumul_ %|
192.168.200.10| 8082| 5906| 8252849| 49.856492| 49.856492|

10.0.40.83|56018| 45| 6357| 0.379875| 50.236367|
10.0.40.83|55026| 18| 4653| 0.151950| 50.388317|

192.168.200.10| 137| 15| 3510| 0.126625| 50.514942|
10.0.40.83| 771| 15| 2520| 0.126625| 50.641567|
10.0.40.83|56348| 3| 3390| 0.025325| 50.666892|

<6>$ rwstats --fields =dip ,dport --values =bytes ,flows --count =6 \
traffic2 .rw

INPUT: 11846 Records for 1954 Bins and 39548165 Total Bytes
OUTPUT : Top 6 Bins by Bytes

dIP|dPort| Bytes| Records | %Bytes| cumul_ %|
10.0.40.83|49375| 13139355| 3| 33.223678| 33.223678|

192.168.200.10| 8082| 8252849| 5906| 20.867843| 54.091521|
10.0.40.83|54964| 1488312| 3| 3.763290| 57.854811|
10.0.40.83|49408| 1488312| 3| 3.763290| 61.618100|
10.0.40.83|54345| 328470| 3| 0.830557| 62.448657|
10.0.40.83|54404| 328470| 3| 0.830557| 63.279214|

Example 3.3: Removing Unneeded Flows for Top N

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65

CHAPTER 3. BASIC CASE STUDY

Summarizing Destination Port Usage By Records and Bytes (Model)

After Sofia queries and filters the flow records to isolate those of interest, she can calculate values to clarify
her understanding of these data (the Model step). She could use either rwuniq or rwstats to understand
the contributors to these data, which fed into the filtering process. rwstats allows for more explicit limits
on the number of bins that are displayed. In contrast, rwuniq shows all of the bins for the input dataset.
rwstats also shows the percentage contribution to the overall input of each bin and cumulatively across bins.
These limits are often expressed as a count of bins, but they can also be expressed in terms of percentage
contribution or a threshold on the count. The percentages are calculated based only on the first value
specified for the bin. This allows rwstats to be used flexibly to profile the contributors to the data.

Sofia’s investigation into the behavior of the hosts she found earlier is shown in Commands 5 and 6 of
Example 3.3.

1. Command 5 uses rwstats to profile the records in traffic2.rw. It looks at the destination port
utilization in these data by the flow count (as a rough measure for how often communication takes
place), with bytes also calculated as a supplementary value.
In the results, the largest contributor accounts for very close to half of the data. This is not surprising,
since she used this port to identify these hosts as being of interest during the filtering process. Three of
the other ports shown are ephemeral ports (officially, ports numbering 49,152 or more, although some
Linux versions use 32,768 to 61,000, and some Windows versions use 1,025-5,000). This port usage
indicates that 192.158.200.10 is the server and 10.0.40.83 is the client. These two IP addresses
account for at most a little over a third of one percent of the records. Port 137 is the Windows netbios
name service port; port 771 is an ICMP data artifact that will be discussed below.

2. For a contrasting look at the data, Command 6 calls rwstats to summarize port utilization by the
number of bytes. This serves as a rough measure of the size of the communication taking place. By
this measure, the largest contributor is not the traffic on port 8082, but rather traffic on an ephemeral
port. This shows the need for analysts to examine the data from several perspectives to clarify its
interpretation.

3.2.2 Interpreting the Top-N Lists

Sofia can now interpret the top-N lists from Example 3.3 (the Analyze step in the SiLK workflow). One key
to interpreting these results is provided in the output from Command 3. The last column of results is the
count of distinct values for the bytes in each flow that is assigned to that bin. In this case, it is the number
of bytes in each flow going to a specific IP address. For the last two entries, the value is less than 10 percent
of the record count, indicating that communication with the same number of bytes is common. This in turn
suggests that this traffic is automated rather than human-driven.

In this light, Sofia interprets the results shown from Command 5 as suggesting that this traffic averages
about 1,400 bytes per flow to the server, with smaller acknowledgement traffic being returned to the client
via the ephemeral ports. This suggestion, however, is contradicted by the results shown from Command 6,
which show several very large-byte flows occur to the clients on the ephemeral port. This indicates to Sofia
that the data transfer is bi-directional.

Confirming the data transfer dynamics and determining if any indications of threat are present requires
further analysis—pulling more traffic to see if these hosts shift behavior across time as threats in their
contacts to additional hosts.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66

3.2. GENERATE TOP N LISTS

When Sofia looks at the results for Command 5, she sees that the traffic to UDP port 137 (name service) is
not answered with service traffic. Instead, the response involves messages using protocol 1, ICMPv4 (which
appears with a 771 port number, although ICMP does not use ports). This is suggested by the common
number of flows associated with these ports. This interpretation was confirmed by an inspection of the data
using rwcut that was too long to show in the example. The flow generators encode the ICMP message type
and code in the dPort field of NetFlow and IPFIX records.

Sofia knows that the value of 771 corresponds to a message indicating that name service is unreachable. While
the number of repetitions is not extensive (15 across 3 days of traffic), that repetition despite unreachable
service indicates that the server is generating the port 137 traffic automatically.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68

Chapter 4

Intermediate Multi-path Analysis
with SiLK: Explaining and
Investigating

This chapter introduces intermediate multi-path analysis through application of the analytic development
process with the SiLK tool suite. It discusses iteration, conditional analysis steps, categorization, and
behavior identification.

Upon completion of this chapter you will be able to

• describe intermediate multi-path analysis and how it maps to the analytic development process

• describe SiLK tools commonly used with intermediate multi-path analysis

• provide example multi-path network flow analysis workflows

• describe how to apply the multi-path analysis workflow to situational awareness

4.1 Multi-path Analysis: Concepts

4.1.1 What Is Multi-path Analysis?

Some network behaviors are not visible within the single view of the network flow data provided by single-
path analysis. Finding them requires investigating and integrating several different views of the data. This
type of analysis is known as multi-path analysis.

A multi-path analysis involves a deeper, multi-pronged dive into network flow data than can be accomplished
with a single-path analysis. While a single-path analysis may involve looking at summary data or just one
part of a data set, multi-path analysis explores different aspects of the data set (ports, IP addresses, protocols,
packet and byte volumes, flow types and volumes, etc.) to find trends, leftovers, and groupings that are not
necessarily visible in a single view of the data. Multi-path analysis builds upon single-path analysis; often,
a single-path analysis is performed as just one phase of a multi-path analysis.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Figure 4.1: Multi-Path Analysis

Multi-path analysis follows the general analysis framework described in Section 1.5. The overall process
includes several steps:

1. Formulate the problem and gather context about the data. Is this event similar to other incidents?
Which aspects of the data set should be investigated? How should we classify and group the data?

2. Model and test the data. What network behaviors are we looking for? Which statistics and metrics
give us insight into these behaviors of interest?

3. Analyze the results. What did we find? How can we integrate the results of our different investigations
into the data? Is our model of the event borne out by the results of our analysis?

4. Refine the analysis. Now that we have an idea of what might be going on, we can optionally take
another look at the data and our assumptions to improve the analysis.

In multi-path analysis, the Formulate and Model steps are performed on multiple categories of data, each
associated with aspects of the overall behavior of interest. After gathering context about the data, retrieving
the data from the SiLK repository, building a model, and summarizing the data, a multi-path analysis
includes an integration and analysis step that ties together the separate results to further characterize
network behavior. The analyst can then iterate these steps to further refine the analysis.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70

4.1. MULTI-PATH ANALYSIS: CONCEPTS

4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic

A short example of a multi-path analysis is shown in Example 4.1. Chris is a network administrator who
wants to investigate outbound web traffic. Their analysis will look at statistics for outbound web traffic on
ports that typically carry this type of traffic.

As a network administrator, Chris is interested in validating the regularity of service provided by the net-
work’s web servers, and in understanding what demands are being made by web clients. They’ve decided to
look at a week’s network traffic, between June 15 and June 21, 2015.

During the Formulate step of the multi-path analysis, Chris gathers information about related categories
of data. Multiple ports are used for web traffic: the normal HTTP port (TCP port 80), the HTTP secure
port (TCP port 443), the alternate web ports (TCP ports 8080 and 8443), and so forth. Chris would like to
examine outbound traffic on each of these ports.

A single-path analysis would gather flows from all of these ports into one pool of data to produce a composite
model in the next step. In contrast, the multi-path analysis in Example 4.1 gathers traffic from each port as
a separate pool of data. Chris will investigate each pool of port traffic individually during the Model step,
profiling individual characteristics and summarizing variations.

1. In Command 1, Chris uses the mkfifo command to create a set of named pipes, or FIFO (first-in-first-
out) files, to support a complex series of rwfilter calls in Command 2. Each one is named after a
port number (e.g., multi-port8080.fifo) to indicate that it carries data related to that port.

Hint 4.1: Use Named Pipes for Efficient Analytics

Named pipes efficiently transfer data from one SiLK command to another without the over-
head of writing data to a disk file at each step, making the analytic run more quickly. Using
named pipes also makes the analytic easier to script. Unlike regular operating system pipes
(|), named pipes persist after a command finishes executing and can therefore be used as a
source of input data for subsequent SiLK commands.

See Chapter 9 for additional tips on how to improve the performance of your SiLK analytics.

2. In Commands 2 through 5, Chris sets up an analytical structure known as amanifold, which is discussed
in more detail in section 4.2.1. The pipelined series of rwfilter calls in Command 2 first pulls from
the repository all outbound complete TCP flows (shown in the selection and partitioning commands
in the first rwfilter call). These outbound flows (selected by --type=out,outweb) include traffic
produced by the monitored network. Selecting complete TCP flows (partitioned by a combination
of --proto, --flags-all, --packets, and --bytes-per) avoids data that includes scans, extended
sessions, redundant flow termination, and other data artifacts—all of which might confuse the analysis.

3. The subsequent rwfilter calls in Command 2 then divide the retrieved flow records into separate
pools (one for each of the web-related ports) using both standard output and the FIFO files. Each of
these rwfilter calls culminates (at the end of Command 2 and in Commands 3 through 5) in a call

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ mkfifo /tmp/multi - port8080 .fifo; \
mkfifo /tmp/multi - port443 .fifo; \
mkfifo /tmp/multi - port8443 .fifo

<2>$ rwfilter --start =2015/06/15 --end =2015/06/21 \
--type=out , outweb --proto =6 --flags -all=SAF/SAF ,SAR/SAR \
--packets =4- --bytes -per =65- --pass= stdout \

| rwfilter stdin --aport =8080 \
--pass =/ tmp/multi - port8080 .fifo --fail= stdout \

| rwfilter stdin --aport =443 --pass =/ tmp/multi - port443 .fifo \
--fail= stdout \

| rwfilter stdin --aport =8443 \
--pass =/ tmp/multi - port8443 .fifo --fail= stdout \

| rwfilter stdin --aport =80 --pass= stdout \
| rwbag --bag -file=sipv4 ,bytes ,./ output /tmp80.bag &
<3>$ rwbag --bag -file=sipv4 ,bytes ,./ output / tmp443 .bag \

/tmp/multi - port443 .fifo &
<4>$ rwbag --bag -file=sipv4 ,bytes ,./ output / tmp8443 .bag \

/tmp/multi - port8443 .fifo &
<5>$ rwbag --bag -file=sipv4 ,bytes ,./ output / tmp8080 .bag \

/tmp/multi - port8080 .fifo &
<6>$ wait
<7>$ rwbagcat --print -stat =./ output /out80.txt \

./ output /tmp80.bag
<8>$ rwbagcat --print -stat =./ output / out8080 .txt \

./ output / tmp8080 .bag
<9>$ rwbagcat --print -stat =./ output / out443 .txt \

./ output / tmp443 .bag
<10>$ rwbagcat --print -stat =./ output / out8443 .txt \

./ output / tmp8443 .bag
<11>$ grep 'mean ' ./ output /out {80 ,8080 ,443 ,8443}. txt
./ output / out80.txt: mean: 5.471e+06
./ output / out8080 .txt: mean: 4.707e+07
./ output / out443 .txt: mean: 2.585e+07
./ output / out8443 .txt: mean: 1.367e+08
<12>$ grep 'standard ' ./ output /out {80 ,8080 ,443 ,8443}. txt
./ output / out80.txt: standard deviation : 2.021e+07
./ output / out8080 .txt: standard deviation : 6.655e+07
./ output / out443 .txt: standard deviation : 5.704e+07
./ output / out8443 .txt: standard deviation : 9.266e+06

Example 4.1: Examining Flows for Web Service Ports

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72

4.1. MULTI-PATH ANALYSIS: CONCEPTS

to rwbag to generate a summary set of byte counts per source IP address in each pool. Section 4.2.4
describes more about the SiLK bag tools.

4. To make all of this work in Linux, these commands have to operate in a producer-consumer manner as
background processes. Command 6 is the shell command wait, which causes the analytic to wait until
the producer-consumer processes have finished. This ensures that that the counts are all complete.

5. Commands 7 through 10 use rwbagcat to calculate descriptive statistics for each of the pools of data
that were stored in bags during Commands 2 through 5. They send each set of statistics to a separate
text file.

6. Chris can now inspect the summary statistics for outbound web traffic on ports 80, 443, 8080 and
8443 to see if unusual amounts of traffic are going through these ports. Commands 11 and 12 show
two of these statistics, mean and standard deviation, across the pools of data to produce integrated
summaries of outbound web traffic on these ports.

4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis

Many possible relationships in network traffic can be explored during multi-path analyses, in addition to the
port-protocol alternatives in the web traffic analysis shown in Example 4.1.

• Address relationships can be explored by looking at the behavior of a block of addresses as seen
by varying sensors, looking at variations in behavior between addresses within a block, or looking at
behaviors of several blocks within a given Autonomous System that is handled by a common route.
These address relationships might be useful for analysis tasks such as confirming suspected malware
propagation or isolating targeted scanning from more general scanning.

• Timing relationships can be explored by separately summarizing and examining behavior before,
during, and after the times associated with network events. They can also be explored by profiling
behavior around an event in comparison to a period of normal activity that goes on for a similar period
of time. These timing relationships could be useful to identify more subtle intrusions, for example, or
to isolate activity that might indicate malicious pivoting between parts of the network.

• Volumetric relationships can be explored to find more complex relationships between pools of data
depending on byte volumes or transfer rates. These volumetric relationships could help to indicate
covert data exfiltration, for example, or detect when services are exploited to support malicious activity.

4.1.4 Integrating and Interpreting the Results of Multi-path Analysis

During the Model phase of the analysis, the focus is often about determining values to provide insight on the
relationships in the data. Measures of central tendency (such as averages) are frequently useful. They should
be extended by measures of extent (such as range or standard deviation) to provide context for variation
between pools of data. With these measures calculated, a range of activity can be specified. In the web
traffic analysis shown in Example 4.1, for instance, each pool of network traffic associated with a port is
profiled into an output text file using the rwbagcat --print-stat command, which computes a variety of
descriptive statistical measures, including mean and standard deviation.

Once the measures are calculated, integrate them by matching them across the pools of data to establish
trends or contrast values for the identified relationships. In Example 4.1, the standard deviations are almost

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

all larger than the mean values, indicating that the count distribution has a long tail. More traffic values
are lower than the mean than higher, but the higher ones go quite high.

Interpreting the results involves examining the statistics given and applying what insight the analyst can
provide. Consider a variety of explanations for the behavior. If necessary, refine and iterate the analysis to
support or deny these explanations.

Generally, consider benign interpretations for behavior first, and only reject them if appropriate contradiction
can be found. In Example 4.1, the benign interpretation is that much of the traffic across these ports cannot
be readily differentiated; the main difference is which port it was sent on. An alternative interpretation is
that the large bulk of relatively low-byte traffic and the long tail of relatively high-byte traffic should be
examined separately to determine if suspicious traffic is present. This would involve iterating the analysis
to partition and separately examine low-byte and high-byte traffic for each port.

4.1.5 “Gotchas” for Multi-path Analysis

While it is quite possible to explore combinations of relationships within a given analysis, some care is
needed. As the number of relationships being combined increases, so does both the size and the complexity
of the results. This raises several concerns in performing combined multi-path analyses:

• Interpreting the results can require a lot of rather tedious effort for limited results. It is likely that
the number of data combinations that need to be evaluated will yield many cases that are not of
interest to the investigation, but may still need to be explored either for completeness or to be sure
that all interesting cases are dealt with. If the combination of data relationships is not carefully chosen,
analysts may spend a lot of time without much compensating insight.

• The amount of data required to fully explore combinations of relationships can be extensive, which
will both slow the gathering step and require iteration across cases. Finding appropriate data to cover
combinations can involve effort—for example, establishing that “normal” network activity does not
itself contain malicious activity!

• As the number of combinations involved in analysis increases, so does the possibility that observed
differences may occur by coincidence. This can lead to unintended “cooking” of the results, focusing
on combinations that confirm the analysts’ preconceptions, rather than on a more holistic view of the
behaviors.

Based on these concerns, we recommend that you keep your multi-path analyses as simple as possible,
given the behaviors being studied. It may well be preferable to perform a series of simpler analyses rather
than a single, complex, multi-factor analysis—both more manageable in action and producing more easily
understood results.

4.2 Multi-path Analysis: Analytics

The SiLK commands, parameters, and examples described in this chapter can be employed with any analysis
method. However, they involve more complex uses of the SiLK tool suite than the commands described in
Chapter 2. Multi-path analyses frequently make use of these commands to construct analytics and store
intermediate and final results.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74

4.2. MULTI-PATH ANALYSIS: ANALYTICS

4.2.1 Complex Filtering With rwfilter

Complex filtering combines operating system pipes with rwfilter output parameters to perform large-scale,
multi-path flow analyses. It is an important concept to adopt and incorporate into the multi-path analysis
process discussed in Section 4.1 and the overall SiLK workflow described in Section 1.5.

The conditional steps, refinement, and iteration of multi-path analysis usually require multiple rwfilter
queries. Wide time periods, large network ranges, and increasing network traffic are a few examples that
complicate this process. Unfortunately, the increasing rwfilter directory and file searches needed to support
such analyses also impact disk input/output (I/O) performance and latency.

To address these trade-offs, rwfilter provides three output parameters to optimize repository queries and
classify traffic behavior.

• --pass-destination writes flow records that pass all partitioning criteria to a path.

• --fail-destination writes flow records that fail any partitioning criteria to an alternate path.

• --all-destination writes all partitioned flow records to a third path.

These parameters are so commonly used that the remainder of this handbook will refer to them by their
common abbreviations (--pass, --fail, and --all). All three can be combined and repeated within the
same rwfilter statement. They can write network flow records to a newly-created file, a named pipe,
standard output (stdout), or standard error (stderr).

Multi-level Filtering With Pipes and Manifolds

A manifold combines several rwfilter commands to categorize traffic. By using operating system pipes
and switches with the --pass and --fail parameters, analysis can chain multiple rwfilter statements
together to reduce an initial broad data pull into smaller sets of results that isolate traffic of interest for
further analysis. After examining your manifold’s initial categorization of network flow data, you can adjust
the parameters of subsequent rwfilter calls to re-categorize data and find additional records of interest.

Chaining rwfilter calls into a manifold also can reduce the number of files saved to disk, since the out-
put from each rwfilter call is passed to the next one via UNIX pipes. This can improve the analytic’s
performance.

Manifolds perform complex traffic categorization by filtering data into overlapping and non-overlapping
traffic categories.

Manifolds with Non-overlapping Traffic. If the categories are non-overlapping, the manifold uses the
--pass parameter to write matching traffic to a file, as shown in Figure 4.2. The shaded arrows indicate
data flows from the SiLK repository to the series of rwfilter commands that comprise the manifold. Each
rwfilter command uses the --pass parameter to save the records that meet the filtering criteria to a file. It
also uses the --fail parameter to transfer the remaining traffic to the next rwfilter command for further
filtering. The final rwfilter command in Figure 4.2 saves the last category and uses the --fail parameter
to discard the remaining uncategorized traffic. (Alternatively, the manifold could save the discarded traffic
to a file.)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Figure 4.2: Diagram of a Simple, Non-overlapping Manifold

Manifolds with Overlapping Traffic. If the categories are overlapping, the manifold again uses the
--pass parameter to filter traffic in a category. But it would use the --all parameter as shown in Figure
4.3 to transfer all traffic to the next call to rwfilter. With overlapping categories, the manifold is not done
with a record just because it assigned a first category to it. The record may belong to other categories as
well, which would be identified by subsequent calls to rwfilter.

Figure 4.3: Diagram of a Complex, Overlapping Manifold

Figure 4.3 also shows how records can be passed to subsequent rwfilter calls via the --fail parameter.
Using successive rwfilter calls that combine the --pass, --fail, and --all parameters gives you a high
degree of control over how your network traffic is categorized for analysis.

Simple Manifold: Filtering Incoming Client and Server Traffic

In Example 4.2, we look for inbound flows from external servers and clients. The manifold sorts these flows
into two separate files. This is an example of a non-overlapping manifold, since incoming client and server
traffic have independent characteristics.

<1>$ rwfilter --start =2015/06/17 T15 --sensor =S5 --type=in \
--protocol =6 --flags - initial =SA/SA --packets =3- \
--fail= stdout --pass=inbound - clients .rw \

| rwfilter stdin --flags - initial =S/SA --packets =3- \
--pass=inbound - servers .rw

Example 4.2: Simple Manifold to Select Inbound Client and Server Flows

• The first rwfilter command in the manifold filters out all incoming client traffic.

– The --start and --sensor selection parameters specify the time period and network sensor of
interest.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76

4.2. MULTI-PATH ANALYSIS: ANALYTICS

– --protocol=6 selects Transmission Control Protocol (TCP) traffic.

– --flags-initial=SA/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN/ACK”, indicating that the source IP address is a server.

– --packets=3- selects flow records with three or more packets to identify TCP sockets.

– --pass=incoming-client.rw stores flow records that match the filtering criteria to the file
incoming-client.rw.

– --fail=stdout sends all records that do not match the filtering criteria to the second part of the
manifold.

• The second rwfilter command in the manifold selects incoming server traffic.

– stdin tells the rwfilter command to process flow records from standard input (i.e., the output
from the previous rwfilter command).

– The command does not filter on Sensor, Type and Protocol. It looks at traffic that does not meet
those criteria.

– --flags-initial=S/SA selects traffic where TCP flags on the first packet of the flow record are
set to “SYN” with no “ACK,” indicating the source IP address is a client.

– --packets=3- selects flow records with three or more packets, which is the minimum number
required to open a TCP socket.

– --pass=incoming-server.rw stores flow records that match the filtering criteria to the file
incoming-server.rw

– Notice that the second rwfilter command did not specify a --fail destination. We are only
interested in the records that pass the filtering criteria in the second part of the manifold, so there
is no need to save the ones that fail.

Hint 4.2: An Example TCP Session

Figure 4.4 shows the TCP flags for client and server communication. The client first sends
a packet with the SYN flag to initiate the TCP connection. The server responds with a
packet with SYN and ACK flags to acknowledge the client request. The client then sends a
packet with the ACK flag to acknowledge receipt of the server SYN/ACK packet; it follows
with one or more packets that have PSH and ACK flags. The server responds to each
client PSH/ACK packet with packets that also have PSH and ACK flags. At this stage of
client/server communication, they have established a TCP socket and exchanged data.

To complete the session, the client sends the server a packet with FIN and ACK flags. The
server responds to the client with a packet that has an ACK flag to acknowledge receipt of
the client’s FIN/ACK packet. The server follows with a packet that has FIN and ACK flags.
The client then responds by sending a packet with a ACK flag, responding to the server’s
FIN/ACK packet, ending the session. For more detailed information about TCP flags, see
Appendix A.2.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Figure 4.4: Client and Server TCP flags

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Expanding the Simple Manifold: Filtering for Incoming and Outgoing Client and Server Traffic

To expand the simple manifold in the previous example to partition both inbound and outbound traffic, we
make three modifications as shown in Example 4.3.

1. Prefilter traffic to ignore flows that we know are unwanted. These consist of non-TCP flow types other
than in and out plus flows with fewer than three packets.

2. Filter traffic from internal and outgoing servers and clients into files.

3. Store the leftover flows in a file for later use.

<1>$ rwfilter --start =2015/06/17 T15 --sensor =S5 --type=in ,out \
--protocol =6 --packets =3- --pass= stdout \

| rwfilter stdin --type=in --flags - initial =SA/SA \
--pass=incoming - server .raw --fail= stdout \

| rwfilter stdin --type=in --flags - initial =S/SA \
--pass=incoming - client .raw --fail= stdout \

| rwfilter stdin --type=out --flags - initial =SA/SA \
--pass=outgoing - server .raw --fail= stdout \

| rwfilter stdin --type=out --flags - initial =S/SA \
--pass=outgoing - client .raw --fail= leftover .raw

<2>$ for f in incoming - server .raw incoming - client .raw \
outgoing - server .raw outgoing - client .raw leftover .raw; \

do echo -n "$f: "; \
rwfileinfo --fields =count - records $f; \
done

incoming - server .raw: incoming - server .raw:
count - records 1001

incoming - client .raw: incoming - client .raw:
count - records 41

outgoing - server .raw: outgoing - server .raw:
count - records 41

outgoing - client .raw: outgoing - client .raw:
count - records 1002

leftover .raw: leftover .raw:
count - records 2

Example 4.3: Complex Manifold to Select Inbound Client and Server Flows

• The first rwfilter command in the manifold filters out unwanted traffic.

--start and --sensor selection specify the time period and network sensor of interest.
--protocol=6 selects Transmission Control Protocol (TCP) traffic.
--packets=3- selects flow records with three or more packets indicating TCP sockets.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

--pass=stdout sends all records that match the filtering criteria to the second part of the mani-
fold. Records that do not match are ignored.

• The second rwfilter command in the manifold filters out inbound server traffic.

stdin tells the rwfilter command to process flow records from standard input (i.e., the output
from the previous rwfilter command).
--type=in selects inbound traffic.
--flags-initial=SA/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN/ACK”, indicating that the source IP address is a server.
--pass=incoming-server.raw stores flow records that match the filtering criteria to the file
incoming-server.raw
--fail=stdout sends all records that do not match the filtering criteria to the next part of the
manifold.

• The third rwfilter command in the manifold filters out inbound client traffic.

--type=in selects inbound traffic.
--flags-initial=S/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN”, indicating the source IP address is a client.
--pass=outgoing-client.raw stores flow records that match the filtering criteria to the file
outgoing-client.raw.

• The fourth rwfilter command in the manifold filters out outbound server traffic.

--type=out selects outbound traffic.
--flags-initial=SA/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN/ACK”, indicating the source IP address is a server.
--pass=outgoing-server.raw stores flow records that match the filtering criteria to the file
outgoing-server.raw

• The fifth (and final) rwfilter command in the manifold filters out outbound client traffic.

--type=out selects outbound traffic.
--flags-initial=S/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN”, indicating the source IP address is a client.
--pass=outgoing-client.raw stores flow records that match the filtering criteria to the file
outgoing-client.raw
--fail=leftover.rw saves all records that do not match the filtering criteria in the file leftover.raw.

4.2.2 Finding Low-Packet Flows with rwfilter

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Raj is an analyst who’s investigating illegitimate network traffic. He’s decided to focus on short TCP flows,
particularly those that don’t involve just SYN flags (which might be attempts to connect with no response)
or just RST flags (which might be redundant termination).

The TCP state machine is complex. Legitimate service requests require a minimum of three (more commonly
four) packets in the flow from client to server. Flows from server to client may only have two packets.

Raj knows that several types of illegitimate traffic (such as port scans and responses to spoofed-address
packets) involve TCP flow records with low numbers of packets. Although legitimate TCP flow records
occasionally have low numbers of packets (such as continuations of previously timed-out flow records, contact
attempts on hosts that do not exist or are down, services that are not configured, and RST packets on already
closed connections), this behavior is relatively rare. Understanding where low-packet TCP network traffic
comes from and when such flow records are collected most frequently can help him to identify traffic that is
potentially illegitimate.

Example 4.4 shows how Raj applies the manifold concept from Section 4.2.1 to find low-packet traffic.

1. Raj’s first call to rwfilter in Command 1 selects all incoming flow records in the repository on
6/17/2015, that describe TCP traffic, and that had one to three packets in the flow record. It is the
only rwfilter call that pulls data directly from the SiLK repository; as such, it is the only one that
uses selection parameters.
This call also uses a combination of partitioning parameters (--protocol and --packets) to isolate
low-packet TCP flow records from the selected time range. It uses the --pass switch twice: once to
save the selected records to the file /.Ex4-data/lowpacket.rw and once to direct the selected records
to standard output (stdout) for use by the next rwfilter command in the manifold.
The --print-statistics parameter saves information about the rwfilter call to the file temp-all.txt,
including the number of repository files retrieved by rwfilter, the total number of flow records, and
the number of records that passed or failed the filter.

2. The second call to rwfilter in Command 1 uses --flags-all as a partitioning parameter to pull out
flow records of interest. It passes flow records that had the SYN flag set in any of their packets, but do
not have the ACK, RST, and FIN flags set in any of their packets. It fails those that did not show this
flag combination. It saves statistics to the file temp-syn.txt. Records that fail this filter are passed
to the next rwfilter call via the --fail=stdout parameter.

3. The third call to rwfilter extracts the flow records that have the RST flag set, but had the SYN and
FIN flags not set. It saves statistics to the file temp-rst.txt.

4. Command 2 displays the statistical information saved at each step in the manifold.

By using a manifold, Raj progressively refines his initial data pull to isolate low-packet flows of interest. He
can now investigate these flows for illegitimate activity.

4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount

Approximating Flow Behavior Over Time

SiLK flow records do not contain information about the time distribution of packets and bytes during a flow.
Grouping packets into flow records results in a loss of timing information; specifically, it is not possible to

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwfilter --start -date =2015/06/17 \
--type=in ,inweb --protocol =6 --packets =1-3 \
--print - statistics =temp -all.txt \
--pass =./ Ex4 -data/ lowpacket .rw --pass= stdout \

| rwfilter --flags -all=S/SARF \
--print - statistics =temp -syn.txt \
--pass =./ Ex4 -data/ synonly .rw --fail= stdout stdin \

| rwfilter --flags -all=R/SRF \
--print - statistics =temp -rst.txt \
--pass =./ Ex4 -data/reset.rw stdin

<2>$ cat temp -all.txt output /temp -syn.txt output /temp -rst.txt
Files 415. Read 9083613. Pass 906016. Fail 8177597.
Files 1. Read 906016. Pass 97279. Fail 808737.
Files 1. Read 808737. Pass 130145. Fail 678592.

Example 4.4: Extracting Low-Packet Flow Records

tell how the packets in a flow are distributed over time. Even at the sensor, the information about the time
distribution of packets in a flow is lost.

By default, SiLK distributes the packets and bytes equally across all the milliseconds in the flow’s duration.
This approximation works well for investigating overall trends in network behavior.

However, some types of analysis benefit from intentionally changing the time distribution of packets. For
example, incident analysis investigates behavior during specific time bands. Changing the time distribution
of packets and bytes (or load-scheme) emphasizes different flow characteristics of interest.

Analysts can impose a specific time distribution on rwcount by using the --load-scheme parameter.
rwcount can assign one of seven time distributions of packets and bytes in the flow to allocate the vol-
ume to time bins.

Figure 4.5 illustrates the allocation of flows, packets, and bytes to time bins under different load-schemes
(which are described more fully in Table 4.1). The squares depict a fixed number of packets or bytes. The
partial squares are proportional to the complete squares. The wide, solidly filled rectangles depict entire
flows, along with their packets and bytes. They appear once in schemes 1, 2, and 3 (where one bin receives
the entire flow with its packets and bytes) and in every bin for scheme 5 (where every bin receives the entire
flow). The wide, hollow rectangles only appear in scheme 6 and represent whole flows with no packets or
bytes.

Using Thresholds to Profile a Slice of Flows

rwuniq allows you to set thresholds to segregate IP addresses by the number of flows, sizes of flows, and
other values. Recall that rwuniq reads SiLK flow records, groups them according to a key composed of
user-specified flow attributes, then computes summary values for each group (or bin), such as the sum of
the bytes fields for all records that match the key. Thresholding limits the output of rwuniq to bins where
the summary value meets user-specified minimum or maximum values.

The --bytes, --packets, and --flows parameters are all threshold operators for filtering. For example, to
show only the source IP addresses with 200 flow records or more, use the --flows=200- parameter as shown
in Example 4.5.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Value Parameter Name Volume Allocation Guidelines for Use
0 bin-uniform Allocates equal parts of vol-

ume to every bin in timespan
Computes the average load per bin,
smoothing out peaks and valleys.

1 start-spike Stores entire volume in the
first millisecond of flow (i.e.,
the flow’s stime bin)

Emphasizes the onset of periodic behav-
ior. Puts all packets and bytes into one
bin even if the flow spans multiple bins.

2 end-spike Stores entire volume in the
last millisecond of the flow
(i.e., the flow’s etime bin)

Emphasizes flow termination. Puts all
packets and bytes into one bin even if
the flow spans multiple bins.

3 middle-spike Stores entire volume in the
middle millisecond of the flow

Emphasizes payload transfer. Puts all
packets and bytes into one bin even if
the flow spans multiple bins.

4 time-proportional Proportionally allocates the
flow’s bytes, packets, and
record count (1 for one flow)
to all bins in the flow accord-
ing to how much time the flow
spent in each bin’s timespan

Default load scheme; recommended
for most analyses. Gives the average
load per time period. Smooths out peaks
and valleys over time.

5 max-volume Assigns entire flow volume to
each bin

Overestimates load; computes worst-case
scenario for service loading.

6 min-volume Assigns one flow to each bin Underestimates load; computes best case
scenario for service loading.

• For --load-scheme values 0 through 4, the flow record count adds up to 1. The byte and packet
counts add up to the counts in the flow record.

• For --load-scheme values 5 and 6, the flow record count does not add up to 1. The byte and packet
counts do not add up to the counts in the flow record.

Table 4.1: Time distribution options for rwcount --load-scheme

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =0- \
--pass =./ Ex4 -data/ in_month .rw

<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 7409538 Apr 25 17:22 ./Ex4 -data/ in_month .rw
<3>$ rwuniq ./Ex4 -data/ in_month .rw --field=sIP --value=Flows \

--flows =200 - \
| head -n 10

sIP| Records |
192.168.143.57| 481|
192.168.161.26| 443|

192.168.40.51| 254|
10.0.40.23| 5128|

192.168.165.83| 378|
192.168.40.25| 11951|

192.168.162.160| 401|
10.0.40.92| 1838|

192.168.143.162| 635|

Example 4.5: Constraining Counts to a Threshold by using rwuniq --flows

In addition, rwuniq can count bytes and packets for a flow threshold through the bytes and packets values
in the --values parameter, as shown in Example 4.6. This example counts the byte and packet volumes for
all IP addresses that exceed a minimum flow threshold of 2000 records (--values=Bytes,Packets,Flows
--flows=2000-).

<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =0- \
--pass =./ Ex4 -data/ in_month .rw

<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 7409538 Apr 25 17:22 ./Ex4 -data/ in_month .rw
<3>$ rwuniq ./Ex4 -data/ in_month .rw --field=sIP \

--values =Bytes ,Packets ,Flows --flows =2000 - \
| head -n 10

sIP| Bytes| Packets | Records |
10.0.40.23| 9331109| 108622| 5128|

192.168.40.25| 6066944| 58819| 11951|
192.168.20.58| 4128957| 54314| 28189|

10.0.40.53| 64029248| 281180| 33917|
192.168.200.10| 6089612| 20535| 8816|

10.0.40.54| 6131060| 42785| 7075|
10.0.40.20| 36120528| 345466| 149284|
10.0.20.58| 4043680| 55644| 21253|
67.215.0.8| 1499433280| 6096359| 30549|

Example 4.6: Setting Minimum Flow Thresholds with rwuniq --values

If a range (such as --flows=2000-) is not specified, the parameter simply adds the named count to the
list started by the --values parameter. We recommend using the --values parameter for this purpose.
--values provides greater control over the order in which the values are displayed than the other thresholding
parameters.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Hint 4.3: How to Specify Ranges with rwuniq

rwuniq provides three ways to specify ranges: with the low and high bounds separated by
a hyphen (e.g., 200–2000); with a low bound followed by a hyphen (e.g., 200–) denoting
that there is no upper bound; and with a low bound alone (e.g., 200). Unlike rwfilter
partitioning values, the last method denotes a range with no upper bound, not just a single
value. We do not recommend using this method because it can lead to confusion.

If multiple threshold parameters are specified, rwuniq will print all records that meet all of the threshold
criteria, as shown in Example 4.7.

<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =0- \
--pass =./ Ex4 -data/ in_month .rw

<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 7409538 Apr 25 17:23 ./Ex4 -data/ in_month .rw
<3>$ rwuniq ./Ex4 -data/ in_month .rw --field=sIP \

--values =Bytes ,Packets ,Flows --flows =2000 - \
--packets =100000 -

sIP| Bytes| Packets | Records |
10.0.40.23| 9331109| 108622| 5128|
10.0.40.53| 64029248| 281180| 33917|
10.0.40.20| 36120528| 345466| 149284|
67.215.0.8| 1499433280| 6096359| 30549|

192.168.40.20| 67729921| 283002| 106848|

Example 4.7: Constraining Flow and Packet Counts with rwuniq --flows and --packets

Profiling With Compound Keys

Profiling can also be done by counting and thresholding combinations of fields, in addition to the simple
counting shown previously. Both the rwuniq and rwstats commands support compound keys.

Using Compound Keys with rwuniq. To use a compound key, specify it using a comma-separated list
of values or ranges in the rwuniq --fields parameter. Keys can be manipulated in the same way as with
rwcut: --fields=3,1 is a different key than --fields=1,3.

In Example 4.8, the --fields parameter is used to identify communication between clients and specific
services only when the number of flows for the key exceeds a threshold. It counts and thresholds incoming
traffic to identify those source IP addresses with the highest number of flow records that connect to specific
TCP ports (--fields=sIP,sPort).

Using Compound Keys with rwstats. Alternatively, you can perform this analysis by running the
rwstats command with compound keys. In Example 4.9, the --fields parameter is similarly used to count
incoming traffic and identify the eleven source IP addresses with the highest number of flow records that
connect to specific TCP ports (--fields=sIP,sPort). In addition to counting and displaying these records,
rwstats computes their cumulative statistics. This allows you to directly compare the amount of traffic
carried by each source IP-port combination.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Figure 4.5: Allocating Flows, Packets and Bytes via rwcount Load-Schemes

<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =6 \
--pass =./ Ex4 -data/ in_month .rw

<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 gtsanders domain users 2059092 May 14 12:15 ./Ex4 -data/ in_month .rw
<3>$ rwuniq --fields =sIP ,sPort --value=Flows --flows =20- \

./Ex4 -data/ in_month .rw \
| head -n 11

sIP|sPort| Records |
192.168.143.162| 591| 26|
192.168.111.131| 591| 28|
192.168.122.141| 591| 26|

10.0.40.20| 88| 476|
10.0.40.20| 139| 1189|

192.168.164.119| 591| 26|
192.168.40.20|60309| 20|
192.168.40.25| 445| 120|

192.168.165.216| 591| 26|
192.168.40.20| 135| 265|

Example 4.8: Profiling IP addresses with rwuniq --fields

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86

4.2. MULTI-PATH ANALYSIS: ANALYTICS

<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =6 \
--pass =./ Ex4 -data/ in_month .rw

<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 2059092 May 14 12:26 ./Ex4 -data/ in_month .rw
<3>$ rwstats --count =11 --fields =sIP ,sPort --value=Flows \

./Ex4 -data/ in_month .rw \
INPUT: 124356 Records for 11637 Bins and 124356 Total Records
OUTPUT : Top 11 Bins by Records

sIP|sPort| Records | % Records | cumul_ %|
10.0.40.53| 5723| 33103| 26.619544| 26.619544|
67.215.0.8|11009| 12479| 10.034900| 36.654444|
67.215.0.8|11007| 10714| 8.615588| 45.270031|
67.215.0.8| 135| 7181| 5.774550| 51.044582|
10.0.40.23| 8443| 5128| 4.123645| 55.168227|

192.168.40.20| 88| 3296| 2.650455| 57.818682|
10.0.40.20| 445| 1986| 1.597028| 59.415710|
10.0.40.20| 389| 1367| 1.099263| 60.514973|
10.0.40.20| 139| 1189| 0.956126| 61.471099|

192.168.70.10| 8082| 1077| 0.866062| 62.337161|
10.0.40.20|49158| 1071| 0.861237| 63.198398|

Example 4.9: Profiling IP addresses with rwstats --fields

Isolating Behaviors of Interest

rwuniq can be used in conjunction with rwfilter to profile flow records for a variety of behaviors:

1. Use rwfilter to filter records for the behavior of interest. (To filter for multiple behaviors, set up a
manifold as described in Section 4.2.1.)

2. Use rwuniq to count the records that exhibit that behavior.

This can help you to understand the behavior of hosts that use or provide a variety of services. Example 4.10
shows how to generate data that compare hosts showing DNS (domain name system) and non-DNS behavior
among a group of flow records. We can find DNS servers by filtering the file in_month.rw (created in
Example 4.8) for hosts that carry traffic on port 53 with the UDP protocol (17).

1. Command 1 first isolates the set of hosts of interest by using rwfilter to filter records from in_month.
rw with UDP traffic on port 53 (--protocol=17 --aport=53). It then uses rwset to generate an IPset
(interest.set) from the records that pass the filter.

2. Command 2 uses interest.set to filter in_month.rw again to distinguish IP addresses with general
UDP traffic from the set of hosts that carry DNS traffic on port 53. It then uses rwuniq to count the
DNS flow records and sorts them by source address.
Although rwuniq will correctly sort the output rows by IP address without zero-padding, the upcoming
join command will not understand that the input is properly sorted without rwuniq first preparing
the addresses with the --ip-format=zero-padded parameter.

3. Command 3 counts the non-DNS flow records created with the --fail switch in Command 2 and sorts
them by source address.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

4. Command 4 merges the two count files by source address and then sorts them by number of DNS
flows with the results shown. Hosts with high counts in both columns should be either workstations
or gateways. Hosts with high counts in DNS and low counts in non-DNS should be DNS servers.10

For more complex summaries of behavior, use the rwbag command and its related utilities as described in
Section 4.2.4.

<1>$ rwfilter in_month .rw --protocol =17 --aport =53 --pass= stdout \
| rwset --sip -file= interest .set
<2>$ rwfilter in_month .rw --sipset = interest .set --protocol =17 \

--pass= stdout \
| rwfilter stdin --aport =53 --fail=not -dns.rw --pass= stdout \
| rwuniq --fields =sIP --no - titles --ip - format =zero - padded \

--sort - output --output -path=dns -saddr.txt
<3>$ rwuniq not -dns.rw --fields =sIP --no - titles \

--ip - format =zero - padded --sort - output \
--output -path=not -dns -saddr.txt

<4>$ echo ' sIP| DNS || not DNS|' \
; join -t'|' dns -saddr.txt not -dns -saddr.txt \
| sort -t'|' -nrk2 ,2 \
| head -n 5

sIP| DNS || not DNS|
010.000.040.020| 124652|| 14322|
192.168.040.020| 98128|| 797|
192.168.200.010| 7123|| 64|
192.168.040.025| 5188|| 5127|
192.168.165.216| 508|| 47|

Example 4.10: Isolating DNS and Non-DNS Behavior with rwuniq

4.2.4 Summarizing Network Traffic with Bags

IPsets contain lists of IP addresses. However, it’s often useful to associate a value with each address in an
IPset. For instance, you may want to associate the IP addresses that engage in web traffic with the volume
of flows, packets, or bytes of web traffic that each address carries. Bags are extended sets that contain these
types of key-value pairs.

Where IPsets record the presence or absence of key values, bags add the ability to count the number of
instances of a particular key value—that is, the number of bytes, the number of packets, or the number of
flow records associated with that key. Bags also allow the analyst to summarize traffic on characteristics
other than IP addresses—specifically on protocols and ports.11

Bags can be thought of as enhanced IPsets. Like IPsets, they are binary structures that can be manipulated
using a collection of tools. As a result, operations that are performed on IPsets have analogous bag operations,
such as addition (the equivalent to union). Analysts can also extract a cover set (the set of all IP addresses
in the bag) for use with rwfilter and the IPset tools.

10The full analysis to identify DNS servers is more complex and will not be dealt with in this handbook.
11PySiLK allows for even more general bag key values and count values. See the documentation PySiLK: SiLK in Python

for more information.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Generating Bags from Network Flow Data

The rwbag command creates bags from raw network flow data, either directly output from the rwfilter
command or stored in a file. The key parameter specifies the network flow record field that serves as the
key for the bag. Examples of keys include source IP address (sIPv4, sIPv6), destination IP address (dIPv4,
dIPv6), source port (sPort), destination port (dport), protocol, packets, and bytes.

The counter parameter sums up the number of records, flows, packets, or bytes for the flow record field
specified by key. outputfile is the name of the file where the bag is stored, such as mybag.bag. Bags are stored
in binary format to make analysis tasks faster and more efficient. Use the rwbagcat command to display
the contents of a bag.

Example 4.11 shows an example of how to use rwbag in conjunction with rwfilter. You may specify
multiple --bag-file parameters when you issue the rwbag command.

<1>$ rwfilter --type=in ,inweb --start -date =2015/06/18 T12 \
--protocol =6 --pass= stdout \

| rwbag --sip - packets =x.bag --dip -flows=y.bag
<2>$ file x.bag y.bag
x.bag: data
y.bag: data

Example 4.11: Generating Bags with rwbag

Help with rwbag. For a list of command options, type rwbag --help at the command line. For more
information about the rwbag command, type man rwbag.

Using Bags to Summarize Web Traffic.

To show how useful bags can be, we return to the task mentioned earlier in this section: analyzing outgoing
web traffic. We want to find out which IP addresses engage in web traffic and will narrow our study to
outgoing TCP flows on ports 80 and 443. We can find these IP addresses by using the rwfilter and rwuniq
commands as shown in Example 4.12.

<1>$ rwfilter --start -date =2015/06/17 --sensors =S1 --type= outweb \
--protocol =6 --sport =80 ,443 --packets =3- --pass= stdout \

| rwuniq --fields =sip --values =bytes
sIP| Bytes|

192.168.40.24| 877782|
192.168.20.59| 1392516|
192.168.40.91| 124548|
192.168.40.92| 124548|

Example 4.12: Summarizing Network Traffic with rwuniq

This provides us with addresses and byte counts in text format. However, we would like to use this informa-
tion during further analysis with SiLK—for example, as an IPset with the addresses and some way to store
the number of bytes for each address. To store such a list, we need to create a bag with the rwbag command
as shown in Example 4.13. We want the key to be the IP address and the value to be the number of bytes
of outbound web traffic.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwfilter --start -date =2015/06/17 --sensors =S1 --type= outweb \
--protocol =6 --sport =80 ,443 --packets =3- --pass= stdout \

| rwbag --bag -file=sipv4 ,sum -bytes , outgoingweb .bag \
<2>$ file outgoingweb .bag
outgoingweb .bag: SiLK , RWBAG v3 , Little Endian , LZO compression
<3>$ rwbagcat outgoingweb .bag

192.168.20.59| 1392516|
192.168.40.24| 877782|
192.168.40.91| 124548|
192.168.40.92| 124548|

Example 4.13: Summarizing Network Traffic with Bags

The file outgoingweb.bag contains the list of IP addresses that carry outgoing web traffic and the volume
of outbound traffic in bytes that flows through each address. Unlike the output of the rwuniq command,
this information is stored in a single binary file, as shown in 4.13. We can now use this file during further
analysis of outbound web traffic.

Generating Bags From IP Sets or Text

You can create a bag from an existing set or a text file by using the rwbagbuild tool. This allows you to
associate counts with items in a set or file. It also gives you more flexibility with creating bags than the
rwbag command does. For instance, you can use rwbagbuild to count something other than bytes, packets,
or flow records for an address.

rwbagbuild takes either an IPset (as specified in --set-input) or a text file (as specified in --bag-input),
but not both.

• For IPset input, the --default-count parameter specifies the count value for each set element in the
output bag. If no --default-count value is provided, the count will be set to one.

• For text-file input, the lines of the file are expected to consist of a key value, a delimiter (by default the
vertical bar), and a count value. Keys can be IP addresses (including canonical forms, CIDR blocks,
and SiLK address wildcards) or unsigned integers.

Help with rwbagbuild. For a list of command options, type rwbagbuild --help at the command line.
For more information about the rwbagbuild command, type man rwbagbuild.

Detecting Scanning Activity with rwbagbuild and rwscan

Example 4.14 shows how to use the rwbagbuild command in conjunction with the rwscan command to
create a bag that contains IP addresses that show evidence of scanning activity and the number of flows
associated with them.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90

4.2. MULTI-PATH ANALYSIS: ANALYTICS

rwscan analyzes SiLK flow records for signs of network scanning—when an external host gathers information
about a network during the reconnaissance phase of an attack. It takes sorted network flow records as input
and outputs in columnar text format any IP addresses that show signs of network scanning. This is useful
for identifying hosts that are conducting reconnaissance and the ports and protocols of interest to them.
Pairing this command with rwbagbuild allows you to create a bag that stores scanner IP addresses and
attributes of their activity for further investigation.

1. Command 1 uses rwfilter to pull inbound TCP traffic (--proto=6 --type=in,inweb).

2. The rwscan command requires input to be pre-sorted by source IP address, protocol, and destination
IP address. Command 1 therefore calls rwsort --fields=sip,proto,dip to sort the selected records.

3. Command 1 then uses rwscan to search for IP addresses that show signs of scanning activity. It pipes
the output through the operating system cut command to remove the delimiters (|) in the rwscan
output.

4. Finally, Command 1 uses the rwbagbuild command to create a bag (scanners.bag) from the rwscan
output. It uses the scanning IP addresses as the key and the number of flow records as the associated
count for the bag entries.

5. Commands 2 and 3 display the list of scanners created in Command 1. Command 2 uses the rwbagcat
command to create a text file that contains the contents of scanners.bag. (rwbagcat is described
later in this section.) Command 3 shows that file.

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \
--proto =6 --type=in ,inweb --pass= stdout \

| rwsort --fields =sip ,proto ,dip \
| rwscan --scan -model =2 --output -path= stdout --no -title \
| cut -f1 ,5 -d'|' \
| rwbagbuild --bag -input=stdin --key -type=sIPv4 \

--counter -type= records >scanners .bag
<2>$ echo 'Scanner | Flows|' >scanners .txt \
; rwbagcat scanners .bag >>scanners .txt
<3>$ cat scanners .txt
Scanner | Flows|

192.168.181.8| 45428|

Example 4.14: Creating a Bag of Network Scanners with rwbagbuild and rwscan

Help with rwscan. For a list of command options, type rwscan --help at the command line. For more
information about the rwscan command, type man rwscan.

Specifying IP addresses with rwbagbuild. The rwbagbuild command does not support mixed input
of IP addresses and integer values, since there is no way to specify whether the number represents an IPv4
address or an IPv6 address. (For example, does 1 represent ::FFFF.0.0.0.1 or ::1?) rwbagbuild also
does not support symbol values in its input, so some types commonly expressed as symbols (TCP flags,
attributes) must be translated into an integer form.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Similarly, rwbagbuild does not support formatted time strings. Times must be expressed as unsigned integer
seconds since UNIX epoch (i.e., the number of seconds since midnight, January 1, 1970). If the delimiter
character is present in the input data, it must be followed by a count. If the --default-count parameter is
used, its argument will override any counts in the text-file input; otherwise the value in the file will be used.
If no delimiter is present, either the --default-count value will be used or the count will be set to 1 if no
such parameter is present. If the key value cannot be parsed or a line contains a delimiter but no count,
rwbagbuild prints an error and exits.

Displaying the Contents of Bags

To view or summarize the contents of a bag, use the rwbagcat command. By default, it displays the contents
of a bag in sorted order as shown in Example 4.15.

<1>$ rwbagcat x.bag \
| head -n 5

192.0.2.198| 1281|
192.0.2.227| 12|
192.0.2.249| 90|

198.51.100.227| 3|
198.51.100.244| 101|

Example 4.15: Viewing the Contents of a Bag with rwbagcat

Help with rwbagcat. For a complete list of command options, type rwbagcat --help at the command
line. For more information about the rwbagcat command, type man rwbagcat.

Thresholding Bags. In Example 4.15, the counts (the number of elements that match a particular IP
address) are printed per key. rwbagcat can also print values within ranges of both counts and keys, as shown
in Example 4.16.

<1>$ rwbagcat --mincounter =100 --maxcounter =600 kerbserv .bag
10.0.40.20| 574|
67.215.0.5| 245|

<2>$ rwbagcat --minkey =10.0.0.0 --maxkey =192.168.255.255 \
kerbserv .bag

10.0.40.20| 574|
67.215.0.5| 245|

192.168.40.20| 4596|

Example 4.16: Thresholding Results with rwbagcat --mincounter, --maxcounter, --minkey, and --maxkey

These thresholding values can be used in any combination.

Counting Keys in Bags. In addition to thresholding, rwbagcat can also reverse the index; that is,
instead of printing the number of counted elements per key, it can produce a count of the number of keys
matching each count using the --bin-ips parameter. This reverse count is shown in Example 4.17.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92

4.2. MULTI-PATH ANALYSIS: ANALYTICS

• In Command 1, it is shown using linear binning—one bin per value, with the counts showing how many
keys had that value.

• In Command 2, it is shown with binary binning—values collected by powers of two and with counts of
keys having summary volume values in those ranges.

• In Command 3, it is shown with decimal logarithmic binning—values collected in bins that provide
one bin per value below 100 and an even number of bins for each power of 10 above 100, arranged
logarithmically and displayed by midpoint. This option supports logarithmic graphing options.

<1>$ rwbagcat --bin -ips dns.bag \
| head -n 5

1| 1|
3| 1|

14| 1|
18| 1|
30| 1|

<2>$ rwbagcat --bin -ips= binary dns.bag \
| head -n 5

2^00 to 2^01 -1| 1|
2^01 to 2^02 -1| 1|
2^03 to 2^04 -1| 1|
2^04 to 2^05 -1| 2|
2^09 to 2^10 -1| 3|

<3>$ rwbagcat --bin -ips= decimal dns.bag \
| head -n 5

1| 1|
3| 1|

14| 1|
18| 1|
30| 1|

Example 4.17: Displaying Unique IP Addresses per Value with rwbagcat --bin-ips

The --bin-ips parameter can be particularly useful for distinguishing between sites that are hit by scans
(where only one or two packets may appear) from sites that are engaged in legitimate activity.

Formatting Key Values for Bags. If the bag is not keyed by IP address, the optional --key-format
parameter makes it much easier to read the output of rwbagcat. Example 4.18 shows the difference in
output for a sIP-keyed bag counting bytes, where the IP addresses are shown in decimal and hexadecimal
formats. --key-format is only necessary if the key has a “custom” format.

Comparing the Contents of Bags

Once you have created bags to store key-value pairs, you can compare their contents to identify common
values and trends. For example, you may want to compare the traffic volumes associated with two groups of
IP addresses, each in a separate bag file. Use the rwbagtool --compare parameter to compare the contents
of two bags. It stores the output from this comparison in a new bag file.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwbagcat kerbserv .bag
10.0.40.20| 751382|
67.215.0.5| 395218|

192.168.40.20| 5510424|
<2>$ rwbagcat --key - format = decimal kerbserv .bag

167782420| 751382|
1138163717| 395218|
3232245780| 5510424|
<3>$ rwbagcat --key - format = hexadecimal kerbserv .bag

a002814 | 751382|
43 d70005 | 395218|
c0a82814 | 5510424|

Example 4.18: Displaying Decimal and Hexadecimal Output with rwbagcat --key-format

For each key that appears in both bag files, the --compare option compares the value of the key’s associated
counter (i.e., the number of bytes, packets, or records summed up by the rwbag or rwbagbuild command)
in the first file to the value of the key’s counter in the second file.

• If the comparison is true, the key appears in the resulting bag file with a counter of 1.

• If the comparison is false, the key is not present in the output file.

• Keys that appear in only one of the input bag files are ignored.

rwbagtool --compare can perform the following comparisons:

lt Finds keys in the first bag file whose counters are less than those in the second bag file.

le Finds keys in the first bag file whose counters are less than or equal to those in the second bag file.

eq Finds keys whose counters are equal in both files.

ge Finds keys in the first bag file whose counters are greater than or equal to those in the second bag file.

gt Finds keys in the first bag file whose counters are greater than those in the second bag file.

Help with rwbagtool. For a list of command options, type rwbagtool --help at the command line. For
more information about the rwbagtool command, type man rwbagtool.

4.2.5 Working with Bags and IPsets

Since bags are essentially enhanced IPsets, SiLK provides operations that enable you to create IPsets from
bags and compare the contents of bags with those of IPsets.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Extracting IPsets from Bags

Sometimes you will want to extract an IPset from a bag—for instance, if you used the rwbagtool --compare
command to compare traffic associated with IP addresses in two bags and want to analyze the set of IP
addresses in the new bag. Use the rwbagtool --coverset parameter to generate a cover set: the set of IP
addresses in a bag. The resulting IPset file can be used with rwfilter and manipulated with any of the
rwset commands.

Example 4.19 shows how to extract an IPset from a bag file. The rwsetcat command displays the contents
of the resulting set and the rwbagcat command displays the contents of the original bag—showing that the
IP addresses that comprise the set are identical to those in the bag.

<1>$ rwbagtool outgoingweb .bag --coverset \
--output -path= outgoingweb .set

<2>$ rwsetcat outgoingweb .set \
| head -n 3
192.168.20.59
192.168.40.24
192.168.40.91
<3>$ rwbagcat outgoingweb .bag \
| head -n 3

192.168.20.59| 1392516|
192.168.40.24| 877782|
192.168.40.91| 124548|

Example 4.19: Creating an IP Set from a Bag with rwbagtool --coverset

Hint 4.4: How to Use rwbagtool --coverset with Bag Files

Be careful of bag contents when using rwbagtool --coverset. Since rwbagtool does not
limit operations by the type of keys contained within a bag, the --coverset parameter will
interpret the keys as IP addresses even if they are actually protocol or port keys. This will
lead to confusion and analysis errors!

Intersecting Bags and IPsets

You may want to find out whether the IP addresses in an IPset are also contained in a bag. You may also
want to limit the contents of a bag to a specific group of IP addresses—for instance, those on a specific
subnet.

The rwbagtool --intersect and --complement-intersect parameters are used to intersect an IPset with
a bag. Example 4.20 shows how to use these parameters to extract a specific subnet.

4.2.6 Masking IP Addresses

When working with IP addresses and utilities such as rwuniq and rwstats, you may want to analyze activity
across networks rather than individual IP addresses. For example, you may wish to examine all of the activity
originating from the /24s constituting the enterprise network rather than generating an individual entry for

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ echo '10.0.20.x' >f.set.txt
<2>$ rwsetbuild f.set.txt f.set
<3>$ rwbagtool x.bag --intersect =f.set --output -path=xf.bag
<4>$ rwbagcat x.bag

10.0.20.58| 522|
10.0.20.59| 1652|

67.215.0.55| 88|
117.34.28.84| 12|

155.6.3.10| 30|
155.6.4.10| 30|

192.168.200.10| 3913|
<5>$ rwbagcat xf.bag

10.0.20.58| 522|
10.0.20.59| 1652|

Example 4.20: Using rwbagtool --intersect to Extract a Subnet

each address. To perform this type of analysis, use the rwnetmask command to reduce IP addresses to prefix
values of a parameterized length.

The query in Example 4.21 is followed by an rwnetmask call to retain only the first 24 bits (three octets) of
source IPv4 addresses, as shown by the rwcut output.

<1>$ rwfilter --type=out , outweb --start -date =2015/06/02 \
--end -date =2015/06/18 --sensors =S0 ,S1 --protocol =6 \
--max -pass - records =3 --pass= stdout \

| rwnetmask --4sip -prefix - length =24 --4dip -prefix - length =24 \
| rwcut --fields =1-5

sIP| dIP|sPort|dPort|pro|
10.0.40.0| 192.168.124.0| 1065| 591| 6|
10.0.40.0| 192.168.166.0| 1066| 591| 6|
10.0.40.0| 192.168.40.0|58083| 88| 6|

Example 4.21: Abstracting Source IPv4 addresses with rwnetmask

As Example 4.21 shows, rwnetmask replaces the last 8 bits12 of the source and destination IP addresses
with zero, so all IP addresses in the 10.0.40/24 block (for example) will be masked to produce the same IP
address. This replaces both source and destination IP addresses with zero. With rwnetmask, an analyst can
use any of the standard SiLK utilities on networks in the same way the analyst would use the utilities on
individual IP addresses.

Help with rwnetmask

For a list of command options, type rwnetmask --help at the command line. For more information about
the rwnetmask command, type man rwnetmask.

1232 bits total for an IPv4 address minus the 24 bits specified in the command for the prefix length leaves 8 bits to be masked.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96

4.2. MULTI-PATH ANALYSIS: ANALYTICS

4.2.7 Working With IPsets

Iterative multi-path analyses commonly result in multiple SiLK IPset files. These files are usually named
to describe their association with a specific aspect of analysis, such as byte thresholds as discussed in
Section 2.2.8. As analyses progress, however, it is necessary to understand how IPsets compare and contrast.
rwsetbuild, rwsettool, and rwsetmember are three important SiLK IPset tools that are often used together
to identify network infrastructure and traffic flow.

Creating IPsets from Text Files

rwsetbuild creates binary IPsets from text input files. It can be used to build reference sets to start an
analysis, as previously discussed in Section 2.2.8.

Example 4.22 shows how to build an IPset of the FCCX-15 internal network reference from the ipblocks
statements in the sensors.conf configuration file. Command 1 displays the first five lines of the monitored_
nets.set.txt textual input file. Command 2 shows the use of the rwsetbuild to build the binary IPset
from text. Finally, Command 3 shows the file command to verify the monitored_nets.set filetype.

<1>$ head -n 5 monitored_nets .set.txt
Text file of monitored networks
Build from sensor .conf ipblocks
10.0.10.0/24
10.0.20.0/24
10.0.30.0/24
<2>$ rwsetbuild monitored_nets .set.txt monitored_nets .set
<3>$ file monitored_nets .set
monitored_nets .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 4.22: Generating a Monitored Address Space IPset with rwsetbuild

Example 4.23 shows a similar approach to build an IPset of the broadcast address space with rwsetbuild.

<1>$ echo 255.255.255.255 >broadcast .set.txt
<2>$ rwsetbuild broadcast .set.txt broadcast .set
<3>$ file broadcast .set
broadcast .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 4.23: Generating a Broadcast Address Space IPset with rwsetbuild

Help with rwsetbuild. For a list of command options, type rwsetbuild --help at the command line.
For more information about the rwsetbuild command, type man rwsetbuild.

Manipulating IPsets: DNS Server Example

Once you have constructed SiLK IPsets, use the rwsettool command for manipulating them. It provides
common algebraic set operations for arbitrary numbers of IPset files.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.24 shows an example of how to combine two sets to create a comprehensive IPset of the FCCX-
15 internal network. It uses the rwsettool --union operation to combine both input set files, resulting
in a summary set file, internal_nets.set. This file represents the FCCX-15 internal network addresses,
including IP broadcasts that should not route to public IP space.

<1>$ rwsettool --union monitored_nets .set broadcast .set \
>internal_nets .set

Example 4.24: Performing an IPset Union with rwsettool

Analysts should determine the time period required for an analysis after creating reference sets. Exam-
ple 4.25 shows how to use rwsiteinfo with the --fields=repo-start-date,repo-end-date parameter to
determine the full time range of FCCX-15 data: 2015/06/02T13:00:00 to 2015/06/18T18:00:00.

<1>$ rwsiteinfo --fields =repo -start -date ,repo -end -date
Start -Date| End -Date|

2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|

Example 4.25: Displaying Repository Dates with rwsiteinfo

The dates identified in Example 4.25 are then used as input to the rwfilter command to inventory
all out type Domain Name System (DNS) servers, as shown in Example 4.26. Command 1 shows how
to use rwfilter to query the entire FCCX-15 repository for DNS servers, which carry out type traffic
on port 53 (--dport=53) with the UDP protocol (--protocol=17). It saves those IP addresses to the
dns_servers_out.set file. Command 2 shows that there were outbound requests to 22 DNS servers on
port 53/UDP during the period 2015/06/02 to 2015/06/18.

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \
--protocol =17 --type=out --dport =53 --pass= stdout \

| rwset --dip -file= dns_servers_out .set
<2>$ rwsetcat --count dns_servers_out .set
22

Example 4.26: Counting Outbound DNS Servers with rwset

Although Example 4.26 generated a comprehensive IPset of outbound DNS servers (dns_servers_out.set),
it contains all servers that carry out type traffic. This means that DNS servers that are contained within the
network perimeter may also reside in the resulting IPset. To differentiate between the internal and external
network, IP addresses of internal DNS servers must be removed from the set.

Example 4.27 shows how to use the rwsettool --difference option to remove the IP addresses of internal
DNS servers from the set of DNS servers that reside outside the network perimeter. Command 1 shows
how to create the external_dns_servers.set set file by finding the difference between the DNS servers
contained in dns_servers_out.set, but not contained in internal_nets.set. Command 2 shows a total
of 16 DNS servers that reside external to the network in the FCCX-15 data.

The remaining internal DNS servers can be identified with the rwsettool --symmetric-difference option.
A symmetric difference is the elements of two sets that are members of either set, but not members of both.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98

4.2. MULTI-PATH ANALYSIS: ANALYTICS

<1>$ rwsettool --difference dns_servers_out .set \
internal_nets .set >external_dns_servers .set

<2>$ rwsetcat --count external_dns_servers .set
16

Example 4.27: Finding IPset Differences with rwsettool

Example 4.28 shows how the internal_dns_server.set set file is generated from a symmetric difference of
the external_dns_servers.set and dns_servers_out.set files, finding a total of 6 internal DNS servers.

<1>$ rwsettool --symmetric - difference external_dns_servers .set \
dns_servers_out .set >internal_dns_servers .set

<2>$ rwsetcat --count internal_dns_servers .set
6

Example 4.28: Finding IPset Symmetric Difference with rwsettool

Help with rwsettool. For a list of command options, type rwsettool --help at the command line. For
more information about the rwsettool command, type man rwsettool.

Using Set Membership to Understand Traffic Flow

After you’ve identified DNS server infrastructure, multi-path analyses may also require identifying traffic flow
to specific DNS servers. IPset membership shows how network traffic flows through a network infrastructure.

Finding IPset Membership with rwsetmember. Use the rwsetmember command to identify if an IP
address or pattern is contained within one or more IPset files. rwsetmember begins by building per-sensor
IPset inventories of outbound traffic to DNS servers, as shown in Example 4.29.

Command 1 shows how to use rwsiteinfo to generate a list of sensors for the FCCX-15 dataset. This list of
sensors is then used in Commands 2 and 3 of the dns_servers_by_sensor.sh script to loop through each
sensor name and build an IPset of the DNS servers that are monitored by each sensor.

After creating the per-sensor DNS server IPsets, we can use the rwsetmember command as shown in Exam-
ple 4.30 to identify sensors that monitor specific external DNS servers.

• Command 1 shows how to use rwsetmember to identify the sensors that monitor 8.8.x.x DNS servers.
The results indicate that sensors S0, S1, S2, S3, and S12 logged DNS requests to 8.8.x.x IP addresses.

• Command 2 shows how these sensors can be combined into a list with rwsiteinfo to display their
descriptions. The output from the rwsiteinfo command shows that DNS clients in the Div0Ext,
Div1Ext, Div0Int, Div1Int1, and Div1svc monitored networks execute DNS queries to 8.8.x.x internet
servers.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwsiteinfo --fields = sensor :list
Sensor :list|

S0 ,S1 ,S2 ,S3 ,S4 ,S5 ,S6 ,S7 ,S8 ,S9 ,S10 ,S11 ,S12 ,S13 ,S14 ,S15 ,S16 ,S17 ,S18 ,S19 ,S20 ,S21|
<2>$ cat dns_servers_by_sensor .sh
SDATE ="2015/06/02"
EDATE ="2015/06/18"
SENSORS ="S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14"
SENSORS +=" S15 S16 S17 S18 S19 S20 S21"
for SENSOR in $SENSORS ; do

rwfilter --start -date= $SDATE --end -date= $EDATE --type=out \
--proto =17 --dport =53 --sensor = $SENSOR --pass= stdout \
| rwset --dip -file =" $SENSOR " _dns_servers_out .set

done
<3>$ sh dns_servers_by_sensor .sh

Example 4.29: Grouping Outbound DNS Servers by Sensor

<1>$ rwsetmember 8.8.x.x S*. set
S0_dns_servers_out .set
S12_dns_servers_out .set
S1_dns_servers_out .set
S2_dns_servers_out .set
S3_dns_servers_out .set
<2>$ rwsiteinfo --fields =sensor ,describe - sensor \

--sensors =S0 ,S1 ,S2 ,S3 ,S12
Sensor |Sensor - Description |

S0| Div0Ext |
S1| Div1Ext |
S2| Div0Int |
S3| Div1Int1 |

S12| Div1svc |

Example 4.30: Identifying DNS Traffic Flow

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Help with rwsetmember. For a list of command options, type rwsetmember --help at the command line.
For more information about the rwsetmember command, type man rwsetmember.

Finding Set Membership and Intersection with rwsettool. The rwsettool --intersection option
can also be used to identify infrastructure that shares traffic flows. This option intersects IP addresses that
are members of two sets. Command 1 of Example 4.31 shows using rwsettool with --intersection to
identify the DNS servers that both the S0 and S1 sensors monitor.

<1>$ rwsettool --intersect S0_dns_servers_out .set \
S1_dns_servers_out .set | rwsetcat

8.8.4.4
8.8.8.8
67.215.0.5
128.8.10.90
128.63.2.53
192.5.5.241
192.33.4.12
192.36.148.17
192.58.128.30
192.112.36.4
192.203.230.10
192.228.79.201
193.0.14.129
198.41.0.4
199.7.83.42
202.12.27.33

Example 4.31: Identifying Shared DNS Monitoring

Displaying IPset Statistics and Network Structure

In addition to printing out IP addresses as described in Section 2.2.8, rwsetcat can perform counting and
statistical reporting. These features are useful for describing the set without displaying all of the IP addresses
in the set. Since sets can have any number of addresses, counting with rwsetcat tends to be much faster
than counting via text tools such as wc.

Example 4.32 illustrates how to display statistics with rwsetcat.

• Command 1 shows how many IP addresses are in the IPset.

• Command 2 shows summary statistics and network structure for the addresses in the IPset.

Example 4.32 also shows the wide variety of network information that can be displayed by using the
--network-structure parameter.

• In Command 3, there are no list-lengths and no summary-lengths. As a result, a default array of summary
lengths is supplied.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 101

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

• In Command 4 there is a list-length, but no slash (/) introducing summary-lengths, so the netblock with
the specified prefix length is listed, but no summary is produced.

• In Command 5, a prefix length is supplied that is sufficiently large to list multiple netblocks.

• Command 6 shows two prefix lengths in list-lengths.

• Command 7 shows that a prefix length of zero (no network bits, so no choice of networks) treats the
entire address space as a single network and labels it TOTAL.

• Command 8 shows that summarization occurs not only for the summary-lengths but also for every prefix
length in list-lengths that is larger than the current list length.

• In Command 9, the slash introduces summary-lengths, but the array of summary lengths is empty; as a
result, the word “hosts” appears as if there will be summaries, but there aren’t any.

• In Command 10, the S replaces the slash and summary lengths, so default summary lengths are used.

• In Command 11, the list length is larger than the smallest default summary length, so that summary
length does not appear.

• In Command 12, H (host) is used for a list length.

• Command 13 shows that H is equivalent to 32 for IPv4.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 102

4.2. MULTI-PATH ANALYSIS: ANALYTICS

<1>$ rwsetcat medtcp -dest.set --count -ips
93
<2>$ rwsetcat medtcp -dest.set --print - statistics
Network Summary

minimumIP = 10.0.40.20
maximumIP = 192.168.166.233

93 hosts (/32s), 0.000002% of 2^32
2 occupied /8s, 0.781250% of 2^8
2 occupied /16s, 0.003052% of 2^16

20 occupied /24s, 0.000119% of 2^24
66 occupied /27s, 0.000049% of 2^27

<3>$ rwsetcat medtcp -dest.set --network - structure
TOTAL| 93 hosts in 2 /8s, 2 /16s, 20 /24s, and 66 /27s
<4>$ rwsetcat medtcp -dest.set --network - structure =4

0.0.0.0/4| 10
192.0.0.0/4| 83

<5>$ rwsetcat medtcp -dest.set --network - structure =18
10.0.0.0/18| 10

192.168.0.0/18| 15
192.168.64.0/18| 27

192.168.128.0/18| 41
<6>$ rwsetcat medtcp -dest.set --network - structure =4 ,18

10.0.0.0/18 | 10
0.0.0.0/4 | 10

192.168.0.0/18 | 15
192.168.64.0/18 | 27
192.168.128.0/18 | 41

192.0.0.0/4 | 83
<7>$ rwsetcat medtcp -dest.set --network - structure =0 ,18

10.0.0.0/18 | 10
192.168.0.0/18 | 15
192.168.64.0/18 | 27
192.168.128.0/18 | 41

TOTAL | 93
<8>$ rwsetcat medtcp -dest.set --network - structure =4 ,18/24

10.0.0.0/18 | 10 hosts in 2 /24s
0.0.0.0/4 | 10 hosts in 1 /18 and 2 /24s

192.168.0.0/18 | 15 hosts in 3 /24s
192.168.64.0/18 | 27 hosts in 6 /24s
192.168.128.0/18 | 41 hosts in 9 /24s

192.0.0.0/4 | 83 hosts in 3 /18s and 18 /24s
<9>$ rwsetcat medtcp -dest.set --network - structure =4/

0.0.0.0/4| 10 hosts
192.0.0.0/4| 83 hosts

<10>$ rwsetcat medtcp -dest.set --network - structure =4S
0.0.0.0/4| 10 hosts in 1 /8, 1 /16, 2 /24s, and 4 /27s

192.0.0.0/4| 83 hosts in 1 /8, 1 /16, 18 /24s, and 62 /27s
<11>$ rwsetcat medtcp -dest.set --network - structure =12S

10.0.0.0/12| 10 hosts in 1 /16, 2 /24s, and 4 /27s
192.160.0.0/12| 83 hosts in 1 /16, 18 /24s, and 62 /27s

<12>$ rwsetcat medtcp -dest.set --network - structure =H \
| head -n 5

10.0.40.20|

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 103

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

10.0.40.23|
10.0.40.53|
10.0.40.83|
10.0.50.11|

<13>$ rwsetcat medtcp -dest.set --network - structure =32 \
| head -n 5

10.0.40.20|
10.0.40.23|
10.0.40.53|
10.0.40.83|
10.0.50.11|

Example 4.32: rwsetcat Options for Showing Structure

4.2.8 Indicating Flow Relationships

A useful step in a multi-path analysis is to identify a set of flow records that have common attributes—for
instance, records that are part of the same TCP session. Use rwgroup and rwmatch to label a set of flow
records that share attributes. This identifier, or group ID, is stored in the next-hop IP (nhIP) field. It can
be manipulated as an IP address (that is, either by directly specifying a group ID or by using IPsets). The
two tools generate group IDs in different ways.

• rwgroup scans a file of flow records and groups records with common attributes, such as source or
destination IP address pairs.

• rwmatch groups records of different types (typically, incoming and outgoing types), creating a file
containing groups that represent TCP sessions or groups that represent other behavior.

Hint 4.5: Scale Grouping Tools with Sorted Data

To improve scalability, the grouping tools require the data they process to first be sorted
using rwsort. The sorted data must be sorted on the criteria fields: in the case of rwgroup,
the ID field and delta fields; in the case of rwmatch, start time and the fields specified in the
--relate parameter(s).

Labeling Flow Records Based on Common Attributes

The rwgroup command groups flow records that have common field values. Grouped records can be out-
put separately (with each record in the group having a common ID) or summarized by a single record.
Applications of rwgroup include the following:

• grouping together all flow records for a long-lived session: By specifying that records are grouped
together by their port numbers and IP addresses, an analyst can assign a common ID to all of the flow
records that make up a long-lived session.

• reconstructing web sessions: Due to diversified hosting and caching services such as Akamai®, a single
webpage on a commercial website is usually hosted on multiple servers. For example, the images may be
on one server, the HTML text on a second server, advertising images on a third server, and multimedia

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 104

4.2. MULTI-PATH ANALYSIS: ANALYTICS

on a fourth server. An analyst can use rwgroup to tag web traffic flow records from a single user that
are closely related in time and then use that information to identify individual webpage fetches.

• counting conversations: An analyst can group all the communications between two IP addresses to-
gether and see how much data was transferred between both sites regardless of port numbers. This is
particularly useful when one site is using a large number of ephemeral ports.

Flow records are grouped when they have matching fields. The fields specified by --id-fields must be
identical and the field specified by --delta-field must match within a value less than or equal to the value
specified by --delta-value.

Creating a new group is a two-step process:

1. Sort the records using rwsort as described in Section 2.2.7. rwgroup requires input records to be
sorted by the fields specified in --id-fields and --delta-field.

2. Run rwgroup to create a group that matches the grouping criteria specified by --id-fields, --delta-field,and
--delta-value. Records in the same group are assigned a common group ID.

rwgroup outputs a stream of flow records. Each record’s next-hop IP address field is set to the value of the
group ID.

Grouping Records By Session. The most basic use of rwgroup is to group together flow records that
constitute a single longer session, such as the components of a single FTP session (or, in the case of Exam-
ple 4.33, a Microsoft® Distributed File System Replication Service session). To do this, the example does
the following:

1. Command 1 uses rwfilter to pull the desired flow records from the repository. It then uses the rwsort
command to sort these records by source and destination IP address, source and destination port, and
start time.

2. Command 2 uses rwgroup to group together flow records that have closely-related start times.

3. Command 3 uses the rwfilter and rwcut commands to display grouped records. It filters for records
with --next-hop-id=0.0.0.1,28 (the group IDs), then displays the source and destination IP ad-
dresses, source and destination ports, and the group ID (nhIP).

This creates a group of records that comprise a session.

Thresholding Groups By Number of Records. By default, rwgroup outputs one flow record for every
flow record it receives as input. You can set a threshold for flow record output by using the --rec-threshold
parameter, as shown in Example 4.34. This parameter specifies that rwgroup only passes records that belong
to a group with at least as many records as given in --rec-threshold. All other records are dropped silently.

This allows you to filter out smaller groups of records. For instance, if you are only interested in grouping
significant amounts of traffic, you could drop groups with low flow counts. Example 4.34 shows how this
thresholding works. In the first case, there are several low-flow-count groups. When rwgroup is invoked with
--rec-threshold=4, these groups are discarded by rwgroup, while the groups with 4 or more flow records
are output.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 105

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwfilter --type=in ,out --start -date =2015/06/02 \
--end -date =2015/06/18 --packets =4- --protocol =6 \
--bytes -per - packet =60- --duration =1000 - --pass= stdout \

| rwsort --fields =1,2,3,4, sTime --output -path= sorted .rw
<2>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \

--delta -value =3600 --output -path= grouped .rw
<3>$ rwfilter grouped .rw --next -hop -id =0.0.0.1 ,28 --pass= stdout \
| rwcut --fields =1-4, nhIP

sIP| dIP|sPort|dPort| nhIP|
10.0.40.20| 192.168.40.20|55425| 5722| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 0.0.0.1|

192.168.40.20| 10.0.40.20| 5722|55425| 0.0.0.28|
192.168.40.20| 10.0.40.20| 5722|55425| 0.0.0.28|
192.168.40.20| 10.0.40.20| 5722|55425| 0.0.0.28|

Example 4.33: Grouping Flows of a Long Session with rwgroup

<1>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \
--delta -value =3600 \

| rwcut --num -recs =10 --field =1-5, nhIP
sIP| dIP|sPort|dPort|pro| nhIP|

10.0.40.20| 192.168.40.20| 5722|60309| 6| 0.0.0.0|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 0.0.0.1|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|

<2>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \
--delta -value =3600 --rec - threshold =4 \

| rwcut --num -recs =10 --field =1-5, nhIP
sIP| dIP|sPort|dPort|pro| nhIP|

10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|

Example 4.34: Dropping Trivial Groups with rwgroup --rec-threshold

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 106

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Generating a Single Summary Record for a Group. rwgroup can also generate a single summary
record with the --summarize parameter. When this parameter is used, rwgroup only produces a single
record for each group. The summary record uses the first record in the group for its addressing information
(IP addresses, ports, and protocol). The total number of bytes and packets for the group is recorded in the
summary record’s corresponding fields, and the start and end times for the record will be the extrema for
that group.13

Example 4.35 shows how summarizing works: The 10 original records are reduced to two group summaries,
and the byte totals for those records are equal to the sum of the byte values of all the records in the group.

<1>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \
--delta -value =3600 --rec - threshold =3 \

| rwcut --fields =1-5, bytes ,nhIP --num -recs =10
sIP| dIP|sPort|dPort|pro| bytes| nhIP|

10.0.40.20| 192.168.40.20|55425| 5722| 6| 5523| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 21084| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 11500| 0.0.0.1|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 959308| 0.0.0.2|

<2>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \
--delta -value =3600 --rec - threshold =3 --summarize \

| rwcut --fields =1-5, bytes ,nhIP --num -recs =5
sIP| dIP|sPort|dPort|pro| bytes| nhIP|

10.0.40.20| 192.168.40.20|55425| 5722| 6| 38107| 0.0.0.1|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 46529266| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3089| 8005| 6| 46726003| 0.0.0.3|
10.0.50.12| 192.168.40.100| 3090| 8005| 6| 46497279| 0.0.0.4|
10.0.50.12| 192.168.40.100| 3091| 8005| 6| 46448588| 0.0.0.5|

Example 4.35: Summarizing Groups with rwgroup --summarize

Grouping Records via IPsets. For any data file, calling rwgroup with the same --id-fields and
--delta-field values will result in the same group IDs being assigned to the same records. As a result, an
analyst can use rwgroup to manipulate groups of flow records where the group has a specific attribute. This
can be done by using rwgroup and IPsets, as shown in Example 4.36.

1. Command 1 uses rwfilter to filter for traffic with the TCP protocol (--protocol=6) and destination
ports 20 and 21 (--dport=20,21). It then calls rwsort to sorts the data and uses rwgroup to convert
the results into a file, out.rw, grouped as FTP communications between two sites. All TCP port 20
and 21 communications between two sites are part of the same group.

2. Command 2 filters through the collection of groups for those group IDs (as next-hop IP addresses
stored in control.set) that use FTP control.

13This is only a quick version of condensing long flows—TCP flags, termination conditions, and application labeling may not
be properly reflected in the output.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 107

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

3. Finally, Command 3 uses the next-hop IPset to pull out all the flows (ports 20 and 21) in groups that
had FTP control (port 21) flows.

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \
--protocol =6 --type=out --dport =20 ,21 --pass= stdout \

| rwsort --fields =1,2, sTime \
| rwgroup --id - fields =1,2 --output -path=out.rw
<2>$ rwfilter out.rw --dport =21 --pass= stdout \
| rwset --nhip -file= control .set
<3>$ rwfilter out.rw --nhipset = control .set --pass= stdout \
| rwcut --fields =1-5, sTime --num -recs =5

sIP| dIP|sPort|dPort|pro| sTime|
192.168.70.10| 10.0.40.83|65360| 21| 6|2015/06/16 T20 :38:57.018|
192.168.70.10| 10.0.40.83|65360| 21| 6|2015/06/16 T20 :38:57.018|
192.168.70.10| 10.0.40.83|65360| 21| 6|2015/06/16 T20 :38:57.146|
192.168.70.10| 10.0.40.83|57096| 21| 6|2015/06/17 T04 :41:35.525|
192.168.70.10| 10.0.40.83|57096| 21| 6|2015/06/17 T04 :41:35.525|

Example 4.36: Using rwgroup to Identify Specific Sessions

Help with rwgroup. For a list of command options, type rwgroup --help at the command line. For more
information about the rwgroup command, type man rwgroup.

Labeling Matched Groups of Flow Records

As part of a larger analysis, you may want to group network flow records. For instance, you could group
records from both sides of a bidirectional session, such as HTTP requests and responses, for further exam-
ination. You may also wish to create groups with more flexible matching, such as matching groups across
protocols to identify traceroute messages, which use the UDP and ICMP protocols.

Use the rwmatch to create matched groups. A matched group consists of an initial record (usually a query)
followed by one or more responses and (optionally) additional queries.

• A response is a record that is related to the query (as specified in the rwmatch command). However, it
is collected from a different direction or from a different router. As a result, the fields relating the two
records may be different. For example, the source IP address in one record may match the destination
IP address in another record.

• A relationship in rwmatch is established using the --relate parameter, which takes two numeric field
IDs separated by a comma (e.g., --relate=3,4 or --relate=5,5). The first value corresponds to
the field ID in the query file,. The second value corresponds to the field ID in the response file. For
example, --relate=1,2 states that the source IP address in the query file must match the destination
IP address in the response file. The rwmatch tool will process multiple relationships, but each field in
the query file can be related to, at most, one field in the response file.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 108

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Sorting Input Files Before Matching. The two input files to rwmatch must be sorted before matching.
The same information provided in the --relate parameters, plus sTime, must be used for sorting. The first
fields in the --relate value pairs, plus sTime, constitute the sort fields for the query file. The second fields
in the --relate value pairs, plus sTime, constitute the sort fields for the response file.

Incomplete Query-Response Relationships. The --relate parameter always specifies a relationship
from the query to the responses, so specifying --relate=1,2 means that the records match if the source IP
address in the query record matches the destination IP address in the response. Consequently, when working
with a protocol where there are implicit relationships between the queries and responses, especially TCP,
these relationships must be fully specified.

Example 4.37 shows the impact that not specifying all of the fields has on TCP data. Note that the match
relationship specified (the source IP address of the query matches the destination IP address of the response)
results in all of the records in the response matching the initial query record, even though the source ports
in the query file may differ from a response’s destination port (as seen with the third matched record).

<1>$ rwfilter --type=in ,out --start -date =2015/06/02 \
--end -date =2015/06/18 --protocol =6 --dport =88 \
--pass= stdout \

| rwsort --fields =1 --output -path=query.rw
<2>$ rwfilter --type=in ,out --start -date =2015/06/02 \

--end -date =2015/06/18 --protocol =6 --sport =88 \
--pass= stdout \

| rwsort --fields =2 --output -path= response .rw
<3>$ rwcut query.rw --fields =1-4, sTime --num -recs =4

sIP| dIP|sPort|dPort| sTime|
10.0.40.26| 192.168.40.20|57288| 88|2015/06/17 T17 :06:38.871|
10.0.40.26| 192.168.40.20|57287| 88|2015/06/17 T17 :06:38.865|
10.0.40.26| 192.168.40.20|52176| 88|2015/06/16 T16 :22:08.659|
10.0.40.26| 192.168.40.20|57287| 88|2015/06/17 T17 :06:38.856|

<4>$ rwcut response .rw --fields =1-4, sTime --num -recs =4
sIP| dIP|sPort|dPort| sTime|

192.168.40.20| 10.0.40.26| 88|57390|2015/06/17 T17 :32:21.501|
192.168.40.20| 10.0.40.26| 88|52724|2015/06/16 T18 :54:21.810|
192.168.40.20| 10.0.40.26| 88|52725|2015/06/16 T18 :54:21.818|
192.168.40.20| 10.0.40.26| 88|57389|2015/06/17 T17 :32:21.493|

<5>$ rwmatch --relate =1,2 query.rw response .rw stdout \
| rwcut --fields =1-4, nhIP --num -recs =10

sIP| dIP|sPort|dPort| nhIP|
10.0.40.26| 192.168.40.20|57390| 88| 0.0.0.1|

192.168.40.20| 10.0.40.26| 88|57390| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52724| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52725| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|57389| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|51466| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|57321| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|57320| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52030| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52031| 255.0.0.1|

Example 4.37: Using rwmatch with Incomplete Relate Values

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 109

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Matching TCP and UDP Relationships. Example 4.38 shows the relationships that could be specified
when working with TCP or UDP. This example specifies a relationship between the query’s source IP address
and the response’s destination IP address, the query’s source port and the response’s destination port, and
the reflexive relationships between query and response.

Matching partial associations. rwmatch is designed to handle not just protocols where source and
destination are closely associated, but also those where partial associations are significant.

<1>$ rwsort query.rw --fields =1,2, sTime \
--output -path= squery .rw

<2>$ rwsort response .rw --fields =2,1, sTime \
--output -path= sresponse .rw

<3>$ rwmatch --relate =1,2 --relate =2,1 --relate =3,4 --relate =4,3 \
squery .rw sresponse .rw stdout \

| rwcut --fields =1-4, nhIP --num -recs =5
sIP| dIP|sPort|dPort| nhIP|

10.0.40.26| 192.168.40.20|52396| 88| 0.0.0.1|
192.168.40.20| 10.0.40.26| 88|52396| 255.0.0.1|

10.0.40.26| 192.168.40.20|51466| 88| 0.0.0.2|
192.168.40.20| 10.0.40.26| 88|51466| 255.0.0.2|

10.0.40.26| 192.168.40.20|51466| 88| 0.0.0.3|

Example 4.38: Using rwmatch with Full TCP Fields

To establish a match group, a response record must first match a query record. For that to happen all the
fields of the query record specified as first values in relate pairs must match all the fields of the response
record specified as second values in the relate pairs. Additionally, the start time of the response record
must fall in the interval between the query record’s start time and its end time extended by the value of
--time-delta.

Alternatively, if the --symmetric-delta parameter is specified, the query record’s start time may fall in the
interval between the response record’s start time and its end time extended by --time-delta. The record
whose start time is earlier becomes the base record for further matching.

Additional target records from either file may be added to the match group. If the base and target records
come from different files, field matching is performed with the two fields specified for each relate pair. If the
base and target records come from the same file, field matching is done with the same field for both records.

In addition to matching the relate pairs, the target record’s start time must fall within a time window
beginning at the start time of the base record. If --absolute-delta is specified, the window ends at
the base record’s end time extended by --time-delta. If --relative-delta is specified, the window
ends --time-delta seconds after the maximum end time of any record in the match group so far. If
--infinite-delta is specified, time matching is not performed.

Use of Next-hop IP Address in rwmatch. As with rwgroup, rwmatch sets the next-hop IP address
field to an identifier common to all related flow records. However, rwmatch groups records from two distinct
files into single groups. To indicate the origin of a record, rwmatch uses different values in the next-hop
IP address field. Query records will have an IPv4 address where the first octet is set to zero; in response
records, the first octet is set to 255. rwmatch only outputs queries that have a response grouped with all the
responses to that query.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 110

4.2. MULTI-PATH ANALYSIS: ANALYTICS

Discarding match queries. rwmatch discards queries that do not have a response and responses that
do not have a query unless --unmatched is specified. It tells rwmatch to write unmatched query and/or
response records to an output file or standard output.

• q writes query records. Unmatched query records have their next hop IPset to 0.0.0.0.

• r writes response records. Unmatched response records have their next hop IPset to 255.0.0.0.

• b writes both query and response records.

As a result, the output from rwmatch usually contains fewer records than the total of the two source files.
rwgroup can be used to compensate for this by merging all of the query records for a single session into one
record.

Sorting rwmatch input by start time. Example 4.38 matches all addresses and ports in both directions.
As with rwgroup, rwmatch requires sorted data. For rwmatch, there is always an implicit time-based re-
lationship controlled using the --time-delta parameter. As a consequence, always sort rwmatch data on
the start time. (Example 4.37 generated the query and response files from a query that might not produce
sorted records; Example 4.38 corrected this by sorting the input files before calling rwmatch.)

Help with rwmatch. For a list of command options, type rwmatch --help at the command line. For more
information about the rwmatch command, type man rwmatch.

4.2.9 Managing IPset, Bag, and Prefix Map Files

During a multi-path analysis, an analyst typically performs many intermediate steps while isolating the
behavior of interest. The rwfileinfo command prints information about binary SiLK files, helping you to
manage the files generated as part of this process.

rwfileinfo can display information about all types of binary SiLK files: flow record files, IPset files, bag
files, and prefix map (or pmap) files. Section 2.2.4 describes how to use rwfileinfo for viewing information
about flow record files. The current section describes how to use rwfileinfo to view information about
set, bag, and pmap files, such as the record count, file size, and the SiLK command(s) that created the file.
Additionally, rwfileinfo displays information specific to each type of file. This information is displayed
by default along with the rest of the file information, or can be explicitly viewed by using the --fields
parameter.

• For IPset files, it shows the nodes, branches and leaves of the IPset (--fields=ipset).

• For bag files, it shows the key-value pairs that make up the bag (--fields=bag).

• For pmap files, it shows the internal prefix map name (--fields=prefix-map). If a prefix map was
created without a map name, rwfileinfo returns an empty result for the prefix-map-specific field.

Example 4.39 show how rwfileinfo handles these files.

1. Commands 1, 2 and 3 create a set, a bag, and a pmap for the example.

2. Command 4 shows a full rwfileinfo result for the set file.

3. Commands 5, 6 and 7 show just the specific information for the IPset, bag, and pmap file, respectively.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 111

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \
--sensors =S0 ,S1 --type=out , outweb --protocol =0- \
--pass= stdout \

| rwbag --bag -file=sIPv4 ,flows , internal .bag
<2>$ rwbagtool --coverset --ipset -record - version =4 \

--output -path= internal .set internal .bag
<3>$ rwpmapbuild --input -file= internal .pmap.txt \

--output -file= internal .pmap
<4>$ rwfileinfo internal .set
internal .set:

format (id) FT_IPSET (0 x1d)
version 16
byte -order littleEndian
compression (id) lzo1x (2)
header - length 56
record - length 1
record - version 4
silk - version 3.16.1
count - records 1184
file -size 506
ipset IPv4

<5>$ rwfileinfo internal .set --fields =ipset
internal .set:

ipset IPv4
<6>$ rwfileinfo internal .bag --fields =bag
internal .bag:

bag key: sIPv4 @ 4 octets ; counter : records @ 8 octets
<7>$ rwfileinfo internal .pmap --fields =prefix -map
internal .pmap:

prefix -map v1: internal

Example 4.39: rwfileinfo for Sets, Bags, and Prefix Maps

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 112

4.3. MULTI-PATH ANALYSIS FOR SITUATIONAL AWARENESS

4.3 Multi-path Analysis for Situational Awareness

Analysts support situational awareness for cybersecurity by determining what is present, what is threatening,
and what potential developments (either aggressive or defensive) could be expected. Multi-path analyses
often focus on the “what is threatening” part by comparing traffic samples that have been collected under
varying conditions.14 In other words, they explore differential awareness—inferring when “what should be”
does not match “what is.” (see Section 2.3.1.)

By investigating the behavior of the network under different conditions, analysts can figure out the difference
between normal and abnormal activity. Examples of different conditions that might be examined during
a multi-path analysis include samples of data before and after a specific event (such as an indicator of
compromise), samples of traffic from both expected and unexpected external addresses or ports, and samples
of normal and abnormal sizes and durations. Analysts can then use this information to infer what might be
happening on the network. Their ultimate goal is to determine whether this activity presents a threat to
the organization.

4.3.1 Structuring a Multi-path Analytic for Situational Awareness

A multi-path analysis for situational awareness incorporates an analytic that retrieves multiple pools of
traffic that differ in the selected condition. (In contrast, a single-path analysis often will pull just one set of
data and then refine or divide it.) Each data pool is then examined separately and processed to produce an
internal state that can be compared to identify or indicate threatening behavior.

Selecting this internal state is a key step in a multi-path analysis of situational awareness. Analysts often
use some form of count indexed by a characteristic. The type of count they select depends on the focus of
the analysis.

• Count flows if the analysis focuses on frequency of behavior.

• Count packets if the focus is on the volume of behavior.

• Count bytes if the focus is on bandwidth consumption.

The indexing characteristic is driven by the condition that forms the branches in the analysis.

• For service-based analyses, index with transport protocol or port.

• For event-based analyses, index by time period.

• For vulnerability-based analyses, index by a volumetric such as duration or size.

Once the values (indexed counts) in these data sets are calculated, you can analyze differences or contrasts
between them to provide differential awareness.

14In contrast, single-path analyses such as those discussed in Section 2.3 often focus on the “what is present” part of situational
awareness.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 113

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

4.3.2 Characterizing Threats

Situational awareness complements threat hunting. You need to understand your network’s behavior to
identify changes that might indicate threats. Network behavior is not static; awareness of how it shifts
over time is key to finding threats. To provide context for threat identification, first retrieve and process
additional datasets. Then, analyze each dataset to gain insight into potential threats.

• If the threat is related to a specific event, pull data by time intervals before, during, and after the event.
Profile this data by computing descriptive statistics, such as number of communicating endpoints,
bytes/flow average, and bytes/packet average. Comparing these statistics can show the impact of the
event and assist in finding characteristics that either identify the threat or determine which direction
to anticipate activity by the threat actors.

• If the threat is indicated by specific endpoints (e.g., source or destination IP addresses), pull data by
the indicative addresses, by other addresses contacted by the indicative addresses, and by unrelated
addresses using similar ports and protocols. Generate time series and frequency counts for each pool
of data, then compare the results to indicate the threat.

• If the threat is indicated by counts of bytes or packets (either unusual in isolation or unusually similar
in magnitude), pull data by counts within the expected ranges, outside the expected ranges but not
threatening, and within the threatening range. Profile each of these data pools using a time series
(with counts indexed by endpoints), then compare them to indicate the threat.

• If the threat is indicated by network port usage (either on the characteristic port or off of it), pull the
data according to whether the port is used as the source, the destination, or neither (where application
recognition is used rather than the port). Profiling each of these data pools using a time series or
descriptive statistics can highlight differences that indicate the threat.

• If the threat is associated with workday or after-hours traffic, pull the data by date-time groups to
separate these time intervals. Profiling each data pool by communication with external addresses or
by descriptive statistics may provide a useful comparison to indicate the threat.

• If the threat is associated with the frequency of communication on a given service (instead of the
volume of communication), pull the data according to external endpoints that are associated with high,
moderate, and low frequency of communication on that service. Profiling each pool with descriptive
statistics may provide a useful comparison to indicate the threat.

4.3.3 Profiling Data

To profile the different data pools, use the SiLK tools that generate summary values.

• Use rwcount to generate time series values, which can be contrasted using matrix difference to highlight
divergences.

• Use rwstats --overall-stats to compute distribution information, including minimum, quartiles,
median, maximum, and histograms. These statistics are generated for bytes/flow, packets/flow, and
bytes/packet, calculated over all of the flows. Example 4.40 shows a sample output for a pool of traffic.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 114

4.3. MULTI-PATH ANALYSIS FOR SITUATIONAL AWARENESS

• Use rwstats --detail-proto-stats to compute similar statistics to --overall-stats, but on a
protocol-by-protocol basis. This parameter takes a list of protocol numbers as its argument. Then,
use Linux text-processing commands on the rwstats output to isolate values of interest in profiling
traffic.

• Use the rwbag or rwbagbuild command to store useful keys and values in a bag. Then, use rwbagcat
--print-statistics to generate a statistical summary of the values in the bag. Example 4.41 shows
a sample output for the pool of traffic.

When applying these tools, the general approach is to first produce a profile of each individual data pool
in parallel. Then, contrast all of the profiles to identify threats of interest. This approach avoids inefficient
looping between the data pools while trying to interpret each in the context of all others. Instead, these
profiles should highlight the characteristic differences directly, making it easier to identify the threat.

4.3.4 Multi-path Analysis for Differential Awareness: Investigate Abnormal
Web Traffic

Let’s continue the sample situational awareness analysis from Section 2.3.2. Our analyst Arthur previously
investigated the behavior of his organization’s web and DNS servers to validate that they were functioning
properly and find any unusual behavior (desired awareness). He also looked as the traffic carried by the web
and DNS servers to see if it deviated from expected patterns (actual awareness). Arthur identified a host
that was behaving anomalously and found an unusual traffic pattern on the web server.

Arthur now shifts his focus from investigating expected web traffic to investigating abnormal or threatening
traffic. He will profile web server activity on different ports to see if he can find more evidence of abnormal
behavior that might indicate potentially hostile activity. In other words, he will perform a differential
awareness analysis of web traffic.

Profile On-port and Off-port Web Traffic

Arthur’s investigation starts by looking at recognized web traffic. Example 4.42 retrieves outbound traffic
(out and outweb) by application labeling of 80 or 443, and examines both on-port activity (i.e., traffic on
normal web ports) and off-port activity (i.e., traffic without normal web ports).

Command 1 uses rwfilter and rwstats to profile the on-port traffic. The results show the top 5 destination
ports. As Arthur expected, normal web ports (80, 443, 8080, and 8443) account for more than 98% of the
flows, with the remainder being dynamic ports.

Command 2 similarly uses rwfilter and rwstats to profile off-port traffic. The source ports are used in
this command, as the destination ports were dominated by dynamic ports.

• The first two ports (591 and 8008) are alternative HTTP ports.

• The next two ports (8005 and 8834) are associated with streaming web services.

• The last port (139) is a Windows NetBIOS service port with known security issues. This service is not
normally configured to us HTTP or TLS, and so its presence on the profile is doubly suspicious.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 115

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<1>$ rwstats --overall -stats traffic .rw
FLOW STATISTICS --ALL PROTOCOLS : 20840493 records
*BYTES min 23; max 68282013

quartiles LQ 86.15025 Med 141.36326 UQ 285.97591 UQ -LQ 199.82566
interval_max |count <= max |% _of_input | cumul_ %|

40| 316815| 1.520190| 1.520190|
60| 451856| 2.168164| 3.688353|

100| 6793743| 32.598763| 36.287117|
150| 3454554| 16.576163| 52.863279|
256| 4508177| 21.631816| 74.495095|

1000| 2611652| 12.531623| 87.026718|
10000| 2637017| 12.653333| 99.680051|

100000| 60954| 0.292479| 99.972529|
1000000| 4683| 0.022471| 99.995000|

4294967295| 1042| 0.005000|100.000000|
* PACKETS min 1; max 405734

quartiles LQ 1.13593 Med 2.27186 UQ 4.94753 UQ -LQ 3.81160
interval_max |count <= max |% _of_input | cumul_ %|

3| 13759975| 66.025190| 66.025190|
4| 1222465| 5.865816| 71.891006|

10| 4102843| 19.686881| 91.577886|
20| 1335366| 6.407555| 97.985441|
50| 304678| 1.461952| 99.447393|

100| 55297| 0.265334| 99.712728|
500| 55378| 0.265723| 99.978451|

1000| 2439| 0.011703| 99.990154|
10000| 1752| 0.008407| 99.998560|

4294967295| 300| 0.001440|100.000000|
*BYTES/ PACKET min 21; max 6269

quartiles LQ 61.81097 Med 77.66906 UQ 93.52715 UQ -LQ 31.71618
interval_max |count <= max |% _of_input | cumul_ %|

40| 650694| 3.122258| 3.122258|
44| 2349349| 11.273001| 14.395259|
60| 1615092| 7.749778| 22.145038|

100| 13141869| 63.059300| 85.204338|
200| 1270185| 6.094793| 91.299131|
400| 1719319| 8.249896| 99.549027|
600| 71663| 0.343864| 99.892891|
800| 10637| 0.051040| 99.943931|

1500| 11519| 0.055272| 99.999203|
4294967295| 166| 0.000797|100.000000|

Example 4.40: Using rwstats --overall-stats for Summary Statistics

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 116

4.3. MULTI-PATH ANALYSIS FOR SITUATIONAL AWARENESS

<1>$ rwbag traffic .rw --pmap -file=ports:port.pmap \
--bag -file=dport -pmap:ports ,flows , traffic .bag

<2>$ rwbagcat --pmap -file=ports:port.pmap --print - statistics \
traffic .bag

Statistics
number of keys: 20

sum of counters : 20840493
minimum key: icmp -any
maximum key: udp -llmnr

minimum counter : 21
maximum counter : 8404597

mean: 1.042e+06
variance : 4.493e+12

standard deviation : 2.12e+06
skew: 2.276

kurtosis : 18.05
nodes allocated : 0 (0 bytes)
counter density : inf%

Example 4.41: Using rwbagcat --print-statistics for Summary Statistics

<1>$ rwfilter --start =2015/06/17 --type=out , outweb \
--application =80 ,443 --aport =80 ,8080 ,443 ,8443 \
--pass= stdout \

| rwstats --fields =dport --values =flows --count =5
INPUT: 120338 Records for 1296 Bins and 120338 Total Records
OUTPUT : Top 5 Bins by Records
dPort| Records | % Records | cumul_ %|

80| 67574| 56.153501| 56.153501|
443| 47195| 39.218701| 95.372202|

8443| 4136| 3.436986| 98.809187|
8080| 3| 0.002493| 98.811680|

52576| 3| 0.002493| 98.814173|
<2>$ rwfilter --start =2015/06/17 --type=out , outweb \

--application =80 ,443 --pass= stdout \
| rwfilter stdin --aport =80 ,8080 ,443 ,8443 --fail= stdout \
| rwstats --fields =sport --values =flows --count =5
INPUT: 1784 Records for 129 Bins and 1784 Total Records
OUTPUT : Top 5 Bins by Records
sPort| Records | % Records | cumul_ %|

591| 1386| 77.690583| 77.690583|
8008| 123| 6.894619| 84.585202|
8005| 64| 3.587444| 88.172646|
8834| 64| 3.587444| 91.760090|

139| 17| 0.952915| 92.713004|

Example 4.42: Using rwfilter and rwstats for Contrasting On-port and Off-port Web Connections

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 117

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Investigate Traffic on Port 139

To dig deeper into the suspicious activity on port 139, Arthur looks at identified web flows as shown in
Example 4.43. In contrast to the previous example, Command 1 pulls both directions of web-based traffic
involving port 139. It stores the flows in the file off-port.rw and also passes the flows to rwcut for display.

While just the first 10 flows (sorted by start time) are shown, several things are apparent:

• Flows are shown going both ways (to and from port 139).

• The source address of the traffic to port 139 is often or exclusively the host 192.168.181.8.

• The destination addresses on which port 139 is accessed vary.

• They byte counts involved are small, particularly for web traffic (low hundreds of bytes per flow).

• The timing of the flows is too rapid for this to be browser traffic.

Arthur then uses rwuniq to further examine the flows saved by Command 1, as shown in Commands 2
through 5. The results of these commands confirm that 192.168.181.8 is the only source address on flows
to port 139, and the only destination address on flows from port 139. Further examination of the results
reveals several things:

• The TCP connections to port 139 all have the same set of flags, which further indicates that this are
not browser connections.

• Each of the 17 connections to port 139 produce a response from port 139, which indicates that this is
not random port access.

• All of the connections initiate and terminate normally, but with very few packets per flow, and very
small (below 60) bytes per packet averages.

Conclusions from the Multi-path Analysis for Situational Awareness

Arthur’s differential analysis of web traffic uncovered suspicious activity on port 139, which is not normally
configured to use HTTP or TLS and has known security problems. He found traffic that uses a web protocol
but is not web traffic, on a port that may offer administrative access to targeted machines.

As such, this is worth looking into in more depth (perhaps pulling packet content) to definitively find out if
the traffic is malicious. Arthur will continue his analysis in Section 6.3.3.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 118

4.3. MULTI-PATH ANALYSIS FOR SITUATIONAL AWARENESS

<1>$ rwfilter --start =2015/06/17 --type=in ,out \
--application =80 ,443 --aport =139 --pass=off -out.rw \
--pass= stdout \

| rwsort --fields =stime \
| rwcut --fields =1-4, bytes ,stime --num =10

sIP| dIP|sPort|dPort| bytes| sTime|
192.168.121.2| 192.168.181.8| 139|43040| 164|2015/06/17 T16 :13:06.446|
192.168.181.8| 192.168.121.2|43040| 139| 338|2015/06/17 T16 :13:06.446|
192.168.181.8| 192.168.121.77|55546| 139| 350|2015/06/17 T16 :13:06.447|
192.168.181.8| 192.168.121.57|46770| 139| 286|2015/06/17 T16 :13:06.447|
192.168.181.8|192.168.121.145|60557| 139| 350|2015/06/17 T16 :13:06.447|

192.168.121.57| 192.168.181.8| 139|46770| 169|2015/06/17 T16 :13:06.447|
192.168.121.145| 192.168.181.8| 139|60557| 169|2015/06/17 T16 :13:06.447|

192.168.121.77| 192.168.181.8| 139|55546| 169|2015/06/17 T16 :13:06.447|
192.168.121.158| 192.168.181.8| 139|47620| 169|2015/06/17 T16 :13:06.448|

192.168.181.8|192.168.121.158|47620| 139| 350|2015/06/17 T16 :13:06.448|
<2>$ rwfilter off -out.rw --dport =139 --pass= stdout \
| rwuniq --fields =sip \

--values =bytes ,packets ,flows , distinct :dip \
sIP| Bytes| Packets | Records |dIP - Distin |

192.168.181.8| 5862| 101| 17| 17|
<3>$ rwfilter off -out.rw --dport =139 --pass= stdout \
| rwuniq --fields =flags \

--values =bytes ,packets ,flows , distinct :dip \
flags| Bytes| Packets | Records |dIP - Distin |

FS PA | 5862| 101| 17| 17|
<4>$ rwfilter off -out.rw --sport =139 --pass= stdout \
| rwuniq --fields =dip \

--values =bytes ,packets ,flows , distinct :sip \
dIP| Bytes| Packets | Records |sIP - Distin |

192.168.181.8| 2875| 51| 17| 17|
<5>$ rwfilter off -out.rw --sport =139 --pass= stdout \
| rwuniq --fields =flags \

--values =bytes ,packets ,flows , distinct :sip \
flags| Bytes| Packets | Records |sIP - Distin |

FS PA | 2547| 45| 15| 15|
FS A | 328| 6| 2| 2|

Example 4.43: Using rwcut and rwuniq to Examine Off-port Web Connections

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 119

CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

4.4 Summary of SiLK Commands in Chapter 4

Command Section Name Page
rwfilter Complex Filtering With rwfilter 75

Finding Low-Packet Flows with rwfilter 80
rwcount Approximating Flow Behavior Over Time 81
rwuniq Using Thresholds to Profile a Slice of Flows 82

Profiling With Compound Keys 85
Isolating Behaviors of Interest 87

rwstats Profiling With Compound Keys 85
rwbag Generating Bags from Network Flow Data 89
rwbagbuild, rwscan Generating Bags From IP Sets or Text 90
rwbagtool Comparing the Contents of Bags 93

Extracting IPsets from Bags 95
Intersecting Bags and IPsets 95

rwnetmask Masking IP Addresses 95
rwsetbuild Creating IPsets from Text Files 97
rwsetmember Using Set Membership to Understand Traffic Flow 99
rwsetcat Displaying IPset Statistics and Network Structure 101
rwgroup Labeling Flow Records Based on Common Attributes 104
rwmatch Labeling Matched Groups of Flow Records 108
rwfileinfo Managing IPset, Bag, and Prefix Map Files 111

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 120

Chapter 5

Case Studies: Intermediate
Multi-path Analysis

This chapter features detailed case studies of multi-path analyses, using concepts from previous chapters.
They employ the SiLK workflow, rwfilter and other SiLK tools, UNIX commands, and networking concepts
to provide practical examples of multi-path analyses with network flow data.

Upon completion of this chapter you will be able to

• describe how to combine several tasks to form a multi-path analyses

• execute multi-path analyses with various SiLK tools in one automated program

• associate sets of IP addresses (IPsets) with network flow sensors

These case studies use the FCCX dataset described in Section 1.8.

5.1 Building Inventories of Network Flow Sensors With IPsets

Flow sensors commonly monitor strategic points in enterprise networks where different network environ-
ments meet. This environmental complexity affects sensor flow collection and analyst knowledge as network
infrastructure evolves. For example, multiple sensors may overlap their flow collection for failover purposes;
as the network routes traffic, analysts may need to determine which sensor is the primary flow collector.

Naomi has been asked to create and maintain an up-to-date inventory of network sensors. Her organization’s
network is constantly in flux and her team needs to know how their sensors function in this changing
environment. Her inventory will help her colleagues to better understand how their sensors monitor the
network, simplify the process of reviewing and validating sensors, and mitigate the issues mentioned above.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 121

CHAPTER 5. INTERMEDIATE CASE STUDY

To create a sensor inventory, Naomi applies the analysis workflow described in Section 1.5 to build a multi-
path analysis from successive single-path analyses. Her inventory consists of SiLK IPsets that contain internal
network addresses monitored by a flow sensor. She’ll create the sensor inventory by merging the results of
three single-path analyses into a single IPset inventory as follows:

1. Path 1 associates network addresses with a single sensor (Section 5.1.1).

2. Path 2 associates network addresses of the remaining sensors (Section 5.1.2).

3. Path 3 associates network shared addresses (Section 5.1.3).

4. Finally, the results of each part of the multi-path analysis are merged to create a complete inventory
of sensors (Section 5.1.4).

The steps she takes and the SiLK commands she uses are shown in Example 5.1.

<1>$ rwfilter --sensor =S0 --type=out , outweb --start =2015/06/01 \
--end =2015/06/30 --proto =0- --pass= stdout \

| rwset --sip -file=S0 -out.set --copy= stdout \
| rwbag --bag -file=sipv4 ,flows ,S0 -out.bag
<2>$ rwfilter \

--sensor =S1 ,S2 ,S3 ,S4 ,S5 ,S6 ,S7 ,S8 ,S9 ,S10 ,S11 ,S12 ,S13 ,S14 ,S15 ,\
S16 ,S17 ,S18 ,S19 ,S20 ,S21 \
--type=out , outweb --start =2015/06/01 --end =2015/06/30 \
--proto =0- --pass= stdout \

| rwset --sip -file=S0 -other.set --copy= stdout \
| rwbag --bag -file=sipv4 ,flows ,S0 -oth.bag
<3>$ rwsettool --difference S0 -out.set S0 -other.set \

--output =S0 -only.set
<4>$ rwbagtool --compare =ge S0 -out.bag S0 -oth.bag \

--output =S0 -most.bag
<5>$ rwbagtool --coverset S0 -most.bag --output =S0 -most.set
<6>$ rwsetcat --net =27 S0 -most.set S0 -only.set \
| cut -f1 -d '|' \
| rwsetbuild stdin cand.set
<7>$ rwfilter --sensor =S0 --type=in ,inweb --start =2015/06/01 \

--end =2015/06/30 --dipset =cand.set --pass= stdout \
| rwset --dip -file=S0 -in.set
<8>$ rwsettool --difference S0 -in.set S0 -most.set S0 -only.set \

--output =S0 -close.set
<9>$ rwsettool --union S0 -only.set S0 -most.set S0 -close.set \

--output =S0.set

Example 5.1: Building an IPset Inventory for Sensor S0

5.1.1 Path 1: Associate Addresses with a Single Sensor

To begin generating IPsets, Naomi selects sensor S0 as the inventory sensor.

1. In Command 1 of Example 5.1, Naomi calls the rwfilter command to retrieve outbound traffic
(--type=out,outweb) on inventory sensor S0 during the defined time period.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 122

5.1. BUILDING INVENTORIES OF NETWORK FLOW SENSORS WITH IPSETS

2. She then uses a Unix pipe (|) to send the records that pass the rwfilter query to the rwset com-
mand. This generates an IPset (S0-out.set) that contains all outbound source IP addresses that are
monitored by sensor S0.

3. The rwset --copy switch copies the rwfilter results to standard output. Naomi again uses a Unix
pipe (|) to send the copied IPset to the rwbag command. This generates a SiLK bag of flow counts
per source IP address for the same time period (S0-out.bag).

The resulting IPset and bag provide a detailed inventory of all source IP addresses and their flow volumes
monitored by sensor S0.

5.1.2 Path 2: Associate Addresses of Remaining Sensors

Command 2 of Example 5.1 shows the next path in Naomi’s multi-path analysis: associating the addresses
for non-inventory sensors in the repository. This procedure is similar to the one she used in Command 1.
However, Command 2 selects outbound traffic for the remaining repository sensors (S1 through S21) and
generates source IP address sets and bag files for the same time period (S0-other.set, S0-oth.bag).

5.1.3 Path 3: Associate Shared Addresses

The third path of Naomi’s multi-path analysis associates the addresses that may be monitored (or shared)
by multiple sensors.

Identify Uniquely-Monitored Addresses

To begin path three, Naomi finds the IP addresses that are uniquely monitored by the inventory sensor, S0.

1. Command 3 of Example 5.1 calls rwsettool --difference to generate an IPset of addresses that are
uniquely monitored by sensor S0 (S0-only.set). This command compares the set of addresses from
Command 1 that are monitored by S0 (S0-out.set) to the set of addresses from Command 2 that are
monitored by all the other sensors (S0-other.set). It saves the IP addresses that are only found in
S0-out.set to S0-only.set.

2. Command 4 checks to see if the inventory sensor S0 is the primary flow collection sensor. It compares
the IP address flow volumes of the inventory sensor to those of the other sensors to determine if
S0 monitors the majority of network traffic for an IP address. To perform this comparison, it calls
rwbagtool to compare the bag files created in Commands 1 and 2 (S0-out.bag and S0-oth.bag). IP
addresses that are monitored by the inventory sensor and have flow volumes greater than or equal to
those monitored by the non-inventory sensors are saved to the S0-most.bag file.

3. Command 5 calls rwbagtool --coverset to generate an IPset (S0-most.set) from the S0-most.bag
file.

Find Asymmetric and Missing Flow Data

Naomi next accounts for asymmetric and missing network flow data, which can be caused by outages, routing,
and network backdoors. To address each case, she needs to identify inbound network traffic to internal hosts

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 123

CHAPTER 5. INTERMEDIATE CASE STUDY

that are closely adjacent to other inventory sensor addresses. She can accomplish this by using a small CIDR
range, such as /27.

1. Command 6 of Example 5.1 calls the rwsetcat and rwsetbuild commands to build a cand.set
candidate set from the S0-only and S0-most IPset files. The --net=27 parameter specifies the CIDR
range for closely adjacent addresses in the two sets.

2. Naomi then uses this candidate set as a destination IPset (--dipset=cand.set) for the rwfilter
query in Command 7. This identifies any remaining addresses not previously found in Commands 1
and 2.

3. Command 8 then calls rwsettool --difference to create the S0-close.set IPset, which contains
IP addresses that are closely adjacent to inventory sensor addresses.

5.1.4 Merge Address Results

After Naomi completes the third path of the multi-path analysis, she has three subsets of the sensor inventory:
S0-only.set, S0-most.set, and S0-close.set. To complete the full sensor inventory, she must merge all
three subsets into a single IPset that contains the inventory of IP addresses associated with the inventory
sensor, S0.

Command 9 of Example 5.1 generates the final sensor inventory with the rwsettool --union switch. This
command performs an algebraic union on S0-only.set, S0-most.set, and S0-close.set to produce S0.
set, which contains all of the IP addresses in the sensor inventory.

Naomi and her team can now use the sensor inventory IPset to gain a better understanding of the networks
monitored by a specific network flow sensor (in this example, S0) and identify any situational awareness
changes.

5.2 Automating IPset Inventories of Network Flow Sensors

In Section 5.1, our analyst Naomi manually generated a sensor inventory by performing a multi-path analysis.
This process is fine if she only needs to inventory a single sensor a single time. However, what if she wants
to inventory all of the sensors in the SiLK repository? What if she needs to update the sensor inventory
regularly to capture changes to her organization’s network infrastructure? Manually executing this workflow
over and over would be time consuming and represents an inefficient use of her time and resources.

Naomi therefore creates a shell program to automatically execute this workflow. Her automated program
uses the rwsiteinfo command to compile a list of all sensors in the SiLK repository, then executes the
analytic from Section 5.1 for every sensor. Automating the workflow is more efficient and accurate than
manually executing it for each sensor. It makes compiling and updating a complete sensor inventory much
easier: simply run the program as needed to automatically generate a new inventory for all sensors that are
currently in the repository. This improves Naomi and her team’s situational awareness of the network.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 124

5.2. AUTOMATING IPSET INVENTORIES OF NETWORK FLOW SENSORS

Naomi’s automated sensor inventory is shown in Example 5.2. It’s a simple Bash shell program that carries
out the process of building IPset inventories for all of the sensors in the SiLK repository. Her program
consists of two main sections, a header and loop, that are discussed in detail below.

5.2.1 Program Header

The first section of Naomi’s automated program is the header, which contains information used throughout
program execution.

Line 1 of Example 5.2, commonly known as the she-bang, identifies this as a Bourne-again (Bash) shell
program to the system shell. The comment in Line 2 helps users to understand the overall purpose of the
program.

Lines 5-8 define variables that are referenced throughout the remainder of the program.

• The START and END variables specify the dates that are used with rwfilter --start-date and
--end-date switches.

• The INBOUND and OUTBOUND variables specify the options for inbound and outbound rwfilter queries
that are executed in the program’s for loop.

5.2.2 Program Loop

The rest of Naomi’s program is a Bash for loop that executes most of the program’s automated tasks.

Line 11 of Example 5.2 loops through the sensors in the SiLK repository. The rwsiteinfo --sensor
command generates a complete list of sensors in the repository. The for loop cycles through this list to
generate an inventory for each sensor.

Lines 13-15 define a variable (FILES in this example) of temporary files that will be deleted at the end of
the for loop (Line 47).

Line 17 follows with a visual output of the current inventory sensor using the UNIX echo command. This
indicates that the program has started building an IPset inventory for that sensor.

With the exception of Lines 23-25, the remainder of the program repeats the analytic in Example 5.1 using
the variables defined in the program header. Lines 23-25 are an addition to the original analytic. They call
rwsiteinfo with the --fields=sensor:list option to generate a comma-delimited list of sensors. This
list of sensors is then passed to a series of sed commands to remove the inventory sensor, effectively building
an OTHERS variable that contains a list of non-inventory sensors. The OTHERS variable is then used to build
the set of non-inventory sensors used in the rest of the analytic.

Line 49 again displays the name of the current sensor and indicates that the program has finished building
an inventory for that sensor.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 125

CHAPTER 5. INTERMEDIATE CASE STUDY

1 #!/ bin/bash
Script to automate sensor IPSet inventories

4 # Variables
START ="2015/06/01"
END ="2015/06/30"

7 OUTBOUND ="-- type=out , outweb --start= $START --end=$END --proto =0-"
INBOUND ="-- type=in ,inweb --start= $START --end=$END --dipset =cand.set"

10 # Loop through each sensor in the repository
for SEN in $(rwsiteinfo --no - titles --no -final --fields = sensor); do

13 FILES ="$SEN -out.set $SEN -out.bag $SEN -close.set $SEN -other.set"
FILES +=" $SEN -oth.bag $SEN -only.set cand.set"
FILES +=" $SEN -most.set $SEN -in.set $SEN -most.bag"

16
echo " Sensor : $SEN -- Start"

19 rwfilter --sensor =$SEN $OUTBOUND --pass= stdout \
| rwset --sip -file=${SEN}-out.set --copy= stdout \
| rwbag --bag -file=sipv4 ,flows ,${SEN}-out.bag

22
OTHERS =$(rwsiteinfo --no - titles --no -final --fields = sensor :list \

| sed -e "s/,$SEN ,/ ,/" \
25 | sed -e "s/^$SEN ,//" | sed -e "s/,$SEN$ //")

rwfilter --sensor = $OTHERS $OUTBOUND --pass= stdout \
28 | rwset --sip -file=${SEN}-other.set --copy= stdout \

| rwbag --bag -file=sipv4 ,flows ,${SEN}-oth.bag

31 rwsettool --difference ${SEN}-out.set ${SEN}-other.set \
--output =${SEN}-only.set

rwbagtool --compare =ge ${SEN}-out.bag ${SEN}-oth.bag \
34 --output =${SEN}-most.bag

rwbagtool --coverset ${SEN}-most.bag --output =${SEN}-most.set

37 rwsetcat --net =27 ${SEN}-most.set ${SEN}-only.set \
| sed -e 's/|.*// ' | rwsetbuild stdin cand.set

40 rwfilter --sensor =$SEN $INBOUND --pass= stdout \
| rwset --dip -file=${SEN}-in.set

43 rwsettool --difference ${SEN}-in.set ${SEN}-most.set \
${SEN}-only.set --output =${SEN}-close.set
rwsettool --union ${SEN}-only.set ${SEN}-most.set \

46 ${SEN}-close.set --output =${SEN }. set
rm -f $FILES

49 echo " Sensor : $SEN -- End"
done

Example 5.2: Automating IPset Inventories

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 126

Chapter 6

Advanced Exploratory Analysis with
SiLK: Exploring and Hunting

This chapter introduces advanced exploratory analysis through application of the analytic development
process with the SiLK tool suite. It discusses the exploratory analysis process, starting points for exploration,
and advanced SiLK commands and techniques that can be employed during an analysis.

Upon completion of this chapter you will be able to

• describe advanced exploratory analysis and how it maps to the analytic development process

• describe SiLK tools that often are used during exploratory analysis

• provide example workflows for exploratory network flow analysis

• describe how to apply the exploratory analysis workflow to situational awareness

6.1 Exploratory Analysis: Concepts

The exploratory approach is the most open-ended of the analysis workflows described in this guide. It
provides a framework for investigating more complex questions about network traffic. As the name suggests,
exploratory analysis involves asking questions about trends, processes, and dynamic behavior that do not
necessarily have fixed or obvious answers. Often the analysis leads to more questions!

Exploratory analysis uses single-path and multi-path analyses as building blocks to provide insight into
network events. It typically considers more than one indicator of network behavior to provide a more
complete understanding of what happened. Each building block represents a question (or part of a question)
whose answer feeds into subsequent steps in the analysis. Analysts can assemble these building blocks by
hand to prototype an analysis or examine one-time phenomena, iterating if necessary. This manual analysis
can then transition to scripted analysis to save time, make it easier to repeat the analysis, and ensure more
consistent results.

As Figure 6.1 indicates, this form of analysis rarely proceeds directly from initial question to final result.
Instead, it gathers a variety of contextual information, and goes forward in a search pattern to reach the
result.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 127

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Figure 6.1: Exploratory Analysis

6.1.1 Exploring Network Behavior

Exploratory analysis follows the general SiLK analysis workflow described in Figure 1.3. The overall course
of exploratory analysis generally follows these steps:

1. come up with initial questions as the starting point (the Formulate stage)

2. apply a set of analyses to provide insight into a given question (the Model and Test stages)

3. integrate the results of these analyses with previously-available data (the Analyze stage)

4. refine the results (the Refine stage)

5. identify new questions to be investigated with further analyses (return to the Formulate stage to begin
another iteration of the exploratory analysis)

In contrast to single-path and multi-path analysis, analysts explore with iterations of questions and their
associated analyses. We may not have a specific set of behaviors, known event, or identified service in mind
at the start of an exploratory analysis. Instead, we start with a general question and seek a clearer target
during the iterations of the analysis.

As the exploration progresses, the scope of these questions often becomes more associated with any features
of interest that are identified in the data. These features can be identified during the initial stages of
establishing context for the network behavior to be investigated and gathering data about it. They also can
emerge from the results of preliminary single-path or multi-path analyses of the data, which help to refine
the scope of the exploratory analysis.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 128

6.1. EXPLORATORY ANALYSIS: CONCEPTS

Exploratory analysis often takes a deep dive into the data to examine the possible causes or conditions
related to the features of interest. The analyst may form, test, and either continue to investigate or abandon
hypotheses about sources of the behavior. This exploration continues until the analyst reaches a sufficient
level of confidence in understanding the features to either identify the causes of the event and share the results,
or close the hypothesis. When all threatening hypotheses have been closed, we can close the investigation
and associate the behavior with unremarkable network activity.

6.1.2 Starting Points for Exploratory Analysis

The first question that normally arises during an exploratory analysis is, “Where should it start?”

One set of starting points for exploratory analyses involves investigating unexplained activity on the moni-
tored network. This produces initial questions such as

• What activity is present that could be malicious or damaging?

• What is the impact of this unexpected activity?

• What led to this unexpected activity?

The initial stage of the investigation may be a relatively straightforward profiling analysis or an inventory
of traffic of interest across specific servers. Further iterations use the results of these profiles and inventories
to identify outliers, inconsistencies, and behaviors exhibited by the unexplained activity. These outliers,
inconsistencies, and behaviors then become the focus of exploration for the next iteration. At this point in
the analysis, a case-by-case frequency summary or time-based trends can provide insight into the activity.
The iterations of analysis continue until the analyst identifies a reasonable explanation of the activity,
rejecting alternate explanations.

Another set of starting points for exploratory analyses involves unusual levels or directions of network services.
This produces initial questions such as

• What led to these services?

• Is there a change in the population of external hosts employing these services?

• Does this change in service match with a model of network attack?

Analyses for these questions often summarize network activities via time series or service-by-service counts
of incoming activity versus outgoing activity. The analyst integrates and examines these summaries and
counts, looking for points of significant change in trends or traffic levels. These points of change, and the
hosts involved in those changes, become the focus of the next iteration of the exploratory analysis.

6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 129

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

As an example of an exploratory analysis, consider an investigation into Network Time Protocol (NTP) usage.
Madison is a traffic analyst who is tasked with developing a profile of the NTP server activity, particularly
focused around traffic on June 16, 2015. She is looking at unusual NTP activity on her organization’s
network. Since NTP is associated with UDP port 123, her starting point would be to find out what level of
activity is observed on this port.

Compare Inbound and Outbound UDP Activity on Port 123

The first step in Madison’s analysis delves into inbound and outbound activity on port 123. The rwfilter
commands in Example 6.1 provide an initial view of UDP activity on this port. Command 1 profiles the
outgoing activity to UDP/123. Command 2 profiles the incoming activity from this port.

The size of the outbound activity is surprisingly large: almost double the number of flow records than the
inbound activity, and one third larger in bytes. Madison decides that it is worth a closer look.

<1>$ rwfilter --start =2015/06/16 --sensor =S0 ,S1 ,S2 ,S3 ,S4 \
--type=out --proto =17 --dport =123 --pass=NTP -out.raw \
--print -vol= stdout

| Recs| Packets | Bytes| Files|
Total| 5566807| 15791472| 2646290347| 60|

Pass| 7040| 8410| 659800| |
Fail| 5559767| 15783062| 2645630547| |

<2>$ rwfilter --start =2015/06/16 --sensor =S0 ,S1 ,S2 ,S3 ,S4 \
--type=in --proto =17 --sport =123 --pass=NTP -in.raw \
--print -vol= stdout

| Recs| Packets | Bytes| Files|
Total| 3549008| 15506147| 3118288427| 60|

Pass| 3936| 6148| 493968| |
Fail| 3545072| 15499999| 3117794459| |

Example 6.1: Using rwfilter to Profile NTP Activity

Differentiate Benign and Malicious Traffic

The second phase of Madison’s exploratory analysis examines the UDP activity on port 123 more closely
to look for patterns that might differentiate between benign and malicious traffic. rwuniq is well suited for
this task, since it allows her to look at the traffic over a variety of contingencies. RFC 590515 specifies that
NTP packets must have a byte size of 76 bytes for a request and 96 bytes for a response. Madison therefore
expects to find flow bytes that are a multiple of either of these two values.

Example 6.2 runs rwuniq on the output files from Example 6.1. Command 1 shows an excerpt of the various
byte counts for outgoing flows. Command 2 shows a similar excerpt for the incoming flows. The byte sizes
are the ones that Madison expected: 76, 96, 152 = 2 × 76, 192 = 2× 96. (While not shown in the excerpt,
all of the other byte sizes are multiples of either 76 or 96.)

What is surprising are the further columns on the last line of the excerpts in Example 6.2. NTP is a protocol
where machines on a network make queries to a few servers for time values, then adjust their clocks based

15Internet Engineering Task Force (IETF) Request for Comments 5905 (https://www.ietf.org/rfc/rfc5905.txt)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 130

https://www.ietf.org/rfc/rfc5905.txt

6.1. EXPLORATORY ANALYSIS: CONCEPTS

on the answers received. Madison therefore expects outgoing traffic to come from only a few addresses but
go to multiple hosts in the local network.

However, the results of her analysis are different from what she expects. For flows with byte size 192 (double
the response value), the number of local hosts and the number of remote hosts are nearly equal, which is
unusual. Additionally, the number of incoming packets is larger than the number of outgoing requests. This
disparity is also unusual. Madison realizes that she needs to further explore this traffic.

<1>$ rwuniq --fields =bytes \
--values =Flows ,packets , distinct :dip , distinct :sip --sort \
NTP -out.raw \

| head -5
bytes| Records | Packets |dIP - Distin |sIP - Distin |

76| 5728| 5728| 2| 17|
96| 362| 362| 6| 75|

152| 563| 1126| 1| 1|
192| 323| 646| 50| 46|

<2>$ rwuniq --fields =bytes \
--values =Flows ,packets , distinct :dip , distinct :sip --sort \
NTP -in.raw \

| head -5
bytes| Records | Packets |dIP - Distin |sIP - Distin |

76| 2083| 2083| 16| 1|
96| 66| 66| 27| 5|

152| 1126| 2252| 1| 1|
192| 615| 1230| 50| 46|

Example 6.2: Using rwuniq to examine NTP Activity

Plot Anomalous Flows

Now that Madison has identified the anomalous flows, it’s time to take a more detailed look at them. Her
investigation of these flows is shown in Example 6.3. She first uses rwfilter to isolate the incoming 192-byte
flows, then calls rwcount to generate a time series of that traffic. The results are somewhat lengthy, since
the rwcount command splits a day of traffic into five-minute bins.

Command 1 uses rwcount options to generate a comma-separated-value file (CSV), which she loads into a
graphing program (in this case, Microsoft Excel). The resulting time series plot is shown in Figure 6.2.

NTP traffic is normally expected to either cluster around the point at which computers are connecting to
the network, or occur periodically thereafter as the computers adjust their clocks. But Figure 6.2 shows
that, while there are regular pulses of traffic (visible more to the right end of the timeline), there are also
irregular collections of traffic earlier in the day. This is not a normal NTP traffic pattern.

<1>$ rwfilter NTP -in.raw --bytes =192 -192 --pass= stdout \
| rwcount --bin -size =300 --delim=',' >NTP -in.csv

Example 6.3: Using rwcount to generate NTP Timelines

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 131

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

0

100

200

300

400

500

600

700

0:00
1:00

2:00
3:00

4:00
5:00

6:00
7:00

8:00
9:00

10:0
0

11:0
0

12:0
0

13:0
0

14:0
0

15:0
0

16:0
0

17:0
0

18:0
0

Packets/5 min Interval

Figure 6.2: Time Series Plot of NTP Traffic

Is the Irregular NTP Traffic Related to Client-side Initialization?

Madison’s next step is to determine if this early irregular traffic is related to initialization of the client side
of the NTP traffic. Example 6.4 shows how she generates summary bags for the hosts involved.

An obvious approach at this point would be to issue another call to rwfilter to pull traffic prior to the start
of the NTP traffic for the destinations involved, then call rwuniq to summarize the traffic. One complication
to this approach is that the start times for the NTP traffic are not aligned. Rather than setting a fixed time
(such as the minimum start time), Madison decides that it’s wiser to analyze client traffic on a one-by-one
basis. This individual approach has two disadvantages: it requires more programming (14 lines of commands,
as opposed to two or three), and it is somewhat slower in execution (for the data being examined, about five
seconds, rather than an immediate result). However, these disadvantages are outweighed by the increased
precision of the results.

Command 1 of Example 6.4 starts this process by identifying the earliest start time for each client (internal
recipient) of the NTP traffic, using a combination of rwfilter and rwuniq. The output of rwuniq is
formatted for easy parsing, then saved to the file source-fields.txt.

Command 2 prepares to analyze traffic for individual clients by creating an empty bag (cur.bag). The bag’s
key is source IP address; its counter is the number of flow records associated with each source IP address.

Command 3 is the loop that reads the start time information for each client (shown by the redirection at
the end and the read call in the while statement’s condition). The body of the loop then uses date as the
NTP start time for the client. It calculates a ten minute time window prior to the start time (using shell
arithmetic and awk to reformat the range elements as SiLK formatted date-time values).

The bag that was initialized in Command 2 (cur.bag) is updated for each source IP address. The loop in
Command 3 calls rwfilter using the time range for each address to find activity prior to the NTP traffic,
using rwbagtool to add the results to the bag. Since cur.bag is initially empty but keyed by the client
IP address, the prior activity is calculated for each client in turn. Although the rwbagtool call adds the
bags, it is really just inserting the new entry in the summary bag, using temp.bag as an intermediate that
is renamed in the mv call to overwrite the summary bag.

After all of the clients are summarized, Command 4 displays the first 10 entries in cur.bag. They represent
a brief sample of the 48 lines of full output.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 132

6.1. EXPLORATORY ANALYSIS: CONCEPTS

• Low values (in the tens) would support Madison’s hypothesis that the host in question is in the process
of initialization, as is possible for 192.168.50.11.

• High values (in the hundreds to thousands) would support her hypothesis that the host in question is
in ongoing use, as is the case for most of the hosts.

<1>$ rwfilter NTP -in.raw --bytes =192 -192 --pass= stdout \
| rwuniq --fields =dip --values =stime - earliest --no - titles \

--delim=' ' --output =source - fields .txt
<2>$ rwbagbuild --bag -input =/ dev/null --key -type=sipv4 \

--counter -type= records --output =cur.bag
<3>$ while IFS ="" read -r line || [[-n "$line"]]; \
do srcArray =($line); \

StEpoch =$(date -d ${ srcArray [1]} +"%s"); \
StTimeE =$(echo $(($StEpoch - 1)) \
| awk '{print strftime ("%Y/%m/%dT%T",$1)} '); \
StTimeS =$(echo $(($StEpoch - 600)) \
| awk '{print strftime ("%Y/%m/%dT%T",$1)} '); \
rwfilter --start =2015/06/16 --sensor =S0 ,S1 ,S2 ,S3 ,S4 \
--type=out , outweb --saddress =${ srcArray [0]} \
--stime=${ StTimeS }-${ StTimeE } --pass= stdout \
| rwbag --bag -file=sipv4 ,flows , stdout \
| rwbagtool --add cur.bag stdin --output =temp.bag; \
mv temp.bag cur.bag; \

done < source - fields .txt
<4>$ rwbagcat cur.bag | head -10

10.0.40.54| 1452|
192.168.40.25| 1777|
192.168.40.50| 183|
192.168.40.51| 123|
192.168.50.11| 63|

192.168.111.109| 211|
192.168.111.131| 319|

192.168.121.57| 325|
192.168.121.77| 291|

192.168.121.145| 248|

Example 6.4: Using rwuniq and Bags to Summarize Prior Traffic on NTP Clients

Possible Explanations for Anomalous NTP Traffic

While it is clear that there is a range of flow counts during the ten-minute time window prior to the start
of NTP traffic, the numbers are large enough for Madison to eliminate the hypothesis that the anomalous
NTP traffic is due to initialization of the clients. The irregular traffic could be due to a variety of causes:

• It could be a covert means of mapping clients: send NTP results to the clients, then see which ones
respond with an ICMP host unreachable message.

• It could be a covert signaling or command interface for malicious software that is running on the clients.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 133

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

• It could reflect a flaw in the NTP implementation on the network. However, the relative maturity of
NTP and its implementations and the halting of the irregular traffic discount this possibility.

• It could be a reflection attack against the target network. However, the overall level of traffic involved
tends to discount that possibility.

Madison can test and evaluate these hypotheses in further rounds of her exploratory analysis!

6.1.4 Observations on Exploratory Analysis

The initial examination of inbound and outbound data in an exploratory analysis is the basis for all that
follows. It is the starting point for an accumulating body of experience that aids the analyst in interpreting
the results.

The odd behavior shown in Example 6.2 reflects a general aspect of exploratory analysis: it is shaped by
the dynamics of network behavior. Since Madison is exploring previously-unexamined behaviors, her process
incorporates consideration of new behaviors and trends. This is done by both noting results that are expected
in a given situation and those that are surprising.

Surprising results (such as those in Example 6.2) often serve as starting points for further rounds of analysis.
Networks are not static: the traffic they carry constantly changes over time. Madison therefore must build
an evolving understanding of their behavior.

Madison’s exploratory analysis uses a variety of SiLK tools. It also employs tabular data, graphical summary,
and calculation of specific values. This diverse set of tools and techniques reflects the open-ended nature
of exploratory analysis. She needs to gain different views into the data to get a good understanding of the
target of the analysis.

The outcome of an exploratory analysis can take several forms. As the analysis proceeds, it produces more
and more background information on the network hosts and their traffic. As this information is captured, it
aids in interpreting both results obtained later in the analysis and the results of other analyses.

Background information is not the only thing that can be reused in an exploratory analysis! Its component
parts can be applied in other analyses as filters or analytics. For example, the date math portion of Ex-
ample 6.4 is also incorporated into the case study discussed in Chapter 7. As the body of such filters and
analytics expands, further exploratory analyses are easier to perform—simply reuse the ones developed for
earlier analyses.

6.2 Exploratory Analysis: Analytics

The SiLK commands described in this chapter involve sophisticated uses of the SiLK tool suite that are
often appropriate for exploratory analyses. However, they can be used with any analysis method.

6.2.1 Using Tuple Files for Complex Filtering

Partitioning criteria for many analyses comprise specific combinations of field values, any one of which can
be considered as passing. While you can make repeated rwfilter calls and merge them later, this approach
is often inefficient as it may involve pulling the same records from the repository several times.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 134

6.2. EXPLORATORY ANALYSIS: ANALYTICS

For example, consider an analysis that is looking for a Simple Network Management Protocol (SNMP) call
generated from viewing a malicious email message. SNMP is associated with UDP port 161, email receipt
with TCP port 25. The naive approach would be a call to rwfilter that simply merges these two ports:

rwfilter --protocol=6,17 --dport=25,161

This call to rwfilter actually uses four permutations of the selection parameters to select records (protocol
6 and dport 25, protocol 6 and dport 161, protocol 17 and dport 25, protocol 17 and dport 161), not just
the two that apply for this example (protocol 6 and dport 25, protocol 17 and dport 161).

As shown in Example 6.5, you could use two calls to rwfilter to pull the desired port-protocol permutations
separately, then combine the data files with the rwappend command. However, this approach involves two
calls to rwfilter that re-read the input flow records. If the analysis includes many cases, the same data
would be read many times. On top of that, if the data set is large, each pull from the repository could take
a significant amount of time.

<1>$ rwfilter --start =2015/06/17 --type=in ,out --protocol =6 \
--dport =25 --pass= result .raw

<2>$ rwfilter --start =2015/06/17 --type=in ,out --protocol =17 \
--dport =161 --pass=part2.raw

<3>$ rwappend result .raw part2.raw
<4>$ rm part2.raw

Example 6.5: Using Multiple Data Pulls to Filter on Multiple Criteria

A more efficient approach is to store partitioning criteria as a tuple file and use that file with rwfilter to
pull the records in a single operation. A tuple file is a text file consisting of the five-tuple fields (sIP, dIP,
sPort, dPort, protocol) delimited by vertical bars (|). rwfilter pulls the flow records that match the
entries in the tuple file from the SiLK repository.

To select the protocol-dport combinations of (6,25) and (17,161), you could create a tuple file that contains
both combinations:

protocol|dport
6|25

17|161

Running rwfilter with the --tuple-file switch set to the name of this tuple file will select only those
flow records with (protocol 6, dport 25) and (protocol 17, dport 161). Only one call to rwfilter would be
needed to pull these records, not two (as in Example 6.5).

Using Tuple Files to filter Web Servers

Example 6.6 shows a tuple file that is used to choose web server addresses on different ports.

• Command 1 shows the tuple file, webservers.tuple. The first line contains headers that identify the
fields associated with the columns, dIP and dPort. The rest of the tuple file lists the destination IP
address and destination port combinations of interest.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 135

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

• This file can then be used with rwfilter as shown in Command 2. The --tuple-file option need
not be the only partitioning option. In Command 2, the --protocol parameter also is specified as a
partitioning criterion.

<1>$ cat <<EOF >webservers .tuple
dIP|dPort

10.0.40.21| 443
10.0.40.23| 8443
10.0.20.59| 80

192.168.20.59| 80
10.0.40.21| 80

192.168.40.24| 443
192.168.40.27| 443
192.168.40.91| 443
192.168.40.92| 443

EOF
<2>$ rwfilter --type=in ,inweb --start -date =2015/06/02 \

--end -date =2015/06/18 --dport =80 ,443 ,8443 \
--protocol =6 --flags -all=SAF/SAF ,SAR/SAR \
--tuple -file= webservers .tuple --sensors =S0 ,S1 \
--pass= stdout \

| rwuniq --fields =dIP ,dPort --value= Records
dIP|dPort| Records |

10.0.20.59| 80| 29720|
10.0.40.21| 443| 355791|
10.0.40.23| 8443| 30934|

192.168.40.91| 443| 6|
192.168.40.27| 443| 9|
192.168.40.92| 443| 3|
192.168.20.59| 80| 10652|

10.0.40.21| 80| 1565|
192.168.40.24| 443| 24|

Example 6.6: Filtering on Multiple Criteria with a Tuple File

In some cases, you can obtain results more quickly by using seemingly redundant command-line options to
duplicate some of the values from the tuple file. For instance, adding --dport=80,443,8443 to the rwfilter
call in Example 6.6 reduces the number of records that need to be examined with the tuple file. No matter
where they appear in the rwfilter call, tuple files are always processed after the parameters that partition
based on individual flow record fields, and before those using plug-ins or Python. However, filtering by
multiple destination ports is not a substitute for the tuple file in Example 6.6, as these criteria are not
sufficiently restrictive to produce the desired results.

6.2.2 Manipulating Bags

Using bags to store key values and counts (as described in Section 4.2.4) can be very helpful to store the
intermediate and final results of a multi-path analysis. SiLK supports several advanced options for working
with bags. In addition to comparing bags with rwbagtool (Section 4.2.4) and extracting sets from bags
(Section 4.2.5), you can use rwbagtool to do the following:

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 136

6.2. EXPLORATORY ANALYSIS: ANALYTICS

• add and subtract bags (analogous to the SiLK set operations)

• multiply bags by scalar numbers

• divide bags

• threshold bags (filter bags on volume)

The result of these operations is a bag with new volumes.

Adding and Subtracting Bags

Suppose you want to find the total number of records associated with the IP addresses that are stored in
two bags. You can add the contents of the two bags together to create a new bag that holds the sum of their
contents.

To add bags together, use the rwbagtool --add parameter. The --output-path parameter specifies where
to deposit the results. Most of the results from rwbagtool are bags themselves. Example 6.7 shows how to
use bag addition to find the total number of flows of inbound web traffic over a two-day period.

1. The rwbagcat calls in commands 1 and 2 display the contents of the two bags to be added, web-20150616.bag
and web-20150617.bag. Each bag contains a day’s worth of inbound web traffic flows.

2. Command 3 adds the two bags with the rwbagtool --add parameter.

3. The results of the addition are stored in web-sum.bag, which is shown in Command 4.

• If an IP address appears in both bags, the rwbagtool --add command sums up the number of
flows in the two bags. For instance, the IP address 10.0.20.59 appears in both bags. The number
of flows for this IP address in web-sum.bag is the sum of the flows in the two bags.

• If an IP address appears in just one bag, the rwbagtool --add command still includes it in the
results. For instance, the IP address 190.168.40.27 only appears in the bag web-20150616.bag
but is included in the results stored in web-sum.bag.

Similarly, you may want to subtract the byte counts in one bag from those stored in another bag to find out
how many are left over after a step in your analysis. Use the rwbagtool --subtract command to subtract
the contents of bags.

Bag subtraction operates in the same fashion as bag addition, but all bags after the first are subtracted from
the first bag specified in the command. Bags cannot contain negative values: any subtraction resulting in a
negative number causes rwbagtool to omit the corresponding key from the resulting bag.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 137

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

<1>$ rwbagcat web -20150616. bag
10.0.20.59| 7977|
10.0.40.21| 135757|
10.0.40.23| 11700|

192.168.20.59| 3980|
192.168.40.24| 17|
192.168.40.27| 9|
192.168.40.91| 3|

<2>$ rwbagcat web -20150617. bag
10.0.20.59| 15248|
10.0.40.21| 221599|
10.0.40.23| 19234|

192.168.20.59| 6672|
192.168.40.24| 7|
192.168.40.91| 3|
192.168.40.92| 3|

<3>$ rwbagtool --add web -20150616. bag web -20150617. bag \
>web -sum.bag

<4>$ rwbagcat web -sum.bag
10.0.20.59| 23225|
10.0.40.21| 357356|
10.0.40.23| 30934|

192.168.20.59| 10652|
192.168.40.24| 24|
192.168.40.27| 9|
192.168.40.91| 6|
192.168.40.92| 3|

Example 6.7: Merging the Contents of Bags Using rwbagtool --add

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 138

6.2. EXPLORATORY ANALYSIS: ANALYTICS

Hint 6.1: Be Aware of Bag Types with rwbagtool

Bags do store information in the file header about which types of keys and counts they
contain. However, the information is not used to restrict bag operations. Consequently,
rwbagtool will add or subtract byte bags and packet bags without warning, producing
meaningless results.

If unequal but compatible types are added or subtracted, a meaningful result type will be
produced. For example, keys of sIPv4 and dIPv4 will produce a result key of type any-IPv4.
When incompatible types are combined, the resulting type will be custom (the most generic
bag type). Use rwfileinfo --fields=bag to view this information, as described in Section
4.2.9.

Multiplying and Dividing Bags

You can multiply the values in a bag by a scalar number and divide the contents of a bag by the contents
of another bag. This is useful for operations such as computing percentages (for instance, to compare traffic
levels during different time periods).

• Use the rwbagtool --scalar-multiply command to multiply all of the counter values in a bag by a
scalar value. Bags can only be multiplied by a scalar value.

• Use the rwbagtool --divide command to divide the counter values in one bag by those of another.

Hint 6.2: Use Caution when Dividing Bags with rwbagtool

Be very careful when dividing bags. The second (denominator) bag must contain
every key found in the first (numerator) bag—do not divide by zero! To ensure
that the elements of the two bags match, use the rwbagtool --intersect command to
remove mismatched elements.

1. Extract the set of IP addresses from the denominator bag by using rwbagtool --coverset
as described in Section 4.2.5.

2. Run rwbagtool --intersect on the numerator bag to remove all elements that are
not found in the denominator bag as described in Section 4.2.5.

3. Use rwbagtool --divide to divide the contents of the numerator bag by those of the
denominator bag.

Example 6.8 shows how to use scalar multiplication and division. The example computes the percentage
change in traffic between the two bags from Example 6.7. It uses rwbagtool --coverset to remove the
IP addresses that do not appear in both bags, then uses the rwbagtool options --scalar-multiply and
--divide to compute the percentage change in traffic between the IP addresses in both bags.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 139

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

<1>$ rwbagtool --coverset 20150616. bag >20150616. set
<2>$ rwbagtool --coverset 20150617. bag >20150617. set
<3>$ rwsettool --intersect 20150616. set 20150617. set \

>common .set
<4>$ rwbagtool --scalar - multiply =100 --intersect = common .set \

20150616. bag >multiply .bag
<5>$ rwbagcat multiply .bag

10.0.20.59| 797700|
10.0.40.21| 13575700|
10.0.40.23| 1170000|

192.168.20.59| 398000|
192.168.40.24| 1700|
192.168.40.91| 300|

<6>$ rwbagcat 20150617. bag
10.0.20.59| 15248|
10.0.40.21| 221599|
10.0.40.23| 19234|

192.168.20.59| 6672|
192.168.40.24| 7|
192.168.40.91| 3|
192.168.40.92| 3|

<7>$ rwbagtool --intersect = common .set 20150617. bag \
>predivide .bag

<8>$ rwbagtool --divide multiply .bag predivide .bag >divide .bag
<9>$ rwbagcat divide .bag

10.0.20.59| 52|
10.0.40.21| 61|
10.0.40.23| 61|

192.168.20.59| 60|
192.168.40.24| 243|
192.168.40.91| 100|

Example 6.8: Using rwbagtool to Generate Percentages

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 140

6.2. EXPLORATORY ANALYSIS: ANALYTICS

Thresholding Bags with Count and Key Parameters

Sometimes, you may want to threshold the contents of a bag to items that are larger than a minimum value
or smaller than a maximum value. This thresholding can be used to limit key values (e.g., eliminating IP
addresses that are lower or higher than the specified address value) as well as count values (e.g., eliminating
IP addresses with packet counts that are lower than the desired volume).

The --minkey, --maxkey, --mincounter, and --maxcounter parameters supported by rwbagcat are also
supported by rwbagtool. In this case, they specify the minimum and maximum key and count values for
output. They can optionally be combined with an operation parameter (e.g., --add, --subtract) or a
masking parameter (i.e., --intersect or --complement-intersect) to perform other operations on a bag.
Example 6.10 shows an example of thresholding by minimum and maximum counts.

6.2.3 Sets Versus Bags: A Scanning Example

Both sets and bags can be employed to search for network scanners. This section provides some examples
of each and contrasts how they are used within an analysis.

Fine-tuning IP Sets to Find Scanners

Using IP sets can focus on alternative representations of traffic and identify network scanning and other
activities. Example 6.9 drills down on IP sets themselves and provides a different view of this traffic.

<1>$ rwfilter --start -date =2015/06/02 --protocol =6 \
--type=in ,inweb --packets =1-3 --pass= stdout \

| rwset --sip -file=low.set
<2>$ rwfilter --start -date =2015/06/02 --protocol =6 \

--type=in ,inweb --packets =4- --pass= stdout \
| rwset --sip -file=high.set
<3>$ rwsettool --difference low.set high.set \

--output -path=final.set
<4>$ rwsetcat low.set --count -ips
36
<5>$ rwsetcat final.set --count -ips
2

Example 6.9: Using rwset to Filter for a Set of Scanners

This example isolates the set of hosts that exclusively scan from a group of flow records using rwfilter to
separate the set of IP addresses that complete legitimate TCP sessions from the set of IP addresses that never
complete sessions. As this example shows, the final.set set file consists of two IP addresses in contrast to
the set of thirty-six that produced low-packet flow records—these addresses are consequently suspicious.16

16While this might be indicative of scanning activity, the task of scan detection is more complex than shown in Example 6.9.
Scanners sometimes complete connections to hosts that respond (to exploit vulnerable machines); non-scanning hosts sometimes
consistently fail to complete connections to a given host (contacting a host that no longer offers a service). A more complete
set of scan detection heuristics is implemented in the rwscan tool, which is discussed in Section 4.2.4.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 141

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Using Bags to Find Scanners

To show how bags differ from sets, let’s revisit the scanning filter presented in Example 6.9. The difficulty
with that code is that if a scanner completed any handshake, it would be excluded from the low.set file.
Many automated scanners would fall under this exclusion if any of their potential victims responded to the
scan. It would be more robust to include as scanners hosts that complete only a small number of their
connections (10 or fewer) and have a reasonable number of flow records covering incomplete connections (10
or more).

By using bags, Example 6.10 is able to incorporate counts, resulting in the detection of more potential
scanners.

1. The calls to rwfilter in commands 1 through 3 are piped to rwbag to create bags for incomplete,
FIN-terminated, and RST-terminated traffic.

2. Commands 4 and 5 use rwbagtool --coverset to generate the cover sets for these bags. These
commands also use thresholding to generate two sets: fast-low.set, which contains only IP addresses
with fewer than 10 low-packet connections (--mincounter=10) and fast-high.set, which contains
only IP addresses with more than 10 incomplete connections (--maxcounter=10).

3. Command 6 uses rwsettool --difference to find the set of IP addresses that are members of
fast-low.set but not members of fast-high.set. The result, scan.set, represents the set of IP
addresses that responded to the scans.

4. Command 7 uses rwsetcat to count the number of IP addresses in each bag.

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \
--type=in ,inweb --bytes =2048 - --pass= stdout \

| rwfilter stdin --duration =1200 - --pass= slowfile .rw \
--fail= fastfile .rw

<2>$ rwfilter fastfile .rw --protocol =6 --flags -all=S/SRF \
--packets =1-3 --pass= stdout \

| rwbag --sip -flows=fast -low.bag
<3>$ rwfilter fastfile .rw --protocol =6 \

--flags -all=SAF/SARF ,SR/SRF --pass= stdout \
| rwbag --sip -flows=fast -high.bag
<4>$ rwbagtool fast -low.bag --mincounter =10 --coverset \

--output -path=fast -low.set
<5>$ rwbagtool fast -high.bag --maxcounter =10 --coverset \

--output -path=fast -high.set
<6>$ rwsettool --difference fast -low.set fast -high.set \

--output -path=scan.set
<7>$ rwsetcat fast -low.set fast -high.set scan.set --count -ips
fast -low.set :40
fast -high.set :104
scan.set :37

Example 6.10: Using rwbagtool to Filter Out a Set of Scanners

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 142

6.2. EXPLORATORY ANALYSIS: ANALYTICS

6.2.4 Manipulating SiLK Flow Record Files

SiLK provides several commands for manipulating binary flow record files. You can combine these files, split
them up into multiple files, and sample them.

Combining Flow Record Files to Provide Context

When you are profiling flow records, you may want to drill down into the data to find specific behaviors.
This is especially useful for analyzing traffic with large volumes (for example, by the duration of transfer and
by protocol). Issuing repeated rwfilter calls subdivides large data sets into smaller ones that are easier to
examine and manipulate. However, sometimes this obscures the “big picture” of what is happening during
an event. Combining flow record files is one way to provide this kind of context.

Use one of the following SiLK commands to merge multiple flow record files:

• rwcat concatenates flow record files in the order in which they are listed. It creates a new flow record
file that contains the merged records.

• rwappend places the contents of the flow record files at the end of the first specified flow record file. It
does not create a new file.

Hint 6.3: SiLK Tools Can Use Multiple Flow Files

As an alternative to combining flow files, many of the SiLK tools accept multiple flow record
files as input to a single call. For example, rwfilter can accept several flow files to filter
during a single call and rwsort can accept several flow files to merge and sort during a single
call. Very often, it is more convenient to use multiple inputs than to combine flow files.

In Example 6.11, rwcat is used to combine previously filtered flow record files to permit the counting of
overall values.

1. The initial call to rwfilter in Command 1 pulls out all records in the period of interest: 2015/6/10
through 2015/6/24. Subsequent calls to rwfilter split these records into three files, depending on the
duration of the flow:

• slow flows of at least 20 minutes duration (i.e., those that match the partitioning criteria of
--duration=1200-)

• medium flows of 1–20 minutes duration (i.e., those that match the partitioning criteria of
--duration=60-1199),

• fast flows of less than 1 minute duration (the remainder of the flows, which had failed both
partitioning criteria and must therefor be less than one minute long)

2. The calls to rwfilter in Commands 2 through 4 split each of the initial divisions based on protocol:
UDP (17), TCP (6), and ICMPv4 (1). They are saved to files whose names correspond to their speed
and protocol (e.g., slow17.rw, med17.rw, fast17.rw).

3. The calls to rwcat in commands 5–7 combine the three splits for each protocol into one overall file per
protocol (e.g., all17.rw).

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 143

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

4. Command 8 is a short script that produces a summary output reflecting the volume of records in each
of the composite files.

<1>$ rwfilter --type=in ,inweb --start -date =2015/6/10 \
--end -date =2015/6/24 --protocol =0- --note -add='example ' \
--pass= stdout \

| rwfilter stdin --duration =1200 - --pass= slowfile .rw \
--fail= stdout \

| rwfilter stdin --duration =60 -1199 --pass= medfile .rw \
--fail= fastfile .rw

<2>$ rwfilter slowfile .rw --protocol =17 --pass= slow17 .rw \
--fail= stdout \

| rwfilter stdin --protocol =6 --pass=slow6.rw --fail= stdout \
| rwfilter stdin --protocol =1 --pass=slow1.rw
<3>$ rwfilter medfile .rw --protocol =17 --pass=med17.rw \

--fail= stdout \
| rwfilter stdin --protocol =6 --pass=med6.rw --fail= stdout \
| rwfilter stdin --protocol =1 --pass=med1.rw
<4>$ rwfilter fastfile .rw --protocol =17 --pass= fast17 .rw \

--fail= stdout \
| rwfilter stdin --protocol =6 --pass=fast6.rw --fail= stdout \
| rwfilter stdin --protocol =1 --pass=fast1.rw
<5>$ rwcat slow17 .rw med17.rw fast17 .rw --output -path=all17.rw
<6>$ rwcat slow1.rw med1.rw fast1.rw --output -path=all1.rw
<7>$ rwcat slow6.rw med6.rw fast6.rw --output -path=all6.rw
<8>$ echo -e "\ nProtocol , all , fast , med , slow "; \
for p in 6 17 1; \

do rm -f ,c.txt ,t.txt ,m.txt
echo " count - records -" >,c.txt
for s in all fast med slow; \

do rwfileinfo sp.rw --fields =count - records \
| tail -n1 >,t.txt
join ,c.txt ,t.txt >,m.txt
mv ,m.txt ,c.txt

done
sed -e "s/^ *count - records - */$p ,/" \

-e "s/\([^ ,]*\) ,* */\1 , /g" ,c.txt
done

Protocol , all , fast , med , slow
6, 6327373 , 6280726 , 46274 , 373,
17, 7304579 , 7258750 , 45029 , 800,
1, 131843 , 124221 , 6271 , 1351 ,

Example 6.11: Combining Flow Record Files with rwcat to Count Overall Volumes

Annotation with rwcat. When using the rwfileinfo command, be aware that rwcat creates a new file
and can record annotation (using --note-add and --note-file-add) in the output file header. However,
it does not preserve this information from its input files. rwappend cannot add annotations and command
history to the output file.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 144

6.2. EXPLORATORY ANALYSIS: ANALYTICS

Help with rwcat and rwappend. For more information about the rwcat command, type man rwcat. For
a list of command options, type rwcat --help.

For more information about the rwappend command, type man rwappend. For a list of command options,
type rwappend --help.

Dividing and Sampling Flow Record Files with rwsplit

Some analyses are facilitated by dividing or sampling flow record files. For example, one approach for
performing coarse parallelization is to divide a large flow record file into pieces and concurrently analyze
each piece separately. For extremely high-volume problems, analyses on a series of robustly taken samples
can produce a reasonable estimate using substantially fewer resources. rwsplit is a tool that facilitates both
of these approaches to analysis.

Each call to rwsplit requires the --basename switch to specify the base file name for output files. In
addition, one of these parameters must be present:

• --ip-limit specifies the IP address count at which to begin a new output file

• --flow-limit specifies the flow count at which to begin a new output file

• --packet-limit specifies the packet count at which to begin a new output file

• --byte-limit specifies the byte count at which to begin a new output file

Coarse parallelization with rwsplit. Example 6.12 shows a coarsely parallelized process that uses
rwsplit to divide flow files for processing in parallel.

1. Command 1 pulls a large number of flow records with the rwfilter command. It then uses the
rwsplit command to divide those records into a series of 400,000-record files with a base name of
part.

2. Command 2 initializes a list of generated filenames. It then uses the rwfilter command to separate
the records in each file based on sets that contain IP addresses of interest (mission.set, threat.set,
casual.set).

3. In Command 3, each of these files is then fed into an rwfileinfo call to count the number of records
that fall into the selection categories (mission, threat, and casual).

For an additional example of how to use rwsplit to improve SiLK performance, see Section 9.6.

Sampling flow files with rwsplit. Example 6.13 shows a sampled-flow process. This example estimates
the percentage of UDP traffic moving across a large infrastructure over a workday.

1. Command 1 invokes rwfilter to perform the initial data pull, retrieving a very large number of
flow records. It then uses the rwsplit command to pull 100 samples of 1,000 flow records each
(--flow-limit=1000 --sample-ratio=100), with a 1% rate of sample generation (that is, of 100
samples of 1,000 records, only one sample is retained).

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 145

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

<1>$ rwfilter --type=inweb , outweb --start -date =2015/6/10 \
--end -date =2015/6/24 --bytes -per - packet =45- \
--pass= stdout \

| rwsplit --flow -limit =400000 --basename =part
keep track of files generated
<2>$ s_list =(skip); \
for f in part *; \
do n=$(basename $f); \
t=${n%.*}; \
rm -f $t{-miss ,-threat ,-casual ,-other }.rw; \
rwfilter $f --anyset = mission .set --pass=$t -miss.rw \

--fail= stdout \
| rwfilter stdin --anyset = threat .set --pass=$t - threat .rw \

--fail= stdout \
| rwfilter stdin --anyset = casual .set --pass=$t - casual .rw; \
s_list =(${ s_list [*]} $t{-miss ,-threat ,- casual }.rw); \
done
<3>$ echo -e "\ nPart -name , mission , threat , casual "; \
prev =" "; \
for f in ${ s_list [*]}; \
do if ["$f" = skip]; \
then continue ; \
fi; \
cur=${f% -*}; \
if ["$prev" != " "]; \
then if ["$cur" != "$prev"]; \
then echo; \
echo -n "$cur , "; \
fi; \
else echo -n "$cur , "; \
fi; \
prev=$cur; \
echo -n $(rwfileinfo --fields =count - records $f | tail -n1 \
| sed -e "s/^ *count - records *//")" , "; \
done; \
echo

Part -name , mission , threat , casual
part .00000000 , 342291 , 2191 , 5741 ,
part .00000001 , 337363 , 2331 , 6036 ,
part .00000002 , 351400 , 1365 , 3403 ,
part .00000003 , 324637 , 1438 , 4880 ,
part .00000004 , 59355 , 9590 , 45748 ,
part .00000005 , 32648 , 9042 , 43983 ,
part .00000006 , 42775 , 13484 , 56446 ,
part .00000007 , 52733 , 11759 , 62119 ,
part .00000008 , 45304 , 13089 , 60488 ,
part .00000009 , 61153 , 3854 , 19262 ,

Example 6.12: rwsplit for Coarse Parallel Execution

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 146

6.2. EXPLORATORY ANALYSIS: ANALYTICS

2. Commands 2 through 4 create a file to store the summary results (udpsample.txt), then use the
rwstats command to summarize each sample and isolate the percentage of UDP traffic (protocol
17) in the sample. The results in udpsample.txt are then sorted using the operating system sort
command.

3. Commands 5 through 7 profile the resulting percentages to report the minimum, maximum, and median
percentages of UDP traffic.

<1>$ rwfilter --type=in ,inweb --start -date =2015/6/10 \
--end -date =2015/6/24 --proto =0 -255 --pass= stdout \

| rwsplit --flow -limit =1000 --sample -ratio =100 \
--basename = sample --max - outputs =100

<2>$ echo -n >udpsample .txt
<3>$ for f in sample *rwf; \
do rwstats $f --values = records --fields = protocol --count =30 \

--top \
| grep "17|" | cut -f3 "-d|" >>udpsample .txt
done
<4>$ sort -nr udpsample .txt >tmp.txt
<5>$ echo -n "Max UDP %: "; \

head -n 1 tmp.txt
Max UDP %: 83.700000
<6>$ echo -n "Min UDP %: " ; \

tail -n 1 tmp.txt
Min UDP %: 1.700000
<7>$ echo -n " Median UDP %: "; \
head -n 50 tmp.txt \
| tail -n 1
Median UDP %: 68.800000

Example 6.13: rwsplit to Generate Statistics on Flow Record Files

Help with rwsplit. For more information about the rwsplit command, type man rwsplit. For a list of
command options, type rwsplit --help.

6.2.5 Generate Flow Records From Text

The rwtuc (Text Utility Converter) tool creates SiLK flow record files from columnar text. rwtuc is effectively
the inverse of rwcut, with additional parameters to supply values not given by the columnar input.

rwtuc is useful when you need to work with tools or scripting languages that manipulate text output. For
example, some scripting languages (Perl in particular) have string-processing functions that may be useful
during an analysis. However, for later processing, you may need to use a binary file format for compactness
and speed. In this situation, you could use rwcut to convert the binary flow record files to text, process the
resulting file with a scripting language, and then use rwtuc to convert the text output back to the binary
flow record format.

If scripting can be done in the Python programming language, the programming interface contained in the
silk module allows direct manipulation of the binary flow records without converting them to text (and

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 147

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

back again). This binary manipulation is more efficient than text-based scripting.17 See Chapter 8 for more
information on using Python with SiLK.

On the other hand, rwtuc gives you complete control of the binary representation’s content. This is very
useful if you need to cleanse a flow record file before exchanging data18 (for instance, to anonymize IP
addresses).

To ensure that unreleasable content is not present in the binary form, an analyst can convert binary flow
records to text, perform any required edits on the text file, and then generate a binary representation from
the edited text.

Using rwtuc to Anonymize Flow Records

Example 6.14 shows a sample use of rwtuc for anonymizing flow records. After rwtuc is invoked in Command
3, both the file-header information and non-preserved fields have generic or null values.

<1>$ rwfilter --sensor =S0 --type=in --start -date =2015/06/02 \
--end -date =2015/06/18 --protocol =17 \
--bytes -per - packet =100 - --pass= bigflows .rw

<2>$ rwcut bigflows .rw --fields =1-5, stime --num -recs =20 \
| sed -re 's /([0 -9]+\.){3}/192.168.200./g' \

>anonymized .rw.txt
<3>$ rwtuc anonymized .rw.txt --output -path= anonymized .rw
<4>$ rwfileinfo anonymized .rw
anonymized .rw:

format (id) FT_RWIPV6ROUTING (0 x0c)
version 16
byte -order littleEndian
compression (id) lzo1x (2)
header - length 88
record - length 88
record - version 1
silk - version 3.16.0
count - records 20
file -size 512
command -lines

1 rwtuc --output -path= anonymized .rw anonymized .rw.txt
<5>$ rwcut anonymized .rw --fields =sIP ,dIP ,sTime , sensor \

--num -recs =4
sIP| dIP| sTime|sen|

192.168.200.205| 192.168.200.20|2015/06/16 T12 :50:02.144| S0|
192.168.200.5| 192.168.200.20|2015/06/16 T12 :50:03.139| S0|

192.168.200.218| 192.168.200.20|2015/06/16 T12 :50:05.189| S0|
192.168.200.160| 192.168.200.20|2015/06/16 T12 :50:09.997| S0|

Example 6.14: Simple File Anonymization with rwtuc

17In several published examples, analysts encoded non-flow information as binary flow records using rwtuc or PySiLK so that
SiLK commands could be used for the fast filtering and processing of that information.

18Ensuring that data content can be shared is quite complex, and involves many organization-specific requirements. rwtuc
helps with mechanics, but often more transformations are required. The rwsettool command contains parameters ending in
-strip that also help to cleanse IP sets.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 148

6.2. EXPLORATORY ANALYSIS: ANALYTICS

Relationship between rwtuc and rwcut

rwtuc expects input in the default format for rwcut output. The record fields should be identified either in
a heading line or in a --fields parameter of the call. rwtuc has a --column-separator parameter, with
an argument that specifies the character-separating columns in the input. For debugging purposes, input
lines that rwtuc cannot parse can be written to a file or pipe which the --bad-input-lines option names.

For fields not specified in the input, an analyst can either let them default to zero (as shown in Example 6.14,
especially for sensor) or use parameters of the form --FixedValueParameter =FixedValue to set a single fixed
value for that field in all records, instead of using zero. Numeric field IDs are supported as arguments to the
--fields parameter, not as headings in the input file.

Help with rwtuc

For more information about the rwtuc command, type man rwtuc.

For a list of command options, type rwtuc --help.

6.2.6 Using Aggregate Bags

Aggregate bags (aggbags for short) are the most complex in a progression of SiLK-related data structures.
They are an extension of SiLK bags. Like bags, aggregate bags store key-value pairs. However, bags only
store simple key-value pairs, each of which represents a single field or count. Aggregate bags store composite
key-value pairs: both the key and value can be composed of one or more fields.

For example, the key in an aggregate bag could be a composite of IP address and protocol. The value
could be counts of records and bytes for each IP/Protocol combination found in the provided flow records.
An aggregate bag stores these combinations of field and count values in a single binary file, as opposed to
multiple bag files. Use aggregate bags to summarize and store the results of complex operations in a single
file.

Creating Aggregate Bags from Flow Records

To create an aggregate bag that stores the results of a SiLK operation, use the rwaggbag command. It
creates aggregate bags directly from flow records.

You need to specify the flow record fields that contain the keys and values that are stored in the aggregate
bag. For each flow record that rwaggbag reads, it extracts the values of the key fields (identified by the
--keys switch), and combines those fields into a key. It searches for an existing bin that contains the specified
key (creating a new bin for that key if none is found), then adds the values for each of the fields listed in the
--counters switch to the bin’s counter. The combined key-value counts are stored in the aggregate bag.

Example 6.15 shows how to use an aggregate bag to count the records associated with source IP addresses
that have different protocol and destination port combinations. An ordinary bag can only store one key and
one count, limiting it to counting the flow records associated with an IP address, a port, or a protocol. An
aggregate bag can count the flow records associated with combinations of these three keys.

1. The rwfilter call in Command 1 pulls records with destination ports 1 through 1023.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 149

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

2. It passes the output to the rwaggbag command, which counts the number of flow records associated with
the combination of source IP address, destination port, and protocol (--key=sipv4,dport,protocol
--counter=records).

The new aggregate bag is saved in the file sim-dport-proto-aggbag.

Hint 6.4: Sorting and counting aggregate bag keys

The contents of an aggregate bag are sorted and counted in the same order as its keys. For
example, the contents of the aggregate bag in Example 6.15 are sorted and counted first by
source IP address, then by destination port, and then by protocol.

<1>$ rwfilter --start -date =2015/06/17 --type=out --dport =0 -1023 \
--pass= stdout \

| rwaggbag --key=sipv4 ,dport , protocol --counter = records \
--output -path=sip -dport -proto. aggbag

<2>$ ls -l sip -dport -proto. aggbag
-rw -r--r--. 1 analyst analyst 6766 Mar 18 14:30 sip -dport -proto. aggbag
<3>$ rwaggbagcat sip -dport -proto. aggbag \
| head -n 5

sIPv4|dPort|pro| records |
10.0.10.254| 0| 89| 48|

10.0.20.58| 53| 17| 1131799|
10.0.20.58| 771| 1| 848|
10.0.20.58| 778| 1| 2|

<4>$ rwfilter --start -date =2015/06/17 --type=out --dport =0 -1023 \
--pass= stdout \

| rwuniq --fields =sip ,dport , protocol --sort - output \
| head -n 5

sIP|dPort|pro| Records |
10.0.10.254| 0| 89| 48|

10.0.20.58| 53| 17| 1131799|
10.0.20.58| 771| 1| 848|
10.0.20.58| 778| 1| 2|

Example 6.15: Summarizing Source IP, Destination Port, and Protocol with rwaggbag

Help with rwaggbag. For more information about the rwaggbag command, type man rwaggbag. For a
list of command options, type rwaggbag --help.

Viewing Aggregate Bags

Command 3 in Example 6.15 shows how to use the rwaggbagcat command to view the contents of a binary
aggregate bag as text. The command displays the values of the three keys (sIPv4, dPort, pro) along with
the count of records associated with each combination of the three keys.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 150

6.2. EXPLORATORY ANALYSIS: ANALYTICS

Help with rwaggbagcat. For more information about the rwaggbagcat command, type man rwaggbagcat.
For a list of command options, type rwaggbagcat --help.

Comparing rwaggbag with rwuniq

The SiLK command that most closely matches the capability of rwaggbag is rwuniq. Command 4 in
Example 6.15 compares the output of the rwuniq command with that of the rwaggbag command. The
output from rwuniq is the same as the contents of the aggregate bag. The biggest difference is that rwaggbag
outputs its multi-key counts in binary format; rwuniq outputs them as text.

Creating Aggregate Bags from Text

Sometimes, you may not want to use network flow data to create an aggregate bag. For instance, suppose
you wish to study incoming ICMP usage on the network. Specifically, you’d like to find out what ICMP
types and codes are in use. Are any hosts sending high volumes of ICMP packets?

To facilitate this analysis, you could create a file with the host’s source IP, the ICMP type and code, and
the count for that triple. An aggregate bag is the best choice, since bags only store pairs of one key and one
count and you want to store three keys and a count. However, the man page for the rwaggbag command
does not show ICMP type and code on the list of key fields.

Instead, use the rwaggbagbuild command to store these values and counts. It accepts SiLK key fields as
text and produces an aggregate bag file with the desired count of the triple. This gives you more flexibility
in creating aggregate bags than the rwaggbag command does.

Example 6.16 shows how to create an aggregate bag file that counts and stores the values of this triple.

1. Command 1 creates a text file with the desired fields. The rwfilter call pulls network flow data from
the desired date range. It pipes the data to the rwcut command to output the desired fields as text. We
want to include the following values: source IP, ICMP type, and ICMP code (--fields=sip,itype,icode).
The rwaggbagbuild command does not accept a header line with the field names in the file, so we will
also use the --no-titles option.

2. The rwaggbagbuild call in Command 2 takes the text output from rwcut and converts it to an
aggregate bag. The three keys are specified by --fields=sIPv4,icmpType,icmpCode.

3. The rwaggbagcat command in Command 3 displays the values of the three keys and the number of
flow records counted for each combination.

The IP addresses 10.0.40.20, 4.0.0.34, and 10.0.1.201 are sending high numbers of ICMP messages compared
to the other hosts, and should be investigated.

Help with rwaggbagbuild. For more information about the rwaggbagbuild command, type man rwaggbagbuild.
For a list of command options, type rwaggbagbuild --help.

Thresholding Aggregate Values

The aggregate bag of ICMP type and code counts from Example 6.16 is rather long. We are interested in
examining hosts that have produced the most ICMP traffic.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 151

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

<1>$ rwfilter --start -date =2015/06/17 --type=in --protocol =1 \
--pass= stdout \

| rwcut --fields =sip ,itype ,icode --no - titles \
--ipv6 - policy = ignore >icmp -no - titles .txt

<2>$ rwaggbagbuild --fields =sIPv4 ,icmpType , icmpCode \
--constant -field= record =1 --output -path=icmp. aggbag \
icmp -no - titles .txt

<3>$ rwaggbagcat icmp. aggbag | head
sIPv4|icm|icm| records |

4.0.0.34| 3| 1| 1459|
10.0.1.101| 0| 0| 359|
10.0.1.201| 0| 0| 1002|

10.0.10.1| 0| 0| 263|
10.0.10.1| 11| 0| 1|

10.0.20.58| 3| 10| 19|
10.0.30.1| 11| 0| 1|

10.0.40.20| 0| 0| 9440|
10.0.40.27| 3| 10| 6|

Example 6.16: Summarizing Source IP, ICMP Type, and ICMP Code with rwaggbagbuild

The rwaggbagtool command lets you manipulate aggregate bags, similar to how the rwbagtool command
manipulates bags. Use the thresholding feature of rwaggbagtool to threshold aggregate bag entries by
count.

--min-field=FIELD =VALUE selects entries where the specified field is above a minimum value.

--max-field=FIELD =VALUE selects entries where the specified field is below a maximum value.

In this case, we will specify that the value of the records field be greater than or equal to 1000—as shown in
Example 6.17.

1. The call to rwaggbagtool sets a threshold of 1000 records (--min-field=records=1000) and creates
a new aggregate bag, top-icmp.aggbag.

2. The call to rwaggbagcat displays the thresholded aggregate bag.

Help with rwaggbagtool. For more information about the rwaggbagtool command, type man rwaggbagtool
or enter the command rwaggbagtool --help.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 152

6.2. EXPLORATORY ANALYSIS: ANALYTICS

<4>$ rwaggbagtool --min -field= records =1000 \
--output -path=top -icmp. aggbag icmp. aggbag

<5>$ rwaggbagcat top -icmp. aggbag | head
sIPv4|icm|icm| records |

4.0.0.34| 3| 1| 1459|
10.0.1.201| 0| 0| 1002|
10.0.40.20| 0| 0| 9440|
10.0.40.27| 8| 0| 2214|

192.168.40.20| 0| 0| 1486|
192.168.40.27| 8| 0| 17354|
192.168.70.10| 3| 3| 2797|

192.168.110.254| 3| 1| 2856|
192.168.120.254| 3| 1| 2290|

Example 6.17: Thresholding an aggregate bag with rwaggbagtool

Exporting Aggregate Bags to Bags and IPsets

You can also use the rwaggbagtool to export bags and IPsets from aggregate bags. The previous example
created an aggregate bag that contains the source IP, ICMP type, and ICMP code triples with the highest
record counts. Exporting it allows you to create a bag that holds only one key-value pair—for instance, if
you only want to look at high ICMP traffic by source IP and not the other two keys.

Example 6.18 shows how to use the rwaggbagtool command to export a bag from an aggregate bag.

1. The call to rwaggbagtool selects the key and count to be exported—in this case, source IP and record
count (--to-bag=sIPv4,records) It saves the exported key-value pairs to a bag file, top-icmp.bag.

2. The call to rwbagcat displays this file as text.

<6>$ rwaggbagtool --to -bag=sIPv4 , records \
--output -path=top -icmp.bag top -icmp. aggbag

<7>$ rwbagcat top -icmp.bag | head
4.0.0.34| 1459|

10.0.1.201| 1002|
10.0.40.20| 9440|
10.0.40.27| 2214|

192.168.40.20| 1486|
192.168.40.27| 17354|
192.168.70.10| 2797|

192.168.110.254| 2856|
192.168.120.254| 2290|
192.168.130.254| 2032|

Example 6.18: Extracting a bag from an aggregate bag with rwaggbagtool

Similarly, Example 6.19 shows how to use the rwaggbagtool command to export an IPset from an aggregate
bag. Creating an IPset of hosts that send the highest amount of ICMP messages can be useful for further
analysis of their behavior.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 153

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

1. The call to rwaggbagtool selects the IP addresses to be exported (--to-ipset=sIPv4) to a new IPset
file, top-icmp.set.

2. The rwsetcat command displays the contents of this set as text.

<8>$ rwaggbagtool --to -ipset=sIPv4 --output -path=top -icmp.set \
top -icmp. aggbag

<9>$ rwsetcat top -icmp.set | head
4.0.0.34
10.0.1.201
10.0.40.20
10.0.40.27
192.168.40.20
192.168.40.27
192.168.70.10
192.168.110.254
192.168.120.254
192.168.130.254

Example 6.19: Extracting an IPset from an aggregate bag with rwaggbagtool

6.2.7 Labeling Data with Prefix Maps

Some analyses are easier to conceptualize and perform when you assign a text label to data of interest. You
can identify this data and think of it in context by the label you’ve given it, not just as an abstract group
of flow records. You can then filter and perform other operations on the data according to how it is labeled.

SiLK allows you to create a prefix map (often abbreviated as pmap) to assign user-defined text labels to
ranges of IP addresses or protocols and ports. You can use the resulting pmap file to retrieve, partition,
sort, count, and perform other operations on network flow records by their labels. This enables you to work
with data semantically.

What Are Prefix Maps?

A prefix map file is a binary file that maps a value (either an IP address or a protocol-port pair) to a text
label. SiLK supports two general types of prefix maps.

• User-defined prefix maps assign arbitrary text labels to IP addresses or protocol-port combinations.

• Predefined prefix maps are specialized prefix maps that are typically included with the SiLK dis-
tribution and facilitate analysis by country code or traffic direction.

Both types of pmap can be used interchangeably with the rwfilter, rwcut, rwsort, rwuniq, rwstats,
rwgroup, and rwpmaplookup commands to perform operations on SiLK network data according to how it is
labeled.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 154

6.2. EXPLORATORY ANALYSIS: ANALYTICS

Comparing Prefix Maps to Sets, Bags, and Aggregate Bags. Like SiLK IP sets, bags, and aggregate
bags, prefix maps allow you to create user-defined groups of IP addresses to facilitate further analysis.
However, prefix maps are more generalized groupings than sets, bags, and aggregate bags. A set creates
a binary association between an IP address and a condition (an address is either in the set or not in the
set), a bag between an IP address and a single numeric value, and an aggregate bag between an IP address
and a composite (or aggregate) value. However, a prefix map assigns arbitrary, user-defined text labels to
many different address ranges. Prefix maps also expand the type of groupings to include assigning labels to
protocol-port ranges. It is an entirely different way to identify and group data.

It is often easier to examine IP addresses by label rather than by whether they belong to a bag or set. For
example, suppose you want to look at traffic from IP addresses that are linked to different types of malware.
You could create multiple IP sets or bags that contain the addresses associated with each type of malware
and compute traffic statistics individually for each set or bag. However, this would be cumbersome and
time-consuming to script.

Alternatively, you could create a single, user-defined pmap file that labels the addresses by the type of
malware that is associated with each address. You could then use the pmap file to filter network flow data
and compute traffic statistics according to the type of malware, all in a single analytic. This is a more
intuitive and easier way to perform that type of analysis.

Creating a User-defined Prefix Map From a Text File

To create a binary prefix map from a text file, use the rwpmapbuild tool. Creating a user-defined pmap is
a two-step process:

1. Create a text file that contains the mapping of IP addresses or protocol-port pairs to their labels.

2. Use the rwpmapbuild command to translate this text-based file into a binary pmap file.

Creating the Text File. Each mapping line in the text file contains either an IP address or protocol-port
pair range with a corresponding label. They are separated by whitespace (spaces and tabs). Include the
following information when creating a text file for use with the rwpmapbuild command:

• The input file may specify a name for the pmap via the line map-name mapname where mapname is the
name of the pmap. Pmap names cannot contain whitespaces, commas, or colons.

• mode specifies the type of pmap.

– ipv4 creates a pmap containing IPv4 addresses
– ipv6 creates a pmap containing IPv6 addresses
– proto-port creates a pmap containing protocol-port pairs

• If you are creating an IP address pmap, specify an address range with either a CIDR block or a
whitespace-separated low IP address and high IP address (formatted in canonical form or as integers).
Specify a single host as a CIDR block with a prefix length of 32 for IPv4 or 128 for IPv6.

• If you are creating a protocol-port pmap, specify a range that is either a single protocol or a protocol
and a port separated by a slash character (/). If the range is a single port, specify that port number
as the starting and ending value of the range. For example, 17/17 specifies general UDP traffic; 17/53

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 155

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

17/53 specifies DNS traffic (UDP on port 53), and 17/67 17/68 specifies DHCP client and server
traffic (UDP on ports 67 and 68). A detailed example of a protocol-port pmap is shown in Section
7.3.1.

• Do not use commas, which invalidate the pmap for use with rwfilter.

• Comment lines begin with the pound or hashtag character (#). Do not use this character in text labels.

• The input file may also contain a default label to be used when there is no matching range in the text
file. This default is specified by the line default deflabel, where deflabel is the text label specified by
the analyst for otherwise-unlabeled address ranges.

For more information about the rwpmapbuild command, type man rwpmapbuild or enter the command
rwpmapbuild --help.

Building the Prefix Map File. Example 6.20 shows an example of how to create an IPv4 prefix map
of FCC network labels from the FCCX dataset described in Section 1.8. The FCC network description is
contained in the file fccnets.pmap.txt. It associates network address ranges with text labels that identify
their subnetwork locations (Div0Ext, Div1Ext, etc.).

In addition to the address list, the text file specifies the prefix map name (map-name fccnets). This name
is used in SiLK commands to identify which prefix map is being used. Using the map name as the name of
the text file and resulting pmap file helps you to keep track of and organize your user-defined prefix maps.
Note also that the text file includes a default label (default None) that is assigned to IP addresses that are
not listed in the FCC network description.

The rwpmapbuild command takes fccnets.pmap.txt as input to create a binary pmap file, fccnets.pmap.

<1>$ cat <<-EOF >fccnets .pmap.txt
map -name fccnets
default None

FCC network descriptions
10.0.10.0/24 Div0Ext
10.0.20.0/24 Div0Ext
10.0.30.0/24 Div0Ext
10.0.40.0/24 Div0Ext
10.0.50.0/24 Div0Ext
192.168.10.0/24 Div1Ext
192.168.20.0/24 Div1Ext
192.168.30.0/24 Div1Ext
192.168.40.0/24 Div1Ext
192.168.50.0/24 Div1Ext
192.168.60.0/24 Div1Ext
192.168.70.0/24 Div1Ext
192.168.110.0/23 Div1Ext
192.168.120.0/23 Div1Ext
192.168.122.0/23 Div1Ext
192.168.124.0/24 Div1Ext
192.168.130.0/23 Div1Ext
192.168.140.0/23 Div1Ext
192.168.142.0/23 Div1Ext
192.168.150.0/23 Div1Ext

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 156

6.2. EXPLORATORY ANALYSIS: ANALYTICS

192.168.160.0/23 Div1Ext
192.168.162.0/23 Div1Ext
192.168.164.0/23 Div1Ext
192.168.166.0/24 Div1Ext
192.168.170.0/24 Div1Ext
10.0.40.0/24 Div0Int
10.0.50.0/24 Div0Int
192.168.20.0/24 Div1Int1
192.168.40.0/24 Div1Int1
192.168.50.0/24 Div1Int1
192.168.60.0/24 Div1Int1
192.168.70.0/24 Div1Int1
192.168.110.0/23 Div1Int1
192.168.120.0/23 Div1Int1
192.168.122.0/23 Div1Int1
192.168.124.0/24 Div1Int1
192.168.130.0/23 Div1Int1
192.168.140.0/23 Div1Int1
192.168.142.0/23 Div1Int1
192.168.150.0/23 Div1Int1
192.168.160.0/23 Div1Int1
192.168.162.0/23 Div1Int1
192.168.164.0/23 Div1Int1
192.168.166.0/24 Div1Int1
192.168.170.0/24 Div1Int1
192.168.60.0/24 Div1Int2
192.168.110.0/23 Div1Int2
192.168.120.0/23 Div1Int2
192.168.122.0/23 Div1Int2
192.168.124.0/24 Div1Int2
192.168.130.0/23 Div1Int2
192.168.140.0/23 Div1Int2
192.168.142.0/23 Div1Int2
192.168.150.0/23 Div1Int2
192.168.160.0/23 Div1Int2
192.168.162.0/23 Div1Int2
192.168.164.0/23 Div1Int2
192.168.166.0/24 Div1Int2
192.168.170.0/24 Div1Int2
192.168.121.0/24 Div1log1
192.168.122.0/24 Div1log2
192.168.123.0/24 Div1log3
192.168.124.0/24 Div1log4
192.168.141.0/24 Div1ops1
192.168.142.0/24 Div1Ext0
192.168.143.0/24 Div1Ext1
192.168.40.0/24 Div1Ext2
192.168.111.0/24 Div1Ext3
192.168.20.0/24 Div1Ext4
192.168.164.0/24 Div1Ext5
192.168.166.0/24 Div1Ext6
192.168.165.0/24 Div1Ext7
192.168.50.0/24 Div1Ext8
192.168.161.0/24 Div1Ext9

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 157

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

192.168.162.0/24 Div0Int0
192.168.163.0/24 Div0Int1
EOF
<2>$ rwpmapbuild --input -file= fccnets .pmap.txt \

--output -file= fccnets .pmap
<3>$ file fccnets .pmap.txt fccnets .pmap
fccnets .pmap.txt: ASCII text
fccnets .pmap: SiLK , PREFIXMAP v2 , Little Endian , Uncompressed

Example 6.20: Using rwpmapbuild to Create a FCC Pmap File

Help with rwpmapbuild. For a list of command options, type rwpmapbuild --help at the command line.
For more information about the rwpmapbuild command, type man rwpmapbuild.

Predefined Prefix Maps: Country Codes and Address Types

SiLK has two predefined prefix maps to facilitate common analyses: filtering by country codes and by address
types (internal, external, non-routable). They can be used as input to SiLK commands just like user-defined
pmaps.

Filtering by Country Code. Country codes identify the nations where IP addresses are registered and
are used by the Root Zone Database (e.g., see https://www.iana.org/domains/root/db). They are described
in a country_codes.pmap file in the share directory underneath the directory where SiLK was installed or
in the file specified by the SILK_COUNTRY_CODES environment variable.

If the current SiLK installation does not have this file, either contact the administrator that installed SiLK
or look up this information on the Internet.19 Country code maps are not in the normal pmap binary format
and cannot be built using rwpmapbuild.

Filtering Internal, External, and Non-routable Addresses. For common separation of addresses
into specific types, normally internal versus external, a special pmap file may be built in the share directory
underneath the directory where SiLK was installed. This file, address_types.pmap, contains a list of CIDR
blocks that are labeled internal, external, or non-routable.

The rwfilter parameters --stype or --dtype use this pmap to isolate internal and external IP addresses.
The rwcut parameter --fields specifies the display of this information when its argument list includes
sType or dType. A value of 0 indicates non-routable, 1 is internal, and 2 is external. The default value
is external.

Using Prefix Maps to Filter Flow Records with rwfilter

You can use prefix maps to filter network flow records with the rwfilter command. This allows you to pull
and partition SiLK repository data based on how it is labeled.

The pmap provides context for filtering network traffic and allows you to perform complex filtering operations
in a single analytic. For example, you could create a user-defined pmap that labels IP addresses in network

19One such source is the GeoIP® Country database or free GeoLite™ database created by MaxMind® and available at
https://www.maxmind.com/; the SiLK tool rwgeoip2ccmap converts this file to a country-code pmap.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 158

https://www.iana.org/domains/root/db
https://www.maxmind.com/

6.2. EXPLORATORY ANALYSIS: ANALYTICS

spaces of interest (such as the one created in Example 6.20) and filter records based on their subnetworks.
You could use the predefined country code pmap (country_codes.pmap) to filter source or destination IP
addresses based on their country of origin. You could create a user-defined port-protocol pmap to filter
records for specific port and protocol combinations in order to search for unusual protocols. These types of
analysis are easier to perform with data that is labeled via prefix map.

rwfilter supports four pmap parameters.

• --pmap-file specifies which compiled prefix map file to use and optionally associates a mapname with
that pmap. This switch must be specified before the other prefix map switches.

• --pmap-any-mapname specifies the the set of labels used to filter records based on both source and
destination IP addresses. Any source or destination IP addresses that matches an IP address with the
specified label passes the filter.

• --pmap-src-mapname and --pmap-dst-mapname specify the set of labels for filtering by source or
destination IP address, respectively. mapname is the name given to the pmap during construction or
in --pmap-file. The --pmap-file parameter must come before any use of the mapname in other
parameters.

Example 6.21 shows how to use the fccnets.pmap file from Example 6.20 to select flow records associated
with web traffic from hosts on the subnetwork Div1Int1 in the FCC network.

1. The initial call to rwfilter pulls all flow records from the date of interest (--start-date=2015/06/17)
that contain inbound and outbound web traffic (--type=inweb,outweb).

2. The output goes to a second rwfilter command that uses the --pmap-file parameter to load the
file fccnets.pmap and create the mapname fccnets. The --pmap-any-fccnets=Div1Int1 parameter
filters for all flow records whose source IP address or destination IP address matches any of the
IP addresses with the label Div1Int1 in the pmap file. These source and destination IP addresses
represent traffic that flows into, within, and out of the hosts on the Div1Int1 subnet. (Note that the
--pmap-file parameter comes before the --pmap-any parameter.)

3. Records that pass the pmap-based filter are saved in fccnets.rw.

<1>$ rwfilter --start -date =2015/06/17 --type=inweb , outweb \
--protocol =6 --pass= stdout \

| rwfilter stdin --pmap -file= fccnets : fccnets .pmap \
--pmap -any - fccnets = Div1Int1 --pass= fccnets .rw

<2>$ rwfileinfo fccnets .rw --fields =count - records
fccnets .rw:

count - records 722193

Example 6.21: Using Pmap Parameters with rwfilter

Displaying Prefix Labels with rwcut

To view the actual value of a prefix map label, use the rwcut command with the --pmap-file parameter. It
takes an argument of a filename or a map name coupled to a filename with a colon. The map name typically
comes from the argument for --pmap-file; if none is specified there, the name in the source file applies.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 159

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

The --pmap-file parameter adds src-mapname and dst-mapname as arguments to --fields. Essentially,
it tells rwcut to treat the pmap value as just another flow record field. The --pmap-file parameter
must precede the --fields parameter. The two pmap fields display labels associated with the source and
destination IP addresses.

Example 6.22 shows how to display the prefix labels for IP addresses in the flow record file fccnets.rw
(created in Example 6.21). The names of the pmap and its file (--pmap-file=fccnets:fccnets.pmap) are
specified.

<1>$ rwcut fccnets .rw --pmap -file= fccnets : fccnets .pmap \
--fields =src -fccnets ,sPort ,dIP ,dPort --num -recs =5

src - fccnets |sPort| dIP|dPort|
Div1Int1 |50373| 10.0.20.59| 80|
Div1Int1 |63440| 10.0.20.59| 80|
Div1Int1 |57862| 10.0.20.59| 80|
Div1Int1 |62669| 10.0.20.59| 80|
Div1Int1 |54211| 10.0.20.59| 80|

Example 6.22: Viewing Prefix Map Labels with rwcut

Sorting, Counting, and Grouping Records with Prefix Maps

You can also count, sort, and group flow records by prefix label. This lets you work with network data
according to how it is labeled in the prefix map, which can be easier and more intuitive than some of the
other methods for summarizing data. The rwsort, rwgroup, rwstats, and rwuniq tools all work with prefix
maps. The prefix map parameters are the same as those used in the rwcut command (see Section 6.2.7) and
are used to and sort, group, and count records according to the labels in the prefix map file.

Sorting records by prefix label with rwsort. Example 6.23 sorts flow records by the prefix value
defined in fccnets.pmap for source IP addresses and bytes (--fields=src-fccnets,bytes). It then uses
the rwcut command to display the pmap labels and port numbers. The first five records in the data file are
displayed.

Notice that the results in Example 6.23 list None as their label. This is the default label from Example 6.20
that was assigned to IP addresses that are not included in the pmap. It indicates that these source IP
addresses do not belong to the FCC network space. However, they exchanged traffic with hosts that are
labeled as belonging to Div1Int1 on the FCC network. Because the rwfilter command in Example 6.21
filtered for all records that contained IP addresses labeled as Div1Int1 in the pmap, it included records
where either the source or destination IP address was not part of this subnetwork.

Counting records by prefix label with rwuniq. Example 6.24 shows how to count the number of
records in the file fccnets.rw with labels defined in fccnets.pmap. Records without a label are listed as
None. It also displays the destination port and the number of distinct destination IP addresses.

Again, the rwuniq command counts records with source or destination IP addresses that are not part of the
Div1Int1 subnet. Because these hosts communicated with hosts on the Div1Int1 subnet, they are included
in the count. The records in this case all are filtered to be TCP traffic, which makes the port numbers
meaningful. TCP and UDP are the main protocols that use ports, and so are the most common ones for

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 160

6.2. EXPLORATORY ANALYSIS: ANALYTICS

<1>$ rwsort fccnets .rw --pmap -file= fccnets : fccnets .pmap \
--fields =src -fccnets ,bytes \

| rwcut --pmap -file= fccnets .pmap --fields =src -fccnets ,sport \
--num -recs =5

src - fccnets |sPort|
None |55862|
None |55862|
None |54392|
None |54393|
None |54394|

Example 6.23: Sorting by Prefix Map Labels

port-protocol pmaps. SiLK does encode ICMP type and Code into the destination port (sometimes the
source port), so ICMP port-protocol pmaps are also used by some analysts.

<1>$ rwuniq fccnets .rw --pmap -file= fccnets : fccnets .pmap \
--fields =src -fccnets ,dPort --values =flows ,dIP - Distinct \

| head -n 5
src - fccnets |dPort| Records |dIP - Distin |

Div0Ext |52963| 8| 1|
None |57113| 4| 1|
None |58924| 12| 1|

Div1Int1 |55777| 2| 1|

Example 6.24: Counting Records by Prefix Map Labels

Querying Prefix Map Labels

When using prefix maps, you may need to look up which labels correspond to specific IP addresses or
protocol-port pairs. Use the rwpmaplookup command to query prefix map files—either user-defined pmaps
or one of the two predefined pmaps that often are created as part of the SiLK installation (country codes
and address types).

You can query a pmap with rwpmaplookup by doing one of the following:

• specify the addresses or protocol-port pairs in a text file (the default),

• use the --ipset-files parameter to query the addresses in one or more IP sets,

• use the --no-files parameter to list the addresses or protocol-port pairs to be queried directly on the
command line.

In any of these cases, one and only one of --country-codes, --address-types, or --map-name is used.

IP addresses are specified as described earlier in this section. For protocol-port pmaps, only the names of text
files having lines in the format protocolNumber/portNumber or the --no-files parameter followed by strings
in the same format are accepted. protocolNumber must be an integer in the range 0–255, and portNumber
must be an integer in the range 0–65,535.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 161

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

If the prefix map being queried is a protocol-port pmap, it makes no sense to query it with an IP set.
rwpmaplookup prints an error and exits if --ipset-files is given.

Example 6.25 shows how to use rwpmaplookup.

• Command 1 creates a list of IP addresses and stores it in the file ips_to_find.

• Command 2 uses rwpmaplookup to find the country codes associated with these addresses. If an IP
address is not listed in the country code pmap, the command returns -- as its value.

• Command 3 looks up the address types of the IP addresses. The first address has a value of 1, indicating
an internal address. The second address has a value of 2, indicating an external address. The third
address has a value of 0, indicating a non-routable address.

• Commands 4 and 5 build a protocol-port prefix map.

• Command 6 looks up protocol-port pairs from the command line.

<1>$ cat <<END_FILE >ips_to_find
192.88.209.244
128.2.10.163
127.0.0.1
END_FILE
<2>$ rwpmaplookup --country -codes ips_to_find

key|value|
192.88.209.244| us|

128.2.10.163| us|
127.0.0.1| --|

<3>$ rwpmaplookup --address -types ips_to_find
key|value|

192.88.209.244| 1|
128.2.10.163| 2|

127.0.0.1| 0|
<4>$ cat <<END_FILE >mini_icmp .pmap.txt
map -name miniicmp
default Unassigned
mode proto -port
1/0 1/0 Echo Response
1/768 1/768 Net Unreachable
1/769 1/769 Host Unreachable
1/2048 1/2048 Echo Request
END_FILE
<5>$ rwpmapbuild --input -file= mini_icmp .pmap.txt --output -file= mini_icmp .pmap
<6>$ rwpmaplookup --map -file= mini_icmp .pmap --no -files 1/769 1/1027

key| value|
1/769| Host Unreachable |

1/1027| Unassigned |

Example 6.25: Query Addresses and Protocol/Ports with rwpmaplookup

Help with rwpmaplookup. For more information about the rwpmaplookup command, type man rwpmaplookup
or enter the command rwpmaplookup --help.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 162

6.3. EXPLORATORY ANALYSIS FOR SITUATIONAL AWARENESS

6.3 Exploratory Analysis for Situational Awareness

Exploratory analyses provide the most flexibility in supporting situational awareness. These analyses, with
their iterative nature, support differential and actionable awareness (described in Section 2.3.1). While
multi-path analyses can identify differences between “what should be” and “what is” (differential awareness)
exploratory analyses dig deeper into these differences. An exploratory analysis for situational awareness is
well-suited to developing actionable awareness: determining the action to take (if needed) in response to
these differences.

6.3.1 Structuring an Exploratory Analysis for Situational Awareness

Exploratory analyses often employ a looser structure than single- or multi-path analyses. For situational
awareness, an exploratory analysis isolates and follows differences in characteristics that support a decision
about how to maintain and improve network security. The behavior being explored often drives the structure
of the analysis. Analysts may work both interactively and progressively to focus, characterize, and draw
conclusions from their exploration of network traffic. This iterative process continues until a sufficient level
of activity is identified, further data produces no new results, or the time for analysis is exhausted.

Exploratory analysis methods that are useful for investigating network situational awareness are listed below.
This is not an exhaustive list of analysis techniques. Once the analyst works through the analysis process
interactively, constructing a scripted version of these methods is fairly straightforward.

These exploratory analysis techniques are not exclusive to situational awareness. They can be applied to a
wide variety of analyses.

Manifolds

Manifolds chain together calls to rwfilter to progressively categorize traffic. An exploratory situational
awareness analysis might use a manifold to divide traffic into a series of cases via rwfilter commands that
link either through --pass or --fail (exclusive cases) or through --all (overlapping cases). These cases
can be saved to a file or fed into a tool such as rwcount, rwstats, or rwuniq to generate parallel summaries.
The last exclusive case, or “fall-through,” is often saved to a file for further exploration.

In an exploratory analysis for situational awareness, the identified cases provide insight into continuance of
expected network behavior. The fall-through case often provides insight into unexpected behavior or noise.

For more information on how to set up and use manifolds as part of an analysis, see Section 4.2.1.

Progressive Exclusion

Progressive exclusion involves iteratively removing cases from the analysis to focus on the behavior that is
actionable. This approach focuses on isolating traffic that is different enough to support decisions, then
generating counts or statistics involving that traffic to clarify a preferred option.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 163

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

To exclude different types of traffic, use rwfilter with a variety of parameters. The specific parameters
depend on the nature of the behavior that is being explored. Examples of progressive exclusion with rwfilter
include the following:

• whitelisting known-good addresses via --sipset or --dipset

• removing scanning flows via --flags-all=S/SRF or --bytes-per=0-60,

• eliminating single-packet flows via --packets=1-1

Progressive Broadening

Progressive broadening involves iteratively modifying rwfilter parameters to pull more data and include
more cases. The goal is to capture the desired behaviors more completely. This approach often starts with an
initial observation of unusual or suspicious behavior, which is then expanded to provide more data to support
a decision. Broadening continues until either no new relevant cases are included, or too many irrelevant cases
are included.

For example, progressive broadening can capture patterns where single-packet flows shift to low-packet flows.
An initial data pull with rwfilter --packets=1-1 captures single-packet flows. It can be followed by a call
to rwfilter --packets=1-5 to broaden the analysis to capture low-packet flows.

Analytical Chaining

Analytical chaining involves iteratively pivoting an investigation of flow characteristics to explore different
aspects of a suspect behavior. By pivoting from one network characteristic to another, the analyst can
follow leads to isolate unusual or suspicious behavior and contrast it against related network activity. Often,
this approach starts with a count that is irregular, and then moves through a variety of endpoints and
characteristics to provide insight into a behavior of interest.

An example of analytical chaining would be to first examine patterns of behavior associated with a set of
addresses via --saddress or --daddress. The analyst would then switch to examining the same dataset to
find behavior associated with ports via --sport or --dport. An extended example of analytical chaining is
presented in Section 6.3.3.

6.3.2 Situational Awareness for User-driven and Automated Services

Most current threats seem to focus on user-driven services (such as web browsing, email, or file handling).
However, some still focus on automated processes within the network stack or operating system. Analysts
can apply an exploratory analysis workflow to gain better situational awareness of threats to both user-driven
and automated services.

For some services, the differences in behavior are fairly obvious. In Example 6.26, the rwfilter call in
Command 1 pulls web flows (--type=in,inweb,out,outweb), which are almost entirely driven by human
users. While the three-hour summaries produced by the rwcount command do not show much detail, the
results do show a twelve-hour usage span, with the central three hours (primary work time) the most active.
The rwfilter call in Command 2 pulls NTP flows (--proto=6,17 and --dport=123), which are almost
entirely driven by the operating system. In this case, the three hour summaries occur throughout the
24-hour day. The results show some variation, but not to the extent of the web flows in Command 1.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 164

6.3. EXPLORATORY ANALYSIS FOR SITUATIONAL AWARENESS

<1>$ rwfilter --start =2015/06/17 --end =2015/06/17 \
--type=in ,inweb ,out , outweb --application =80 ,443 \
--pass= stdout \

| rwcount --bin -size =10800
Date| Records | Bytes| Packets |

2015/06/17 T12 :00:00| 21300.68| 405172522.46| 644181.85|
2015/06/17 T15 :00:00| 177508.99| 3846261415.01| 5851526.65|
2015/06/17 T18 :00:00| 45434.33| 894026650.53| 1409842.50|
<2>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=in ,out \

--proto =6 ,17 --dport =123 --pass= stdout \
| rwcount --bin -size =10800

Date| Records | Bytes| Packets |
2015/06/17 T00 :00:00| 5727.00| 767056.00| 8636.00|
2015/06/17 T03 :00:00| 9001.00| 1220704.00| 13349.00|
2015/06/17 T06 :00:00| 5632.00| 721108.00| 8143.00|
2015/06/17 T09 :00:00| 4914.00| 609168.00| 6978.00|
2015/06/17 T12 :00:00| 4198.89| 509871.31| 5991.46|
2015/06/17 T15 :00:00| 3974.83| 494391.91| 5893.05|
2015/06/17 T18 :00:00| 2779.27| 298084.78| 3538.48|
2015/06/17 T21 :00:00| 1630.00| 128052.00| 1672.00|

Example 6.26: Contrasting User-driven vs. Autonomic Flows with rwcount

For other services, the differences are more subtle—particularly when attackers attempt exploits. To separate
traffic involving user-driven and automated processes, pull multiple pools of traffic using a variety of criteria:

• port and protocol or application labeling

• initially pulling date-time groups, then later pulling packet sizes and ports

• pulling data according to the endpoints involved

By profiling these datasets and comparing the results for user-driven and automatic services, analysts can
identify specific differences that form the basis for further iterations of exploration.

6.3.3 Exploratory Analysis for Differential and Actionable Awareness: Investi-
gate Abnormal Web Traffic

Our analyst Arthur has been investigating unusual web traffic. In Section 4.3.4, he found suspicious activity
and decided to do a deeper dive into the web traffic for his organization. Arthur is expanding his differential
awareness by finding more information about traffic that shouldn’t be present. His ultimate goal is to provide
actionable awareness: find out if the traffic is malicious and make recommendations about how to handle
this situation.

Explore Low-packet Flows

As part of this analysis, Arthur decides to explore flows associated with low-volume web sessions. His initial
exploration is shown in Example 6.27.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 165

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

1. Command 1 calls rwfilter to pull low-volume flows—that is, flows with 60 or fewer bytes per packet
(--bytes-per=0-60)—for one particular day. These flows are going to typical web destination ports
(--dport=80,8080,443,8443). It then pipes the flows to rwuniq to profile them by destination port
and detected application (--fields=dport,application). With this few bytes, it is reasonable that
most flows are categorized as application 0, indicating that no application is identified. The flows with
identified applications are all reasonable as web protocols.

2. Similarly, Command 2 looks at low-volume flows coming from typical web source ports (--sport=80,8080,
443,8443) and profiles them according to source port and application. However, these results found
traffic coming from port 8080 that is identified as application 53, which is DNS. Given that 8080 is
typically a web port, DNS traffic is unusual.

3. Command 3 pivots from this observation to explore how extensive this behavior is on the network.
By using both --sport and --dport of 8080,53, the call to rwfilter will find all traffic that goes
between any combination of those two ports. In theory, this would also include traffic between port
combinations 53-53 and 8080-8080, but those combinations are not present on this network. The
rwfilter feeds into a call to rwuniq, generating a summary of the addresses combinations involved.
While the results involve a total of 17 IP addresses, all of the communication centers around two
addresses: 192.168.58 and 10.0.20.58. Both of these hosts communicate with a separate group of
addresses, all of which are outside the organization’s network.

These results set up the analytical chaining described in Section 6.3.1. Arthur’s investigation of low-packet
flows on web ports identified two IP addresses that are exhibiting unusual behavior. He can now pivot to
investigating these two internal hosts.

Explore Behavior of Internal Hosts

Example 6.28 shows the next iteration of Arthur’s analysis: a pivot to exploring the behavior of the two
internal hosts.

1. Commands 1 and 2 investigate activity for 192.168.20.58. They profile the outbound and inbound
network traffic for this IP address according to detected applications and count flows together with
distinct endpoints, source ports, and destination ports. The results indicate that this host is a likely
DNS resolver. The small number of HTTPS connections reported may be somewhat suspicious.

2. Commands 3 and 4 repeat the same profiling for 10.0.20.58. The results support that this host is a
DNS resolver, slightly stronger than for 192.168.20.58.

Explore Behavior of Communicating Addresses

Example 6.29 shows a further iteration of Arthur’s pivot to exploring the behavior of addresses communi-
cating to these two hosts.

1. Command 1 uses rwfilter with --scidr to pull all flows sourced from the two addresses. Notice the
use of /32 after each address, which puts it CIDR format so that the two addresses can be listed in the
same command. The flows are passed to the rwset command to build the set of destination addresses.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 166

6.3. EXPLORATORY ANALYSIS FOR SITUATIONAL AWARENESS

<1>$ rwfilter --start =2015/06/17 --end =2015/06/17 \
--type=in ,inweb ,out , outweb --bytes -per =0 -60 \
--dport =80 ,8080 ,443 ,8443 --pass= stdout \

| rwuniq --fields =dport , application --values =flows ,bytes \
--sort

dPort|appli| Records | Bytes|
80| 0| 830798| 452867494|
80| 80| 12846| 77938213|

443| 0| 1175844| 284695302|
443| 80| 42| 230436|
443| 443| 2| 9182|

8080| 0| 62810| 28869568|
8080| 443| 1| 11418|
8443| 0| 8331| 343600|

<2>$ rwfilter --start =2015/06/17 --end =2015/06/17 \
--type=in ,inweb ,out , outweb --bytes -per =0 -60 \
--sport =80 ,8080 ,443 ,8443 --pass= stdout \

| rwuniq --fields =sport , application --values =flows ,bytes \
--sort

sPort|appli| Records | Bytes|
80| 0| 414610| 39341614|
80| 80| 1827| 167266|

443| 0| 1235864| 258751653|
443| 80| 1139| 543215|
443| 443| 26| 4060|

8080| 0| 63918| 9026858|
8080| 53| 1| 60|
8443| 0| 2271| 202872|

<3>$ rwfilter --start =2015/06/17 --end =2015/06/17 \
--type=in ,out ,inweb , outweb --sport =8080 ,53 \
--dport =8080 ,53 --pass= stdout \

| rwuniq --fields =sip ,dip --values =flows ,bytes --sort
sIP| dIP| Records | Bytes|

10.0.20.58| 192.5.5.241| 1| 170|
10.0.20.58| 192.58.128.30| 1| 148|
10.0.20.58| 192.112.36.4| 1| 170|
10.0.20.58| 192.203.230.10| 2| 340|
10.0.20.58| 198.41.0.4| 1| 146|
10.0.20.58| 199.7.83.42| 3| 488|
10.0.20.58| 202.12.27.33| 2| 326|
67.215.0.5| 192.168.20.58| 4| 338|

192.168.20.58| 67.215.0.5| 6| 676|
192.168.20.58| 128.8.10.90| 4| 300|
192.168.20.58| 128.63.2.53| 7| 666|
192.168.20.58| 192.33.4.12| 6| 672|
192.168.20.58| 192.36.148.17| 3| 340|
192.168.20.58| 192.203.230.10| 3| 288|
192.168.20.58| 192.228.79.201| 3| 288|
192.168.20.58| 193.0.14.129| 6| 676|

Example 6.27: Isolating Low-byte Web Flows with rwfilter

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 167

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

<1>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \
--saddress =192.168.20.58 --pass= stdout \

| rwuniq --fields = application \
--values =flows , distinct :dip , distinct :sport , distinct :dport \
--sort

appli| Records |dIP - Distin |sPort|dPort|
0| 3708418| 19|64514|15224|

53| 366479| 18|63293|12143|
80| 4| 1| 4| 1|

443| 63| 1| 63| 1|
<2>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \

--daddress =192.168.20.58 --pass= stdout \
| rwuniq --fields = application \

--values =flows , distinct :sip , distinct :sport , distinct :dport \
--sort

appli| Records |sIP - Distin |sPort|dPort|
0| 1055265| 8|15297|55579|

53| 147509| 5|12143|28624|
80| 4| 1| 1| 4|

137| 6| 2| 1| 1|
443| 63| 1| 1| 63|

<3>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \
--saddress =10.0.20.58 --pass= stdout \

| rwuniq --fields = application \
--values =flows , distinct :dip , distinct :sport , distinct :dport \
--sort

appli| Records |dIP - Distin |sPort|dPort|
0| 1457893| 22|64514|14184|

53| 6779| 1| 1| 2366|
<4>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \

--daddress =10.0.20.58 --pass= stdout \
| rwuniq --fields = application \

--values =flows , distinct :sip , distinct :sport , distinct :dport \
--sort

appli| Records |sIP - Distin |sPort|dPort|
0| 326762| 8|14194| 820|

53| 6789| 1| 2367| 1|
137| 2| 1| 1| 1|

Example 6.28: Pivoting with rwfilter and rwuniq to Explore Endpoint Behavior

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 168

6.3. EXPLORATORY ANALYSIS FOR SITUATIONAL AWARENESS

2. Command 2 follows the same process to build the set of source addresses for flows that have either of
the two addresses as destinations.

3. Command 3 uses rwsettool --union to perform a union of the two sets. This produces a set of contact
IP addresses.

4. Command 4 uses rwsetcat --count to count the number of IP addresses in the set—26 addresses in
all.

5. The traffic for these addresses is then profiled in Commands 5 (source) and 6 (destination). These
commands look at the flows by application and protocol, counting flows, distinct endpoint addresses,
distinct source and destination ports, and distinct byte lengths.
The two profiles match pretty closely, except for the Microsoft NETBIOS Name Service (UDP 137)
flows. There are over double the number of flows sourced from the contact addresses than destined to
those addresses.

6. To explore the difference, Arthur looks at addresses reserved by the internet protocol as shown in
Command 7. The reserved addresses are the minimum address per CIDR/24 block ending in .0 (the
address for the block as a whole) and the maximum address per CIDR/24 block ending in .255 (the
broadcast address going to each host in that block).
Neither of these addresses should be used for name service traffic. However, by using rwfilter and
rwuniq, Arthur found one address (192.168.40.201) that is sending almost enough flows to two of
these addresses to constitute the identified difference.

Conclusions from the Exploratory Analysis for Situational Awareness

Arthur used the exploratory analysis technique of analytical chaining to navigate through a chain of clues
and isolate traffic of interest. His analysis identified hosts that are attempting to bypass traffic controls (by
using port 8080 to source DNS queries) and scan the network for name services (by addressing the net and
broadcast addresses). These hosts must be secured to halt this activity.

While Arthur did not find evidence of web redirection, he did find actionable evidence of suspicious name
service traffic. His results identified potential security issues for the organization’s name resolution infras-
tructure and his recommendations will help with efforts to remediate these problems.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 169

CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

<1>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \
--scidr =10.0.20.58/32 ,192.168.20.58/32 --pass= stdout \

| rwset --dip -file=dip - contact .set
<2>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \

--dcidr =10.0.20.58/32 ,192.168.20.58/32 --pass= stdout \
| rwset --sip -file=sip - contact .set
<3>$ rwsettool --union sip - contact .set dip - contact .set \

--output = contact .set
<4>$ rwsetcat --count -ips contact .set
26
<5>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \

--sipset = contact .set --application =1 -79 ,81 -442 ,444 - \
--pass= stdout \

| rwuniq --fields = application , protocol \
--values =flows , distinct :sip , distinct :dip , distinct :dport , distinct :sport , distinct :bytes \
--sort

appli|pro| Records |sIP - Distin |dIP - Distin |dPort|sPort|bytes -Dist|
53| 17| 401357| 5| 85|38248|15351| 807|

137| 17| 1052| 3| 75| 1| 408| 45|
138| 17| 46| 1| 1| 1| 1| 1|
139| 6| 4239| 2| 93| 2023| 1291| 332|
389| 6| 4272| 2| 89| 2376| 2| 431|
389| 17| 3186| 3| 93| 2135| 6| 11|

5004| 17| 2| 2| 2| 2| 2| 1|
<6>$ rwfilter --start =2015/06/17 --end =2015/06/17 --type=all \

--dipset = contact .set --application =1 -79 ,81 -442 ,444 - \
--pass= stdout \

| rwuniq --fields = application , protocol \
--values =flows , distinct :sip , distinct :dip , distinct :dport , distinct :sport , distinct :bytes \
--sort

appli|pro| Records |sIP - Distin |dIP - Distin |dPort|sPort|bytes -Dist|
53| 17| 685348| 84| 18|15347|63627| 835|

137| 17| 511| 66| 3| 1| 1| 16|
138| 17| 265| 13| 1| 1| 1| 3|
139| 6| 4239| 93| 2| 1291| 2023| 605|
389| 6| 4272| 89| 2| 2| 2376| 657|
389| 17| 3553| 93| 3| 6| 2447| 39|

5004| 17| 2| 2| 2| 2| 2| 1|
<7>$ rwfilter --start =2015/06/17 --end =2015/06/17 \

--type=all --application =137 --sipset = contact .set \
--daddress =x.x.x.0 ,255 --pass= stdout \

| rwuniq --fields =sip --values =flows , distinct :dip
sIP| Records |dIP - Distin |

192.168.40.20| 507| 2|

Example 6.29: Pivoting with rwfilter to Explore Contacts of Endpoints

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 170

6.4. SUMMARY OF SILK COMMANDS IN CHAPTER 6

6.4 Summary of SiLK Commands in Chapter 6

Command Section Name Page
rwfilter Using Tuple Files for Complex Filtering 134

Using Prefix Maps to Filter Flow Records with rwfilter 158
rwbagtool Adding and Subtracting Bags 137

Multiplying and Dividing Bags 139
Thresholding Bags with Count and Key Parameters 141

rwcat, rwappend Combining Flow Record Files to Provide Context 143
rwsplit Dividing and Sampling Flow Record Files with rwsplit 145
rwtuc Generate Flow Records From Text 147
rwaggbag Creating Aggregate Bags from Flow Records 149
rwaggbagbuild Creating Aggregate Bags from Text 151
rwaggbagcat Viewing Aggregate Bags 150
rwaggbagtool Thresholding Aggregate Values 151

Exporting Aggregate Bags to Bags and IPsets 153
rwuniq Comparing rwaggbag with rwuniq 151
rwpmapbuild Creating a User-defined Prefix Map From a Text File 155
rwcut Displaying Prefix Labels with rwcut 159
rwgroup, rwsort,
rwstats, rwuniq

Sorting, Counting, and Grouping Records with Prefix Maps 160

rwpmaplookup Querying Prefix Map Labels 161

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 171

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 172

Chapter 7

Case Studies: Advanced Exploratory
Analysis

This chapter features two detailed case studies of exploratory analysis, using concepts from previous chapters.
Both employ the SiLK workflow, SiLK tools, UNIX commands, and networking concepts to provide a
practical example of exploratory analyses with network flow data.

Upon completion of this chapter you will be able to

• describe how to use single-path and multi-path analyses as the building blocks of an exploratory analysis

• formulate an approach to exploratory analysis

• prepare a model of exploratory analysis

• execute these analyses with various SiLK tools in one automated program

The case studies build upon the answers to these questions to investigate unusual network traffic and
revealing changes of network behavior.

7.1 Dataset for Exploratory Case Studies

Like the previous case studies and command examples, the exploratory analysis case studies uses the FCCX
dataset described in Section 1.8. From the diagram in Figure 1.4, we know that sensors S0 through S4 monitor
the operating network. These sensors are part of the inventory generated via the example in Chapter 5.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 173

CHAPTER 7. ADVANCED CASE STUDY

7.2 Case Study: Investigating Suspicious TCP Behavior

Omar is a security administrator who is investigating TCP traffic for signs of illicit behavior. His wants
to explore TCP requests during a specific time period to figure out which ones are legitimate and which ones
are not. This will identify source and destination IP addresses for further investigation. His overall goal is
to figure out whether a pattern of activity is associated with this traffic—and if so, what it might indicate.

Omar’s exploratory analysis follows the analysis workflow from Section 1.5. Each level of his analysis is
posed as a question that he needs to answer.

7.2.1 Level 0: Which TCP Requests are Suspicious?

In the initial phase of Omar’s exploratory analysis, he would like to identify which TCP requests might
represent illegitimate traffic. When he starts his analysis, he has no idea as to which flows are legitimate
and which ones are not. However, he does know that, for most services, the flows containing client requests
tend to be close in number to those containing responses to those requests. He will exploit this tendency to
identify irregular traffic.

In particular, Omar wants to look at traffic on service ports to find out which ports carry a much higher
volume of inbound data than outbound data. This is one of the fingerprints (or indicators) of network
scanning and several other behaviors that may be of concern. Scanning usually involves low data volume
(bytes) but high numbers of packets or requests (which would equate to flows).

Although this traffic imbalance is outside the range of typical behavior, it may not represent malicious
activity. Omar needs to identify these ports to take a closer look at their TCP traffic and assess any impact
it might have.

Example 7.1 shows how Omar uses SiLK to find this type of data anomaly. His analytic will retrieve
inbound and outbound TCP requests on all network ports. It then finds the ports that have a much higher
level of inbound requests than outbound requests.

1. Command 1 uses rwfilter to pull inbound TCP (protocol 6) traffic for sensors S0 through S4 sent
to all reserved ports (0 - 1023), which are dedicated to network services. It pipes the results to the
rwuniq command, which counts flows and bytes for each destination port, then sorts the results to
present the ports in ascending order.

2. Similarly, Command 2 uses rwfilter to pull outbound TCP traffic and rwuniq to count and sort
traffic for each source port.

Omar compares the corresponding ports in the results for Commands 1 and 2 in Example 7.1. He notices
that most of the service ports carry similar levels of inbound and outbound TCP traffic. However, ports 21,
22, and 591 carry higher inbound than outbound TCP traffic. He decides to further investigate activity on
these ports.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 174

7.2. CASE STUDY: INVESTIGATING SUSPICIOUS TCP BEHAVIOR

<1>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=in --proto =6 --dport =0 -1023 \
--pass= stdout \

| rwuniq --fields =dport --values =flows ,bytes --sort
dPort| Records | Bytes|

21| 6184| 418452|
22| 6180| 481760|
53| 35| 88237|
88| 47187| 74586782|

135| 6996| 6940590|
137| 6064| 364320|
139| 57313| 93274792|
389| 22095| 118221682|
445| 81039| 363318703|
591| 112702| 76762887|

<2>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=out --proto =6 --sport =0 -1023 \
--pass= stdout \

| rwuniq --fields =sport --values =flows ,bytes --sort
sPort| Records | Bytes|

21| 200| 28288|
22| 204| 99024|
53| 35| 18860|
88| 47184| 76069648|

135| 6991| 4052306|
137| 80| 3200|
139| 51631| 47100178|
389| 22214| 110222710|
445| 75426| 205229733|
591| 55161| 17580192|

Example 7.1: Looking for Service Ports with Higher Inbound than Outbound TCP Traffic

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 175

CHAPTER 7. ADVANCED CASE STUDY

7.2.2 Level 1: Which Requests are Illegitimate?

The nest step in Omar’s exploratory analysis is to separate normal and abnormal TCP requests on the
service ports identified in Section 7.2.1. Specifically, he wants to identify mismatched TCP flows: flows that
have either no request or no response. These flows are odd, and worth examining to see if they are malicious.
His goal is to describe this behavior in a way that supports further analysis.

Example 7.2 shows how Omar detects mismatched flows, identifies the IP addresses of their sources, and
contrasts those addresses with sources of matched flows.

1. Command 1 uses rwfilter to pull inbound TCP traffic for sensors S0 through S4 on the suspect
destination ports 21, 22, and 591. It then uses rwsort to sort this traffic by source IP address,
destination port, destination IP address, source port, protocol, and start time. The sorted inbound
flow records are saved in the file app-in.raw. This sort order sets up the data for matching in Command
3.

2. Similarly, Command 2 uses rwfilter to pull outbound TCP traffic for the sensors and ports of interest.
It sorts this traffic by destination IP address, source port, source IP address, protocol, and start time.
The sorted outbound flow records are saved in the file app-out.raw. This sort order allows records to
be matched efficiently with those from Command 1, using rwmatch.

3. To find mismatched flows, Command 3 uses rwmatch to match queries in the inbound TCP flows in
app-in.raw to responses in the outbound TCP flows in app-out.raw. Mismatched flows that do not
belong to sessions can indicate illegitimate activity.

• --relate=1,2 matches the inbound source IPs to the outbound destination IPs.
• --relate=2,1 matches the inbound destination IPs to the outbound source IPs.
• --relate=3,4 matches the inbound source ports to the outbound destination ports.
• --relate=4,3 matches the inbound destination ports to the outbound source ports.
• --relate=5,5 matches the inbound and outbound protocols.
• --unmatched=b saves the unmatched inbound and outbound records instead of discarding them.

These unmatched records are the ones we will want to investigate for illegitimate behavior.

The matched records are indicated by setting the (mostly unused) next-hop IP address. Rather than
a real IP address, rwmatch uses 0 followed by a positive integer value for a request, and 255 followed
by the corresponding integer for a response. For a request without a response, rwmatch uses 0.0.0.0
for a response without a request, rwmatch uses 255.0.0.0. Command 3 then calls rwsort to sort the
matched records by start time and saves them in a temporary file, temp-match.raw.

4. Command 4 runs rwfilter on temp-match.raw to filter records that have a next-hop IP indicating
unmatched inbound requests, then saves these records in temp-noresp.raw. A second call to rwfilter
filters records that have a next-hop IP indicating unmatched outbound responses, then saves those
records in temp-noreq.raw. The records that fail both filters represent flows with matching responses
and are saved in app-match.raw.

5. Command 5 runs the rwstats command on temp-noresp.raw to display information about the top
five source IP addresses and destination ports of flows with no response flows. Since there are only two
source IP addresses in this data (one with two destination ports), only three are displayed.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 176

7.2. CASE STUDY: INVESTIGATING SUSPICIOUS TCP BEHAVIOR

6. Command 6 runs the rwstats command on app-match.raw to display information about the top five
source IP addresses and source ports of flows that do have matching query and response flows. Since
there are 3,848 source IP addresses for the matching records, the top five are shown. None of these are
the sources for the unmatched records.

Given the distribution of source addresses between the matched and unmatched traffic, Omar decides
that these sources are clearly worth investigating further.

<1>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=in --proto =6 --dport =21 ,22 ,591 \
--pass= stdout \

| rwsort --fields =sip ,dport ,dip ,sport ,protocol ,stime \
--output =app -in.raw

<2>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=out --proto =6 --sport =21 ,22 ,591 \
--pass= stdout \

| rwsort --fields =dip ,sport ,sip ,dport ,protocol ,stime \
--output =app -out.raw

<3>$ rwmatch --relate =1,2 --relate =2,1 --relate =3,4 --relate =4,3 \
--relate =5,5 --unmatched =b app -in.raw app -out.raw stdout \

| rwsort --fields =stime --output =temp -match.raw
<4>$ rwfilter temp -match.raw --next =0.0.0.0 \

--pass=temp - noresp .raw --fail= stdout \
| rwfilter stdin --next =255.0.0.0 --pass=temp -noreq.raw \

--fail=app -match.raw
<5>$ rwstats --fields =sip ,dport --values =flows --count =5 \

temp - noresp .raw
INPUT: 69810 Records for 3 Bins and 69810 Total Records
OUTPUT : Top 5 Bins by Records

sIP|dPort| Records | % Records | cumul_ %|
10.0.40.21| 591| 57582| 82.483885| 82.483885|

192.168.181.8| 22| 6180| 8.852600| 91.336485|
192.168.181.8| 21| 6048| 8.663515|100.000000|

<6>$ rwstats --fields =sip ,sport --values =flows --count =5 \
app -match.raw

INPUT: 110478 Records for 3848 Bins and 110478 Total Records
OUTPUT : Top 5 Bins by Records

sIP|sPort| Records | % Records | cumul_ %|
192.168.165.216| 591| 1708| 1.546009| 1.546009|
192.168.161.124| 591| 1691| 1.530621| 3.076631|
192.168.122.195| 591| 1663| 1.505277| 4.581908|
192.168.122.141| 591| 1657| 1.499846| 6.081754|

192.168.121.57| 591| 1657| 1.499846| 7.581600|

Example 7.2: Identifying Abnormal TCP Flows and their Originating Hosts

7.2.3 Level 2: What are the Illegitimate Sources and Destinations Doing?

In the next part of Omar’s exploratory analysis, he will investigate the activities of the illegitimate source
and destination hosts identified in Section 7.2.2 to see what patterns emerge.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 177

CHAPTER 7. ADVANCED CASE STUDY

Level 2A: What are the Illegitimate Source IPs Doing?

Omar first decides to take a look at the activity of the illegitimate source IP addresses. As shown in
Example 7.3, he will find the sources of illegitimate traffic and look at the network behavior associated with
scanning. Scan queries typically have low byte counts and often lack corresponding responses, since the
scanned hosts lack the service being sought.

1. Command 1 calls rwbag and rwbagtool --coverset to create a set of source IPs that did not have
matching queries (noresp.set). As input, it uses the file of no-response flows created in Section 7.2.2
(temp-noresp.raw).

2. Command 2 calls rwfilter to pull records coming from the source IP addresses noresp.set—in other
words, records with source IPs that produced unmatched flows. It saves these records in sources.raw.

3. To find the actual scanning flows, Command 3 uses rwfilter on sources.raw to filter flows with
very low byte counts (0-60 bytes), indicating those with only a header, or with a header and optional
extensions. It then uses the rwuniq command to profile these flows and saves the results in source.txt.
This file is human readable; it contains a breakdown by protocol and bytes per flow that shows how
many hosts were the destination of these flows, when the earliest of them started, and when the latest
ended.

4. A copy of the low-volume flows is sent to a second call to rwuniq to save the earliest start and latest end
times of the flows from each source IP to the file source-fields.txt. The output here is generated
without column headings and vertical bar delimiter to facilitate processing by commands 5-9. As it
happens, all of these low-volume flows come from a single source IP address, so the source-fields.txt
only contains one line.

5. Command 4 displays the contents of the human-readable profile. There are several features in this
output:

• There are few distinct byte sizes in these results: only one for TCP flows, and only two for UDP
flows.

• The TCP flows are by far the most numerous, and go to by far the most distinct addresses.
• The earliest start times are all within a one minute range.
• The latest end times are all within a five second span.

Based on these results, Omar interprets this behavior as scan traffic with a common direction. That all
of these flows come from a single source IP address further supports his interpretation.

Level 2B: What Behavior Changes do Destination IPs Show?

Next, Omar investigates traffic patterns on the destination hosts (the targets of the scans). Using the start
times and end times of the scans from Example 7.3 as starting points, he will look at traffic patterns before
and afterwards as shown in Example 7.4.

1. Commands 1 through 5 locate the start times (StTime, StEpoch) and end times (EnTime, EnEpoch),
using the source-fields.txt file created in Example 7.3. This identifies the “before” and “after”
boundaries of the scan.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 178

7.2. CASE STUDY: INVESTIGATING SUSPICIOUS TCP BEHAVIOR

<1>$ rwbag --bag -file=sipv4 ,flows , stdout temp - noresp .raw \
| rwbagtool --coverset --output = noresp .set
<2>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \

--end =2015/06/30 --type=in ,out --sipset = noresp .set \
--pass= sources .raw

<3>$ rwfilter sources .raw --bytes =0 -60 --pass= stdout \
| rwuniq --fields =protocol ,bytes \

--values =flows , distinct :dip ,stime -earliest ,etime - latest \
--sort --output = sources .txt --copy= stdout \

| rwuniq --fields =sip --values =stime -earliest ,etime - latest \
--no - titles --delim=' ' --output =source - fields .txt

<4>$ cat sources .txt
pro| bytes| Records |dIP - Distin | sTime - Earliest | eTime - Latest |

6| 60| 29492| 768|2015/06/17 T16 :12:58|2015/06/17 T16 :41:21|
17| 29| 68| 17|2015/06/17 T16 :13:54|2015/06/17 T16 :41:21|
17| 42| 136| 17|2015/06/17 T16 :13:54|2015/06/17 T16 :41:26|

<5>$ srcArray =($(cat source - fields .txt))

Example 7.3: Finding Activity of Illegitimate Destination IP Addresses

(a) Command 1 stores the contents of the file (one line) in a shell array for ease of reference to the
fields.

(b) Command 2 converts the earliest start time of the scan into an integer UNIX epoch value (the
number of seconds since midnight, January 1, 1970). This format is used to make it easy to
calculate.

(c) Command 3 subtracts one from the epoch value to get a time briefly before the scan activity
started, then uses the string processing language awk to convert the epoch date back into a SiLK
formatted date.

(d) Commands 4 and 5 do an analogous process to commands 2 and 3, but with the ending time of
the scanning activity, producing a value just after the scanning ended.

2. Command 6 uses rwfilter to pull inbound and outbound non-web traffic for the destination IPs in
noresp.set in the time window before the start of the scan, saving these flows to dest-before.raw.

3. Command 7 uses rwfilter to pull inbound and outbound traffic for the illegitimate IPs in noresp.set
in the time window after the end of the scan, saving these files to dest-after.rw.

4. For clarity of display, Command 8 calls rwuniq, then uses the head command to pull off the column
headers and store them in the file myhead.

5. After displaying the column headers with cat, Command 9 uses rwuniq to calculate the counts of
flows for each byte size in dest-before.rw, which contains data from the time period before the start
of scanning. It sorts the byte sizes in ascending order, then calls tail to display the largest flows.
(Because Omar used tail for this, he had to separately save and display the column headers; without
that, no column labels would be shown.)

6. To profile network behavior after scanning, Command 10 uses rwuniq to find the flows with the largest
byte sizes in the file dest-after.rw, which contains data from the time period after scanning ended.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 179

CHAPTER 7. ADVANCED CASE STUDY

<1>$ srcArray =($(cat source - fields .txt))
<2>$ StEpoch =$(date -d ${ srcArray [1]} +"%s")
<3>$ StTime =$(echo $(($StEpoch - 1)) | awk '{print \

strftime ("%Y/%m/%dT%T",$1)}')
<4>$ EnEpoch =$(date -d ${ srcArray [2]} +"%s")
<5>$ EnTime =$(echo $(($EnEpoch + 1)) | awk '{print \

strftime ("%Y/%m/%dT%T",$1)}')
<6>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \

--end =2015/06/30 --type=in ,out --dipset = noresp .set \
--etime =2015/06/01 -2015/06/17 T09 :12:57 \
--pass=dest - before .raw

<7>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=in ,out --dipset = noresp .set \
--stime =2015/06/17 T09 :41:27 -2015/06/30 \
--pass=dest -after.raw

<8>$ rwuniq --fields =bytes , protocol \
--values =Flows , distinct :sip , distinct :dip dest - before .raw \
| head -1 >myhead

<9>$ cat myhead ; \
rwuniq --fields =bytes , protocol \

--values =Flows , distinct :sip , distinct :dip --sort \
dest - before .raw \

| tail -5
bytes|pro| Records |sIP - Distin |dIP - Distin |

884| 17| 2| 1| 1|
988| 1| 4| 1| 1|

1028| 17| 5| 2| 1|
1326| 17| 1| 1| 1|
1976| 1| 3| 1| 1|

<10>$ cat myhead ; \
rwuniq --fields =bytes , protocol \

--values =Flows , distinct :sip , distinct :dip --sort \
dest -after.raw \

| tail -5
bytes|pro| Records |sIP - Distin |dIP - Distin |

5128| 1| 8| 2| 1|
5488| 1| 4| 1| 1|
5756| 1| 4| 1| 1|
5844| 1| 4| 1| 1|
6020| 1| 4| 1| 1|

Example 7.4: Finding Changed Behavior in Destination IPs

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 180

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

7.2.4 Level 3: What are the Commonalities Across The Cases?

Omar’s exploratory analysis of the network traffic shows likely scanning behavior during a tight time frame:
a 28-minute interval, ending within a few seconds.

A further look at the results reveals a definite change in behavior of the suspected scanners. One IP
address is active before and during the scan. Another is active after the scan, with much larger flows to
the destination after the scan completed. All of this is highly suspicious. Even more concerning, the large
traffic after the scan is all ICMP traffic (which is normally quite modest in size). These large ICMP flows
are highly unusual for any benign purpose.

Omar concludes that his exploration of the TCP data has uncovered illicit behavior that requires a
response from his organization. He identifies several areas for future investigation, including

• looking for additional hosts that exhibit behavior that is similar to the scan/exploit hosts, during the
periods before and after the scan

• investigating the behavior of the scan and exploit hosts for further confirmation of their malicious
character

• looking for other activities associated with the scan/exploit hosts. What else are they up to?

These areas will likely suggest others to be explored.

One difficulty in exploratory analysis is knowing when to stop! Omar needs to keep the desired level
of output firmly in mind and direct his explorations towards providing suitable results. He needs to stop
either when those results are found (i.e., a likely compromise is identified, a sufficient understanding of the
service has resulted, or interactions across the network are understood), or when it is clear no such results
will emerge (i.e., everything is benign).

In this case, Omar identified a definite change in behavior that shows signs of being malicious. He
therefore decides to wrap up his exploratory analysis. He can now report information about the affected
hosts to incident handlers and system administrators for response. He can also pass on his suggestions for
future areas of investigation into this incident.

7.3 Case Study: Exploring Network Messaging for Information
Exposure

Beth is an enterprise security operations analyst who’s been tasked with investigating information ex-
posure. (For the purpose of this case study, information exposure is defined as the inadvertent exposure of
network information due to relaxed security controls that are commonly exploited by attackers.) She will
apply the exploratory analysis concepts from Chapter 6 and her knowledge of networking to investigate how
use of the Internet Control Message Protocol (ICMP) can expose internal information.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 181

CHAPTER 7. ADVANCED CASE STUDY

7.3.1 Prepare a Model of the Enterprise Network and Protocols

As described in RFC 79220, ICMP is a crucial component of the Internet Protocol (IP) for reporting errors
in the processing of datagrams. Unfortunately, when relaxed security controls are implemented in a network,
ICMP can leak information to attackers as they conduct network reconnaissance. For example, subnetwork
gateways commonly respond to ICMP echo request messages (ping) with an echo response.

However, as the network perimeter continues to shrink due to technologies such as mobile devices and
the Internet of things (IoT), hosts within a subnetwork should not respond to ICMP pings outside of their
local subnetwork. If they do respond, attackers are able to gather information that supports their efforts.

By analyzing ICMP network flow data, Beth can find the ground truth of how an enterprise network is
configured and operates. This will help her to identify security controls that may require further review.

Build a Port-Protocol Prefix Map

The first step in Beth’s exploratory analysis is to define a model of the enterprise network and the protocols
under analysis. She will use SiLK IPsets and prefix maps (pmaps) for this modeling. These data structures
can be created by using two pieces of information: the network diagram from Figure 1.4 and the network’s
sensor configuration file, sensor.conf. RFC 792 provides some of the protocol information required for the
model. Beth must research and gather the remaining information.

To begin, Beth builds a port-protocol prefix map (also known as a proto-port pmap) of the ICMP protocol
as defined by RFC standards. Example 7.5 shows her pmap and how it is created.

1. She first creates a text file with protocol-port mappings, icmp_code_official_pmap.txt, as shown in
Command 1. Each entry in this text file defines an ICMP type, code, and a corresponding text label.
By design, SiLK records do not store ICMP types and codes in individual flow record fields. Instead,
an algorithm calculates the type and code and stores it in the flow record dPort field. The algorithm
used for this is (type x 256) + code. For example, the prefix map entry of ICMP type 3 code 0
(network unreachable) is protocol 1, port 768 (3 x 256 + 0).

2. She then converts the text file into a binary pmap for use with SiLK tools, as shown in Commands 2
and 3. The binary pmap will be used with other SiLK tools to count and sort records with the protocol
and port combinations specified in the pmap.

<1>$ cat <<-EOF >icmp_code_official .pmap.txt
map -name icmp
mode proto -port

1/0 1/0 Echo Reply # type 0 code 0

1/768 1/768 Net Unreachable # type 3 code 0
1/769 1/769 Host Unreachable # type 3 code 1
1/770 1/770 Protocol Unreachable # type 3 code 2
1/771 1/771 Port Unreachable # type 3 code 3
1/772 1/772 Frag Needed DF Set # type 3 code 4
1/773 1/773 Source Rte Failed # type 3 code 5
1/774 1/774 Dest Ntwk Unknown # type 3 code 6

20Internet Engineering Task Force (IETF) Request for Comments 792 (https://www.ietf.org/rfc/rfc792.txt)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 182

https://www.ietf.org/rfc/rfc792.txt

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

1/775 1/775 Dest Host Unknown # type 3 code 7
1/776 1/776 Source Host Isolated # type 3 code 8
1/777 1/777 Dest Ntwk Admin Proh # type 3 code 9
1/778 1/778 Dest Host Admin Proh # type 3 code 10
1/779 1/779 Dest Ntwk Unreachable for TOS # type 3 code 11
1/780 1/780 Dest Host Unreachable for TOS # type 3 code 12
1/781 1/781 Administratively Prohibited # type 3 code 13
1/782 1/782 Host Precedence Violation # type 3 code 14
1/783 1/783 Precedence Cutoff # type 3 code 15

1/1024 1/1024 Source Quench # type 4 code 0 - DEPRECATED

1/1280 1/1280 Redirect Ntwk/ Subnet # type 5 code 0
1/1281 1/1281 Redirect Host # type 5 code 1
1/1282 1/1282 Redirect TOS & Ntwk/ Subnet # type 5 code 2
1/1283 1/1283 Redirect TOS & Host # type 5 code 3

1/1536 1/1536 Alternate Host Address # type 6 code 0

1/2048 1/2048 Echo request # type 8 code 0

1/2304 1/2304 Normal Router Advertisement # type 9 code 0
1/2320 1/2320 Router Adv not rte common traff # type 9 code 16

1/2560 1/2560 Router Selection # type 10 code 0

1/2816 1/2816 TTL exceeded # type 11 code 0
1/2817 1/2817 Frag Reassembly Time Exceeded # type 11 code 1

1/3072 1/3072 Parameter Prob - ptr indicates err # type 12 code 0
1/3073 1/3073 Missing Required Option # type 12 code 1
1/3074 1/3074 Bad Length # type 12 code 2

1/3328 1/3328 Timestamp request # type 13 code 0
1/3584 1/3584 Timestamp Reply # type 14 code 0
1/3840 1/3840 Information Request # type 15 code 0
1/4096 1/4096 Information Reply # type 16 code 0
1/4352 1/4352 Address Mask Request # type 17 code 0
1/4608 1/4608 Address Mask Reply # type 18 code 0

1/7680 1/7680 Traceroute pkt forwarded # type 30 code 0
1/7681 1/7681 Traceroute no rte for pkt; discarded # type 30 code 1

1/7936 1/7936 DG conv failed - unspecified # type 31 code 0
1/7937 1/7937 DG conv failed - Don 't Convert option # type 31 code 1
1/7938 1/7938 DG conv failed - unk mandatory opt # type 31 code 2
1/7939 1/7939 DG conv failed - known unsupported opt # type 31 code 3
1/7940 1/7940 DG conv failed - unsupported transport proto # type 31 code 4
1/7941 1/7941 DG conv failed - length exceeded # type 31 code 5
1/7942 1/7942 DG conv failed - IP hdr len exceeded # type 31 code 6
1/7943 1/7943 DG conv failed - Transport proto > 255 # type 31 code 7
1/7944 1/7944 DG conv failed - Port conv out of range # type 31 code 8
1/7945 1/7945 DG conv failed - Transport hdr len exceeded # type 31 code 9
1/7946 1/7946 DG conv failed - 32 bit Rollover missing & ACK set # type 31 code 10

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 183

CHAPTER 7. ADVANCED CASE STUDY

1/7947 1/7947 DG conv failed - Unk mandatory transport opt # type 31 code 11

1/9472 1/9472 Domain Name Request # type 37 code 0
1/9728 1/9728 Domain Name Reply # type 38 code 0

1/10240 1/10240 Photuris bad SPI # type 40 code 0
1/10241 1/10241 Photuris Auth Failed # type 40 code 1
1/10242 1/10242 Photuris Decompression Failed # type 40 code 2
1/10243 1/10243 Photuris Decryption Failed # type 40 code 3
1/10244 1/10244 Photuris Need Authentication # type 40 code 4
1/10245 1/10245 Photuris Need Authorization # type 40 code 5

1/10496 1/10496 Seamoby CARD or CXTP # type 41 code 0 (RFC 4066/4067)
EOF
<2>$ rwpmapbuild --input -file= icmp_code_official .pmap.txt \

--output -file= icmp_code_official .pmap
<3>$ file icmp_code_official .pmap.txt icmp_code_official .pmap
icmp_code_official .pmap.txt: ASCII text
icmp_code_official .pmap: SiLK , PREFIXMAP v3 , Little Endian , Uncompressed

Example 7.5: Building an RFC Compliant ICMP Type and Code Prefix Map

Define IP Address Roles

Beth’s next step in creating the model is to define IP address roles. She will look at IP addresses that
are associated with internal subnetworks, internal subnetwork gateways, and network services. Example 7.6
shows how she defines all of the internal subnetworks contained in sensor.conf.

1. The file internal.set.txt (shown in Command 1) lists the IP addresses of the internal networks from
sensor.conf.

2. Command 2 calls the rwsetbuild command to convert this text list into a binary SiLK IPset,
internal.set (shown in Command 3).

Beth uses the resulting IPset, internal.set, to filter hosts the sensor identifies as “internal” to the
monitored network from hosts the sensor identifies as “external” to the network.

<1>$ cat <<-EOF >internal .set.txt
Internal networks from FCCX -15 sensor .conf
10.0.x.x
192.168. x.x
EOF
<2>$ rwsetbuild internal .set.txt >internal .set
<3>$ file internal .set.txt internal .set
internal .set.txt: ASCII text
internal .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 7.6: Building an IPset of FCCX-15 Internal Subnetworks

She then uses the rwsetbuild command to build IPsets that model internal subnetwork gateways
(gateways.set, shown in Example 7.7) and network services (services.set, show in Example 7.8). The
gateway and services information comes from the network diagram in Figure 1.4.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 184

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

<1>$ cat <<-EOF >gateways .set.txt
FCCX -15 gateways commonly end in .1 or .254
10.0.x.1
10.0.x.254
192.168. x.1
192.168. x.254
EOF
<2>$ rwsetbuild gateways .set.txt >gateways .set
<3>$ file gateways .set.txt gateways .set
gateways .set.txt: ASCII text
gateways .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 7.7: Building an IPset of FCCX-15 Internal Subnetwork Gateways

<1>$ cat <<-EOF >services .set.txt
Addresses of FCCX -15 internal network services
10.0.20. x # DMZ subnet
10.0.40. x # Services subnet
192.168.20. x # DMZ subnet
192.168.40. x # Services subnet
EOF
<2>$ rwsetbuild services .set.txt >services .set
<3>$ file services .set.txt services .set
services .set.txt: ASCII text
services .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 7.8: Building an IPset of FCCX-15 Internal Network Service Subnetworks

7.3.2 Pull Records Associated with ICMP Flows

After defining the network model, Beth uses the rwfilter command to pull ICMP traffic from the repository
as shown in Example 7.9.

1. Command 1 pulls the ICMP data (--proto=1) and saves it to the file icmpall.rw. The summary
statistics (--print-statistics) show that 436,648 records in the repository matched the query.

2. Command 2 shows the resulting SiLK raw file is less than 5 Mb in size.

This shows the amount of traffic that she must investigate.

Hint 7.1: Limiting rwfilter Query Size

If you are unsure about the number of records that might result from an rwfilter query,
remove the --pass=icmpall.rw option from the rwfilter command. This displays infor-
mation about the query without creating the raw file, allowing you to preview its results.

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 185

CHAPTER 7. ADVANCED CASE STUDY

--type=all --protocol =1 --pass= icmpall .rw \
--print - statistics

Files 2442. Read 39210497. Pass 436648. Fail 38773849.
<2>$ ls -ahl icmpall .rw
-rw -r--r--. 1 analyst analyst 4.9M Feb 27 15:42 icmpall .rw

Example 7.9: Pulling ICMP Network Flow Data for a Specified Period

7.3.3 What Anomalies are in the ICMP Records?

To find potential cases of data exposure, Beth will now examine the ICMP records for anomalies. SiLK’s
rwuniq command is a good tool for reviewing and examining data that’s pulled from the repository. rwuniq
provides an aggregate view of SiLK flow records. It can be used with prefix maps to label fields and display
a visual summary of ICMP messaging.

As shown in Command 1 of Example 7.10, Beth combines rwuniq with the prefix map from Section 7.3.1
to generate a sorted summary of ICMP types, codes, distinct source/destination IP address counts, and flow
record counts.

• --pmap-file=icmp:icmp_code_official.pmap tells rwuniq to count and summarize flow records ac-
cording to the labels defined in the pmap file from Example 7.5.

• --fields=itype,icode,dst-icmp identifies the flow fields that rwuniq selects and sorts upon. itype
and icode represent the ICMP type and code computed for the flow record. dst-icmp is the record’s
label from the pmap.

• --values=sip-distinct,dip-distinct counts the distinct source and destination IP addresses for
each pmap label.

• icmpall.rw contains the ICMP flow data (created in Example 7.9)

The UNKNOWN labels in the results from Example 7.10 are a default feature of prefix maps. They are
assigned to any attributes that do not have a corresponding pmap entry. This feature helps to identify
ICMP protocol anomalies in flow data. The results from the rwuniq command contain ICMP echo reply
anomalies (type (iTy) 0, code (iCo) 1 and type 0, code 9) and ICMP echo request anomalies (type 8,
code 1 and type 8, code 9). Internet research21,22 indicates that these anomalies, when combined with
the other ICMP types and codes displayed in the rwuniq summary, indicate a high probability of network
reconnaissance in the data.

<1>$ rwuniq --pmap -file=icmp: icmp_code_official .pmap \
--fields =itype ,icode ,dst -icmp \
--values =sip -distinct ,dip - distinct --flows --sort - output \
icmpall .rw

iTy|iCo| dst -icmp|sIP - Distin |dIP - Distin | Records |
0| 0| Echo Reply| 106| 70| 101076|
0| 1| UNKNOWN | 13| 18| 39|
0| 9| UNKNOWN | 11| 1| 58|
3| 0| Net Unreachable | 3| 6| 1074|

21https://nmap.org/book/osdetect-methods.html#idm8844
22https://www.blackhat.com/presentations/bh-europe-00/OfirArkin/OfirArkin2.pdf

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 186

https://nmap.org/book/osdetect-methods.html#idm8844
https://www.blackhat.com/presentations/bh-europe-00/OfirArkin/OfirArkin2.pdf

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

3| 1| Host Unreachable | 12| 78| 142054|
3| 2| Protocol Unreachable | 40| 27| 1890|
3| 3| Port Unreachable | 103| 63| 59335|
3| 4| Frag Needed DF Set| 1| 65| 6774|
3| 10| Dest Host Admin Proh| 4| 5| 162|
8| 0| Echo request | 86| 862| 120618|
8| 1| UNKNOWN | 18| 36| 96|
8| 9| UNKNOWN | 1| 768| 3089|

11| 0| TTL exceeded | 4| 5| 26|
13| 0| Timestamp request | 18| 36| 96|
14| 0| Timestamp Reply| 26| 18| 69|
15| 0| Information Request | 18| 36| 96|
17| 0| Address Mask Request | 18| 36| 96|

Example 7.10: Exploring Unique ICMP Types/Codes in a SiLK Raw File

• Echo Request and Echo Reply are used for network host enumeration.

• Net Unreachable, Host Unreachable, Port Unreachable, and Protocol Unreachable messages are
common responses to port and protocol enumeration.

• Frag Needed DF Set messages can result from operating system fingerprinting.

Many of the ICMP types and codes in Example 7.10 serve legitimate purposes. However, Beth knows
that the likelihood of deprecated type requests without responses and small counts of source IP addresses
“sweeping” the network with anomalous types and codes is low. The results of the rwuniq command contain
one distinct source IP address sending ICMP echo requests with code 9 to 768 destination IP addresses.

7.3.4 Exploring Attributes of ICMP Messaging

One approach that Beth can take to exploring this data is to analyze common and uncommon attributes
of ICMP messaging. On further review of Example 7.10, she identifies three logical groups of common and
uncommon ICMP behavior:

• deprecated ICMP types

• uncommon ICMP types

• uncommon behavior of common ICMP types

These logical groupings are useful for understanding information exposure. Beth will now examine them
as part of her exploratory analysis.

Exploring Deprecated ICMP Types

Deprecated ICMP types no longer have official support from standards committees and, in many cases, are
discouraged due to previous use. The IETF issues both individual and bulk deprecation notices for standards

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 187

CHAPTER 7. ADVANCED CASE STUDY

that the body has introduced. For example, RFC 663323 deprecates ICMP source quench message types;
RFC 691824 deprecates multiple message types.

Searching for these message types in ICMP traffic will help Beth to identify anomalous traffic. Any
deprecated types that are seen in monitored traffic should be validated and cataloged for future analysis.
Internet research25 supports this analysis approach.

Beth looks for deprecated ICMP types in the results from Example 7.10. Deprecated type requests
do appear in her results. However, there are no corresponding responses. This indicates that information
exposure from deprecated types didn’t occur on the network during the time period under analysis.

Beth can therefore rule out deprecated ICMP types as a source of information exposure. However, if she
did perform a follow-on exploratory analysis, she could identify the sources of these deprecated ICMP type
requests. She could also explore how security operations could automate this analysis and display events on
a situational awareness dashboard.

Exploring Uncommon ICMP Types

Uncommon ICMP types continue to have official standards committee support, but do not commonly occur
in network traffic. Beth notices in the Example 7.10 data that timestamp request and reply traffic occurred
during the exploratory analysis period.

ICMP timestamp types are uncommon on most networks26 and can be used for reconnaissance27. Beth
therefore decides to find out how many hosts are sending ICMP timestamp reply messages. This will help
her to assess the risk of information exposure.

Example 7.11 shows Beth’s analytic for counting the number of unique source IP addresses sending
timestamp reply messages.

1. The rwfilter call in Command 1 partitions ICMP type 14 messages from the exploratory analysis
data (--icmp-type=14) and passes these records to a file, icmp_14_all.rw. This file contains all
records that include ICMP timestamp reply messages.

2. The rwset call in Command 2 builds an IPset file in memory from the file in Command 1. The
rwsetcat call counts the number of distinct source IP addresses (26).

<1>$ rwfilter icmpall .rw --type=all --icmp -type =14 \
--pass= icmp_14_all .rw

<2>$ rwset --sip -file= stdout icmp_14_all .rw \
| rwsetcat stdin --count
26

Example 7.11: Counting Hosts that Send ICMP Timestamp Reply Messages

23Internet Engineering Task Force (IETF) Request for Comments 6633 (https://www.ietf.org/rfc/rfc6633.txt)
24Internet Engineering Task Force (IETF) Request for Comments 6918 (https://www.ietf.org/rfc/rfc6918.txt)
25Common Attack Pattern Enumeration and Classification 296 (https://capec.mitre.org/data/definitions/296.html)
26Cisco Security ICMP Timestamp Request Signature (https://tools.cisco.com/security/center/viewIpsSignature.x?

signatureId=2007&signatureSubId=0)
27Common Attack Pattern Enumeration and Classification 295 (https://capec.mitre.org/data/definitions/295.html)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 188

https://www.ietf.org/rfc/rfc6633.txt
https://www.ietf.org/rfc/rfc6918.txt
https://capec.mitre.org/data/definitions/296.html
https://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=2007&signatureSubId=0
https://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=2007&signatureSubId=0
https://capec.mitre.org/data/definitions/295.html

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

CAPEC-295 lists a low severity for timestamp messages. Beth wants to determine if such messages are
exiting the subnetwork address space. Example 7.12 shows her analytic for counting the number of source
IP addresses that are sending timestamp message replies outside the local subnetworks.

1. The rwfilter call in Command 1 partitions the outbound ICMP timestamp messages (--type=out)
in the file icmp_14_all.rw (created in Example 7.11).

2. The output is piped to the rwset command to build an IPset that contains the source IP addresses
for these outbound messages.

3. Finally, the rwsetcat command counts the number of source IP addresses in the set.

The resulting count of zero source IP addresses means that all timestamp replies are contained within
the local subnetworks. This rules out ICMP timestamp replies as potential sources of information exposure
outside the organization.

<1>$ rwfilter icmp_14_all .rw --type=out --pass= stdout \
| rwset --sip -file= stdout \
| rwsetcat stdin --count
0

Example 7.12: Counting Hosts that Send ICMP Timestamp Reply Messages Outside their Subnetwork

Beth still would like to check ICMP timestamp messaging on the subnetwork level. Example 7.13 shows
how to use SiLK tools to verify the subnetworks that contain these message types.

1. The rwfilter call in Command 1 sends all ICMP traffic in the file icmp_14_all.rw to standard
output.

2. The rwnetmask command masks the last 8 bits of the source and destination IP addresses. This
provides a subnetwork-level view into the data.

3. Finally, the rwuniq command counts the number of subnetworks that sent ICMP timestamp replies.

Beth did uncover several subnetworks that sent ICMP timestamp replies. If she decides to perform follow-
on analyses, she can verify whether these message types should occur within the identified subnetworks.

Exploring Uncommon Behavior of Common ICMP Types

Common ICMP types observed in network traffic are echo request (type 8), echo reply (type 0), and desti-
nation unreachable (type 3). Uncommon behavior of these types could be a sign of information exposure
and Beth decides that it is worth investigating. For example, it would be common for gateway devices or
hosts providing network services to respond to echo requests. However, it would be uncommon to see these
messages from hosts within subnetwork address ranges. If these types of security controls are not enforced,
her organization might be vulnerable to information exposure.

Beth’s exploratory analysis delves into the uncommon use of common ICMP types and seeks to answer
the following questions.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 189

CHAPTER 7. ADVANCED CASE STUDY

<1>$ rwfilter icmp_14_all .rw --type=all --pass= stdout \
| rwnetmask --sip -prefix - length =24 --dip -prefix - length =24 \
| rwuniq --fields =sip ,dip --flows

sIP| dIP| Records |
192.168.142.0| 192.168.142.0| 24|
192.168.165.0| 192.168.165.0| 6|

192.168.40.0| 192.168.40.0| 7|
192.168.164.0| 192.168.164.0| 11|
192.168.143.0| 192.168.143.0| 15|
192.168.141.0| 192.168.141.0| 6|

Example 7.13: Identifying Networks that Send ICMP Timestamp Reply Messages

Are internal hosts sending echo reply messages to external hosts? Beth first wants to find out
if internal hosts are sending echo reply messages to external IP addresses. Example 7.14 shows how she
identifies these hosts.

1. The rwfilter call in Command 1 partitions the icmpall.rw file, which contains all ICMP traf-
fic. It filters outbound echo reply traffic (--type=out --icmp-type=0), and uses internal.set,
the set of IP addresses in internal networks (see Example 7.6) to select both source IP addresses
(--sipset=internal.set) and IP addresses that aren’t destination addresses (--not-dipset=internal.set).
The records that pass this filter are saved in icmp_00_external.rw.

2. The rwset call in Command 2 counts the number of receiving destination IP addresses. First, it creates
a set of the IP addresses in icmp_00_external.rw that are destination addresses.

3. It then pipes the results to rwsetcat, which counts the number of IP addresses in the set.

Beth’s analysis finds that one IP address receives ICMP echo reply messages. She needs to find out if it
is exposing information outside the enterprise network. This could result from improper access control lists
or other configuration issues.

<1>$ rwfilter icmpall .rw --type=out --icmp -type =0 \
--sipset = internal .set --not - dipset = internal .set \
--pass= icmp_00_external .rw

<2>$ rwset --dip -file= stdout icmp_00_external .rw \
| rwsetcat --count stdin
1

Example 7.14: Counting External Networks that Receive ICMP Echo Reply Messages

Example 7.15 shows how Beth finds the IP addresses of hosts that are sending and receiving echo reply
messages from Example 7.14. The rwuniq call in Command 1 counts the hosts in icmp_00_external.rw to
find out which ones serve as sources and destinations for echo reply messages. Source IP address 10.0.40.21
resides in a service subnetwork, while destination IP address 155.6.3.11 resides in the Divnet3 subnetwork.

Beth considers this behavior to be normal because the Divnet3 subnetwork is internal to a theater
gateway. However, she still needs to perform a follow-on analysis to verify this trust relationship.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 190

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

<1>$ rwuniq --fields =sip ,dip --flows icmp_00_external .rw
sIP| dIP| Records |

10.0.40.21| 155.6.3.11| 66|

Example 7.15: Identifying External Networks that Receive ICMP Echo Reply Messages

Are internal non-gateway hosts sending echo reply messages outside their subnetworks? Beth
now turns to the next question in this phase of her exploratory analysis. She wants to identify internal
non-gateway hosts that are sending echo reply messages outside their subnetworks. Example 7.16 shows her
analytic.

1. The rwfilter call in Command 1 partitions icmpall.rw to filter all internal source IP addresses that
send outbound echo reply messages (--type=out --icmp-type=0), using internal.set, the set of IP
addresses in internal networks (see Example 7.6) to select both. It removes gateway and service hosts
as sources and saves the results to the icmp_00_internal.rw raw file.

2. The rwset and rwsetcat calls in Command 2 count the number of source IP addresses that exhibit
this behavior.

Beth examines the results in Example 7.16 and finds 20 non-gateway source IP addresses that send echo
reply messages outside their subnetworks.

<1>$ rwfilter icmpall .rw --type=out --icmp -type =0 \
--sipset = internal .set --pass= stdout \

| rwfilter stdin --not - sipset = gateways .set --pass= stdout \
| rwfilter stdin --not - sipset = services .set \

--pass= icmp_00_internal .rw
<2>$ rwset --sip -file= stdout icmp_00_internal .rw \
| rwsetcat --count stdin
20

Example 7.16: Counting Internal Non-Gateway Hosts that Send ICMP Echo Reply Messages Outside their
Subnetwork

Before reviewing the specific hosts identified in Example 7.16 further, Beth decides to label the results
to better understand internal service usage for the different subnetworks. Example 7.17 shows how she
builds an IPv4 prefix map that provides labels for various internal network services. Her pmap labels the
subnetworks that host the DMZ, SERVICES, and VPNPOOL services.

In Example 7.18, Beth uses this pmap with the rwuniq command to analyze host behavior. Echo
reply messages from source IP address 192.168.70.10 (proxy device) to destination IP address 10.0.40.27
(Nagios server) are likely to be legitimate.

However, the remaining results should be considered suspicious. The multiple echo reply messages from
an internal subnetwork host to a VPNPOOL host (192.168.181.8) and a domain controller (10.0.40.20) are
not considered to be common ICMP echo reply behavior.

Beth should investigate this behavior further in follow-on analyses to find out if it is malicious.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 191

CHAPTER 7. ADVANCED CASE STUDY

<1>$ cat <<-EOF >servicenets .pmap.txt
Service Network Descriptions
map -name services
mode ipv4

10.0.20.0/24 DMZ # DMZ subnet
10.0.40.0/24 SERVICES # Services subnet
192.168.20.0/24 DMZ # DMZ subnet
192.168.40.0/24 SERVICES # Services subnet
192.168.181.0/24 VPNPOOL # VPN pool
EOF
<2>$ rwpmapbuild --input -file= servicenets .pmap.txt \

--output -file= servicenets .pmap
<3>$ file servicenets .pmap.txt servicenets .pmap
servicenets .pmap.txt: ASCII text
servicenets .pmap: SiLK , PREFIXMAP v2 , Little Endian , Uncompressed

Example 7.17: Building a Prefix Map of Service Subnetworks

<1>$ rwuniq --pmap -file= services : servicenets .pmap \
--fields =sip ,dip ,itype ,icode ,dst - services --flows \
icmp_00_internal .rw

sIP| dIP|iTy|iCo|dst - services | Records |
192.168.121.77| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.166.55| 192.168.181.8| 0| 0| VPNPOOL | 5|

192.168.121.2| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.166.12| 192.168.181.8| 0| 0| VPNPOOL | 5|

192.168.111.2| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.121.2| 192.168.181.8| 0| 9| VPNPOOL | 5|

192.168.111.223| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.111.212| 192.168.181.8| 0| 0| VPNPOOL | 5|

192.168.166.15| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.111.109| 192.168.181.8| 0| 0| VPNPOOL | 5|

192.168.70.10| 10.0.40.27| 0| 0| SERVICES | 1013|
192.168.121.158| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.124.218| 192.168.40.20| 0| 0| SERVICES | 2|

192.168.166.43| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.121.57| 192.168.181.8| 0| 0| VPNPOOL | 5|

192.168.111.131| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.166.43| 192.168.40.20| 0| 0| SERVICES | 2|

192.168.111.2| 192.168.181.8| 0| 9| VPNPOOL | 5|
192.168.121.145| 192.168.181.8| 0| 0| VPNPOOL | 5|

192.168.111.94| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.166.233| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.121.244| 192.168.181.8| 0| 0| VPNPOOL | 5|
192.168.124.205| 10.0.40.20| 0| 0| SERVICES | 4|

Example 7.18: Identifying Internal Non-Gateway Hosts that Send ICMP Echo Reply Messages Outside their
Subnetwork

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 192

7.3. CASE STUDY: EXPLORING NETWORK MESSAGING FOR INFORMATION EXPOSURE

7.3.5 Wrap Up Investigation and Identify Follow-On Analyses

In this case study, Beth used network flow data and SiLK tools to perform an exploratory analysis of ICMP
traffic to assess the risk of information exposure. Her analysis shows that information exposure from ICMP
messaging does not appear to be widespread across the enterprise.

However, Beth did find two possible trouble spots: trust relationships between internal subnetworks
and suspicious activity associated with ICMP echo reply messages. She should investigate them further to
determine if they represent scanning or other malicious activity. Her follow-on analyses may require support
and data from outside the security operations group.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 193

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 194

Chapter 8

Extending the Reach of SiLK with
PySiLK

This chapter discusses how to use PySiLK, the SiLK Python extension, to support analyses that are difficult
to implement within the normal constraints of the SiLK tool suite. Sometimes, an analyst needs to use
parts of the SiLK suite’s native functionality in a modified way. The capabilities of PySiLK simplify these
analyses.

This chapter does not discuss the issues involved in composing new PySiLK scripts or how to code in the
Python programming language. Several example scripts are shown, but the detailed design of each script
will not be presented here.

Upon completion of this chapter, you will be able to

• explain the purpose of PySiLK in analysis

• use and modify PySiLK plug-ins to match records in rwfilter

• use and modify PySiLK plug-ins to add fields for rwcut and rwsort

• use and modify PySiLK plug-ins to add key fields and summary values for rwuniq and rwstats

Additional PySiLK and Python programming language resources include

• a brief guide to coding PySiLK plug-ins, provided by the silkpython manual page (see man silkpython
or Section 3 of The SiLK Reference Guide at https://tools.netsa.cert.org/silk/reference-guide.pdf)

• detailed descriptions of the PySiLK structures, provided in PySiLK: SiLK in Python (https://tools.
netsa.cert.org/silk/pysilk.pdf)

• generic programming in the Python programming language, as described in many locations on the
web, particularly on the Python official website (https://www.python.org/doc/)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 195

https://tools.netsa.cert.org/silk/reference-guide.pdf
https://tools.netsa.cert.org/silk/pysilk.pdf
https://tools.netsa.cert.org/silk/pysilk.pdf
https://www.python.org/doc/

CHAPTER 8. EXTENDING SILK

8.1 Using PySiLK

PySiLK is an extension to the SiLK tool suite that expands its functionality via scripts written in the Python
programming language. The purpose of PySiLK is to support analytical use cases that are difficult to express,
implement, and support with the capabilities natively built into SiLK, while using those capabilities where
appropriate.

To extend the SiLK tools with PySiLK, first write a Python file that calls Python functions defined in
the silk.plugin Python module. To use this Python file, specify the --python-file switch for one of the
SiLK tools that supports PySiLK. (The rwfilter, rwstats, rwuniq, rwcut, and rwsort tools can all make
use of PySiLK extensions.) The tool then loads the Python file and makes the new functionality available.

8.1.1 PySiLK Requirements

To use PySiLK:

1. Install the appropriate version of the Python language28 on your system.

2. Load the PySiLK library (a directory named silk) in the site-packages directory of the Python
installation.

3. To ensure that the PySiLK library works properly, set the PYTHONPATH environment variable to include
the site-packages directory.

8.1.2 PySiLK Scripts and Plug-ins

PySiLK code comes in two forms: standalone Python programs and plug-ins for SiLK tools. Both of these
forms use a Python module named silk that is provided as part of the PySiLK library. PySiLK provides
the capability to manipulate SiLK objects (flow records, IPsets, bags, etc.) with Python code.

For analyses that will not be repeated often or that are expected to be modified frequently, the relative
brevity of PySiLK renders it an efficient alternative. As with all programming, analysts need to use algo-
rithms that meet the speed and space constraints of the project. Often (but not always), building upon the
processing of the SiLK tools by use of a plug-in yields a more suitable solution than developing a stand-alone
script.

PySiLK plug-ins for SiLK tools use an additional component called silkpython, which is also provided
with the PySiLK library. The silkpython component creates the application programming interfaces (APIs),
simple and advanced, that connect a plug-in to SiLK tools. Currently, silkpython supports the following
SiLK tools: rwfilter, rwcut, rwgroup, rwsort, rwstats, and rwuniq.

• For rwfilter, silkpython permits a plug-in to provide new types of partitioning criteria.

• For rwcut, plug-ins can create new flow record fields for display.

• For rwgroup and rwsort, plug-ins can create fields to be used as all or part of the key for grouping or
sorting records.

28Python 2.7.x for SiLK Version 3.19.1.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 196

8.2. EXTENDING RWFILTER WITH PYSILK

• For rwstats and rwuniq, two types of fields can be defined: key fields used to categorize flow records
into bins and summary value fields used to compute a single value for each bin from the records in
those bins.

• For all of the tools, silkpython allows a plug-in to create new SiLK tool switches (parameters) to
modify the behavior of the aforementioned partitioning criteria and fields.

The silkpython module provides only one function for establishing (registering) partitioning criteria
(filters) for rwfilter. The simple API provides four functions for creating key fields for the other five
supported SiLK tools and three functions for creating summary value fields for rwstats and rwuniq. The
advanced API provides one function that can create either key fields or summary value fields, and permits
a higher degree of control over these fields.

8.2 Extending rwfilter with PySiLK

PySiLK extends the capabilities of rwfilter by letting the analyst create new methods for partitioning flow
records.29

For a single execution of rwfilter, PySiLK is much slower than using a combination of rwfilter
parameters and usually slower than using a C-language plug-in. However, there are several ways in which
using PySiLK can replace a series of several rwfilter executions with a single execution and ultimately
speed up the overall process.

Without PySiLK, rwfilter has limitations using its built-in partitioning parameters:

• Each flow record is examined without regard to other flow records. That is, no state is retained.

• There is a fixed rule for combining partitioning parameters: Any of the alternative values within a
parameter satisfies that criterion (i.e., the alternatives are joined implicitly with a logical or operation).
All parameters must be satisfied for the record to pass (i.e., the parameters are joined implicitly with
a logical and operation).

• The types of external data that can assist in partitioning records are limited. IP sets, tuple files, and
prefix maps are the only types provided by built-in partitioning parameters.

PySiLK is useful to expand the capabilities of rwfilter in these cases:

• Information from prior records may help to partition subsequent records into the pass or fail categories.

• A series of nontrivial alternatives form the partitioning condition.

• The partitioning condition employs a control structure or data structure.

29These partitioning methods may also calculate values not normally part of rwfilter’s output, typically emitting those
values to a file or to the standard error stream to avoid conflicts with flow record output.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 197

CHAPTER 8. EXTENDING SILK

8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating
Inconsistent Sources

For an example of where some information (or state) from prior records may help in partitioning subse-
quent records, consider Example 8.1. This script (ThreeOrMore.py) passes all records that have a source IP
address used in two or more prior records. This can be useful if you want to eliminate casual or inconsistent
sources of particular behavior. The addrRefs variable is the record of how many times each source IP
address has been seen in prior records. The threeOrMore function holds the Python code to partition the
records. If it determines the record should be passed, it returns True; otherwise it returns False.

import sys # stderr

bound = 3 # default threshold for passing record
addrRefs ={} # key = IP address , value = reference count

def threeOrMore (rec):
global addrRefs # allow modification of addrRefs

keyval = rec.sip # change this to count on different field
addrRefs [keyval] = addrRefs .get(keyval , 0) + 1
return addrRefs [keyval] >= bound

def set_bound (integer_string):
global bound

try:
bound = int(integer_string)

except ValueError :
print >>sys.stderr , '--limit value , %s, is not an integer .' % integer_string

def output_stats ():
AddrsWithEnufFlows = len ([1 for k in addrRefs .keys ()

if addrRefs [k] >= bound])
print >>sys.stderr , 'SIPs: %d; SIPs meeting threshold : %d' % (len(addrRefs),

AddrsWithEnufFlows)

register_filter (threeOrMore , finalize = output_stats)
register_switch ('limit ', handler =set_bound , help=' Threshold for passing ')

Example 8.1: ThreeOrMore.py: Using PySiLK for Memory in rwfilter Partitioning

In Example 8.1, the call to register_filter informs rwfilter (through silkpython) to invoke the
specified Python function (threeOrMore) for each flow record that has passed all the built-in SiLK parti-
tioning criteria. In the threeOrMore function, the addrRefs dictionary is a container that holds entries
indexed by an IP address and whose values are integers.

When the get method is applied to the dictionary, it obtains the value for the entry with the specified

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 198

8.2. EXTENDING RWFILTER WITH PYSILK

key, keyval, if such an entry already exists. If this is the first time that a particular key value arises,
the get method returns the supplied default value, zero. Either way, one is added to the value obtained
by get. The return statement compares this incremented value to the bound threshold value and returns
the Boolean result to silkpython, which informs rwfilter whether the current flow record passes the
partitioning criterion in the PySiLK plug-in.

In Example 8.1, the set_bound function is not required for the partitioning to operate. It provides the
capability to modify the threshold that the threeOrMore function uses to determine which flow records
pass. The call to register_switch informs rwfilter (through silkpython) that the --limit parameter
is acceptable in the rwfilter command after the --python-file=ThreeOrMore.py parameter, and that if
the user specifies the parameter (e.g., --limit=5) the set_bound function will be run to modify the bound
variable before any flow records are processed. The value provided in the --limit parameter will be passed
to the set_bound function as a string that needs to be converted to an integer so it can participate later in
numerical comparisons.

If the user specifies a string that is not a representation of an integer, the conversion will fail inside the
try statement, raising a ValueError exception and displaying an error message; in this case, bound is not
modified.

8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting
Port Knocking

For an example in which some information (or state) from prior records may help in partitioning sub-
sequent records, consider port knocking. This is a technique used to thwart port scanning. Port scanning
involves sending single packets to particular ports on a target host to see what response, if any, is returned
by the target. The response, or lack of one, is interpreted to determine if there is a service available on that
port on the target host. Port knocking is employed by the administrator of the target host to make all ports
look as if there are no services available on any of them.

Port knocking requires legitimate users (or their software) to know the secret combination of actions that
must be taken before an attempt is made to connect to a service port. These actions consist of attempts to
connect (or knocks) to certain other ports in the correct order right before attempting a connection to the
service port. Achieving the correct sequence of knocks creates a temporary rule in the firewall to allow the
sender of the knocks to connect to a particular service. Profiling a network to obtain situational awareness
could include port knocking detection to explain what would otherwise look like strange traffic.

Example 8.2 implements a plug-in for rwfilter that takes a simple approach. The plug-in requires that
its input be sorted by IP addresses and time. That way the port knocks appear in the input right before
the service connection attempt. This means that the plug-in needs to retain state for only one connection
attempt at a time, simplifying the code and greatly reducing the memory requirements.

The plug-in looks for three consecutive flow records where the first two (the port knocks) attempt to
initiate TCP connections to different ports, but there are no following packets with the ACK flag that would
indicate the connection had been established. After the two port knock flows, there must be a flow for a
third port which does have additional packets with the ACK flag.

These criteria are somewhat simple. We could add constraints such as specifying that the three ports

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 199

CHAPTER 8. EXTENDING SILK

must have a certain ordinal relationship (e.g., lower-higher-lower). However, Example 8.2 shows the essential
elements. When the three-flow sequence is found, the third flow passes the filter and a text record is displayed.

import datetime # timedelta ()
import sys # stdout

REQDKNOCKS = 2 # number of required knocks with distinct port numbers
INTERVAL = datetime . timedelta (seconds =5) # knocks & conn this close in time
TCP = 6 # protocol number

portListWidth = REQDKNOCKS * 7
lastsip = None

def note_first_knock (rec):
global lastsip , lastdip , portlist , lastetime
lastsip = rec.sip
lastdip = rec.dip
portlist = [rec.dport]
lastetime = rec.etime
return

def examine_flow (rec):
global lastsip , lastdip , portlist , lastetime
if (rec. protocol == TCP and rec. initial_tcpflags is not None and

rec. initial_tcpflags . matches ('S/SA ')): # initial SYN (client to server)
if lastsip is not None and rec.sip == lastsip and rec.dip == lastdip :

if rec.stime - lastetime <= INTERVAL :
if rec. session_tcpflags .ack: # established connection

connected to knocked port or insufficient knocks ?
if rec.dport in portlist or len(portlist) < REQDKNOCKS :

lastsip = None
else: # enough prior knocks ?

sys. stdout .write ('%15s %15s %*s %5d\n' % (lastsip , lastdip ,
portListWidth , portlist , rec.dport))

lastsip = None
return True # flow record passes filter

else: # connection not established ; just a knock
if rec.dport in portlist : # already seen this port

note_first_knock (rec) # start over as 1st knock
else:

if len(portlist) >= REQDKNOCKS : # add a knock
del portlist [0] # delete oldest knock , make room for new

portlist . append (rec.dport)
lastetime = rec.etime

last knock was too long ago
elif rec. session_tcpflags .ack: # established connection

lastsip = None
else: # too long ago and connection not established ; just a knock

note_first_knock (rec) # start over as 1st knock
new sip and/or dip
elif not rec. session_tcpflags .ack: # conn not established ; just a knock

note_first_knock (rec) # start over as 1st knock
return False # flow record fails filter

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 200

8.2. EXTENDING RWFILTER WITH PYSILK

def show_heading ():
sys. stdout .write ('%15s %15s %*s %5s\n' % ('sIP ', 'dIP ', portListWidth ,

'Knock -Ports ', 'Estab '))

register_filter (examine_flow , initialize = show_heading)

Example 8.2: portknock.py: Using PySiLK to Retain State in rwfilter Partitioning

8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Envi-
ronment

An analyst could use a PySiLK script with rwfilter by first calling rwfilter to retrieve the records
that satisfy a given set of conditions, then piping those records to a second rwfilter call that uses the
--python-file parameter to invoke the script. This is shown in Example 8.3. This syntax is preferred to
simply including the --python-file parameter on the first call, since its behavior is more consistent across
execution environments. If rwfilter is running on a multiprocessor configuration, running the script on the
first rwfilter call cannot be guaranteed to behave consistently for a variety of reasons, so running PySiLK
scripts via a piped rwfilter call is more consistent.

<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \
--type=inweb --protocol =6 --dport =443 \
--bytes -per - packet =65- --packets =4- \
--flags -all=SAF/SAF ,SAR/SAR --pass= stdout \

| rwfilter stdin --python -file= ThreeOrMore .py \
--pass=web.rw

SIPs: 81; SIPs meeting threshold : 81

Example 8.3: Calling ThreeOrMore.py

8.2.4 Simple PySiLK with rwfilter --python-expr

Some analyses that do not lend themselves to solutions with just the SiLK built-in partitioning parameters
may be so simple with PySiLK that they center on an expression that evaluates to a Boolean value. Using
the rwfilter --python-expr parameter will cause silkpython to provide the rest of the Python plug-in
program.

Example 8.4 partitions flow records that have the same port number for their source port and destination
port (sport and dport). Although the name for the flow record object is specified by a function parameter
in user-written Python files, with --python-expr, the record object is always called rec. The source port
and destination port therefore can be specified as rec.sport and rec.dport. Checking whether their values
are equal becomes very simple.

With --python-expr, it is not possible to retain state from previous flow records as in Example 8.1. Nor
is it possible to incorporate information from sources other than the flow records. Both of these require a

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 201

CHAPTER 8. EXTENDING SILK

<1>$ rwfilter flows.rw --protocol =6 ,17 --python -expr='rec.sport == rec.dport ' \
--pass= equalports .rw

Example 8.4: Using --python-expr for Partitioning

plug-in invoked by --python-file.

8.2.5 PySiLK with Complex Combinations of Rules

Example 8.5 shows an example of using PySiLK to filter for a condition with several alternatives. This
code is designed to identify virtual private network (VPN) traffic in the data, using IPsec, OpenVPN®, or
VPNz®. This involves having several alternatives, each matching traffic either for a particular protocol (50
or 51) or for particular combinations of a protocol (17) and ports (500, 1194, or 1224). This could be done
using a pair of rwfilter calls (one for UDP [17] and one for both ESP [50] and AH [51]) and rwcat to put
them together, but this is less efficient than using PySiLK.

def vpnfilter (rec):
return ((rec. protocol == 17 and # UDP

(rec.dport in (500 , 1194 , 1224) or # IKE , OpenVPN , VPNz
rec.sport in (500 , 1194 , 1224)))

or rec. protocol in (50, 51)) # ESP , AH

register_filter (vpnfilter)

Example 8.5: vpn.py: Using PySiLK with rwfilter for Partitioning Alternatives

8.2.6 Use of Data Structures in Partitioning

Example 8.6 shows the use of a data structure in an rwfilter condition. This particular case identifies
internal IP addresses responding to contacts by IP addresses in certain external blocks. The difficulty is that
the response is unlikely to go back to the contacting address and likely instead to go to another address on
the same network. Matching this with conventional rwfilter parameters is very slow and repetitive. By
building a list of internal IP addresses and the networks they’ve been contacted by, rwfilter can partition
records based on this list using the PySiLK script in Example 8.6, called matchblock.py.

In Example 8.6, lines 1 and 2 import objects from two modules. Line 3 sets a constant (with a name in
all uppercase by convention). Line 4 creates a global variable to hold the name of the file containing external

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 202

8.2. EXTENDING RWFILTER WITH PYSILK

netblocks and gives it a default value. Lines 6, 10, and 32 define functions to be invoked later. Line 42 informs
silkpython of two things: (1) that the open_blockfile function should be invoked after all command-line
switches (parameters) have been processed and before any flow records are read and (2) that in addition to
any other partitioning criteria, every flow record must be tested with the match_block function to determine
if it passes or fails. Line 43 tells silkpython that rwfilter should accept a --blockfile parameter on the
command line and process its value with the change_blockfile function before the initialization function,
open_blockfile, is invoked.

When open_blockfile is run, it builds a list of external netblocks for each specified internal address.
Line 25 converts the specified address to a PySiLK address object; if that’s not possible, a ValueError
exception is raised, and that line in the blockfile is skipped. Line 26 similarly converts the external netblock
specification to a PySiLK IP wildcard object; if that’s not possible, a ValueError exception is raised, and
that line in the file is skipped. Line 26 also appends the netblock to the internal address’s list of netblocks;
if that list does not exist, the setdefault method creates it.

When each flow record is read by rwfilter, silkpython invokes match_block, which tests every external
netblock in the internal address’s list to see if it contains the external, destination address from the flow
record. If an external address is matched to a netblock in line 35, the test passes. If no netblocks in the list
match, the test fails in line 39. If there is no list of netblocks for an internal address (because it was not
specified in the blockfile), the test fails in line 38.

Example 8.7 uses command-line parameters to invoke the Python plug-in and pass information to the
plug-in script (specifically the name of the file holding the block map). Command 1 displays the contents
of the block map file. Each line has two fields separated by a comma. The first field contains an internal
IP address; the second field contains a wildcard expression (which could be a CIDR block or just a single
address) describing an external netblock that has communicated with the internal address. Command 2
then invokes the script using the syntax introduced previously, augmented by the new parameter.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 203

CHAPTER 8. EXTENDING SILK

from silk import IPAddr , IPWildcard
2 import sys # exit (), stderr

PLUGIN_NAME = 'matchblock .py '
blockname =' blocks .csv '

5
def change_blockfile (block_str):

global blockname
8 blockname = block_str

def open_blockfile ():
11 global blockfile , blockdict

try:
blockfile = open(blockname)

14 except IOError , e_value :
sys.exit ('%s: Block file: %s' % (PLUGIN_NAME , e_value))

blockdict = dict ()
17 for line in blockfile :

if line. lstrip ()[0] == '#': # recognize comment lines
continue # skip entry

20 fields = line.strip (). split (',') # remove NL and split fields on commas
if len(fields) < 2: # too few fields ?

print >>sys.stderr , '%s: Too few fields : %s' % (PLUGIN_NAME , line)
23 continue # skip entry

try:
idx = IPAddr (fields [0]. rstrip ())

26 blockdict . setdefault (idx , []). append (IPWildcard (fields [1]. strip ()))
except ValueError : # field cannot convert to IPAddr or IPWildcard

print >>sys.stderr , '%s: Bad address or wildcard : %s' % (PLUGIN_NAME , line)
29 continue # skip entry

blockfile .close ()

32 def match_block (rec):
try:

for netblock in blockdict [rec.sip]:
35 if rec.dip in netblock :

return True
except KeyError : # no such inside addr

38 return False
return False # no netblocks match

41 # M A I N
register_filter (match_block , initialize = open_blockfile)
register_switch ('blockfile ', handler = change_blockfile ,

44 help='Name of file that holds CSV block map. Def. blocks .csv ')

Example 8.6: matchblock.py: Using PySiLK with rwfilter for Structured Conditions

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 204

8.3. EXTENDING SILK WITH FIELDS DEFINED WITH PYSILK

<1>$ cat blockfile .csv
198.51.100.17 , 192.168.0.0/16
203.0.113.178 , 192.168. x.x
<2>$ rwfilter out_month .rw --protocol =6 --dport =25 --pass= stdout \

| rwfilter stdin --python -file= matchblock .py \
--blockfile = blockfile .csv --print - statistics

Files 1. Read 375567. Pass 8. Fail 375559.

Example 8.7: Calling matchblock.py

8.3 Extending SiLK with Fields Defined with PySiLK

Five SiLK tools support fields defined with PySiLK: rwcut, rwgroup, rwsort, rwstats, and rwuniq. All
five support newly defined key fields, although for rwcut these fields are not really the key to any sorting or
grouping operation; they are simply available for display. Two of the tools, rwstats and rwuniq, support
newly defined summary value fields. For fields that require the use of the advanced API, the programmer will
want to determine which of the five tools will be used with these fields to avoid unnecessary programming. By
examining the characteristics of the new field the programmer can determine which tools can take advantage
of the field.

rwcut can make use of any key field that produces character strings (text). It does not matter if field
values can be used in computations, comparisons, or sorting. As long as the field can be represented as text,
rwcut can use it. When registering such fields, a function to produce a text value must be provided.

For rwgroup and rwsort to utilize a field defined with PySiLK, the field registration must provide a
function that produces binary (non-text) values that can be compared. For rwgroup, the comparison is only
for equality to determine if two consecutive records belong in the same group. For rwsort the comparison
must also determine the order of unequal values.

For rwstats and rwuniq, a key field not only needs a binary representation for grouping purposes, it
also needs a function to convert the binary key (bin) to text for display purposes. Furthermore, it must
make sense semantically for the field to produce a many-to-one mapping from its inputs to its value. This
is necessary for the field to make a good key (or partial key) for bins. A field makes a poor binning key if
nearly every record produces a unique field value, or if nearly every record produces the same field value.

8.4 Extending rwcut and rwsort with PySiLK

PySiLK is useful with rwcut and rwsort in these cases:

• An analysis requires a value based on a combination of fields, possibly from a number of records.

• An analyst chooses to use a function on one or more fields, possibly conditioned by the value of one or
more fields. The function may incorporate data external to the records (e.g., a table of header lengths).

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 205

CHAPTER 8. EXTENDING SILK

8.4.1 Computing Values from Multiple Records

Example 8.8 shows the use of PySiLK to calculate a value from the same field of two different records
in order to provide a new column to display with rwcut. This particular case, which will be referred to as
delta.py, introduces a delta_msec column, with the difference between the start time of two successive
records. Potential uses for this column including ready identification of flows that occur at very stable
intervals, such as keep-alive traffic or beaconing.

The plug-in uses global variables to save the IP addresses and start time between records and then returns
to rwcut the number of milliseconds between start times. The register_int_field call allows the use of
delta_msec as a new field name and gives rwcut the information that it needs to process the new field.

last_sip = None

def compute_delta (rec):
global last_sip , last_dip , last_time
if last_sip is None or rec.sip != last_sip or rec.dip != last_dip :

last_sip = rec.sip
last_dip = rec.dip
last_time = rec. stime_epoch_secs
deltamsec = 0

else: # sip and dip same as previous record
deltamsec = int (1000. * (rec. stime_epoch_secs - last_time))
last_time = rec. stime_epoch_secs

return deltamsec

register_int_field (' delta_msec ', compute_delta , 0, 4294967295)
fieldname function min max

Example 8.8: delta.py

To use delta.py, Example 8.9 sorts the flow records by source address, destination address, and start
time after pulling them from the repository. After sorting, the example passes them to rwcut with the
--python-file=delta.py parameter before the --fields parameter so that the delta_msec field name is
defined. Because of the way the records are sorted, if the source or destination IP addresses are different
in two consecutive records, the latter record could have an earlier sTime than the prior record. Therefore,
it makes sense to compute the time difference between two records only when their source addresses match
and their destination addresses match. Otherwise, the delta should display as zero.

8.4.2 Computing a Value Based on Multiple Fields in a Record

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 206

8.4. EXTENDING RWCUT AND RWSORT WITH PYSILK

<1>$ rwfilter --type=out --start -date =2015/06/02 \
--end -date =2015/06/18 --protocol =17 --packets =1 \
--pass= stdout \

| rwsort --fields =sIP ,dIP ,sTime \
| rwcut --python -file=delta.py \

--fields =sIP ,dIP ,sTime , delta_msec --num -recs =20
sIP| dIP| sTime| delta_msec |

10.0.20.58| 128.8.10.90|2015/06/17 T20 :50:50.725| 0|
10.0.20.58| 128.8.10.90|2015/06/17 T20 :50:50.725| 0|
10.0.20.58| 128.8.10.90|2015/06/17 T20 :50:50.725| 0|
10.0.20.58| 199.7.83.42|2015/06/17 T20 :50:46.717| 0|
10.0.20.58| 199.7.83.42|2015/06/17 T20 :50:46.717| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.030| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.268| 237|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.580| 312|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.580| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.674| 94|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.015| 341|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.043| 27|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.215| 171|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.397| 182|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.228| 830|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.620| 391|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.622| 2|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.622| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:11.069| 447|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:11.415| 345|

Example 8.9: Calling delta.py

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 207

CHAPTER 8. EXTENDING SILK

Example 8.10 shows the use of a PySiLK plug-in for both rwsort and rwcut that supplies a value
calculated from several fields from a single record. In this example, the new value is the number of bytes of
payload conveyed by the flow. The number of bytes of header depends on the version of IP as well as the
Transport-layer protocol being used (IPv4 has a 20-byte header, IPv6 has a 40-byte header, and TCP adds
20 additional bytes, while UDP adds only 8 and GRE [protocol 47] only 4, etc.).

The header_len variable holds a mapping from protocol number to header length. Protocols omitted
from the mapping contribute zero bytes for the Transport-layer header. This is then multiplied by the
number of packets and subtracted from the flow’s byte total. This code assumes no packet fragmentation is
occurring. The same function is used to produce both a value for rwsort to compare and a value for rwcut
to display, as indicated by the register_int_field call.

ICMP IGMP IPv4 TCP UDP IPv6 RSVP
header_len ={1:8 , 2:8, 4:20 , 6:20 , 17:8 , 41:40 , 46:8 ,

47:4 , 50:8 , 51:12 , 88:20 , 132:12}
GRE ESP AH EIGRP SCTP

def bin_payload (rec):
transport_hdr = header_len .get(rec.protocol , 0)
if rec. is_ipv6 ():

ip_hdr = 40
else:

ip_hdr = 20
return rec.bytes - rec. packets * (ip_hdr + transport_hdr)

register_int_field ('payload ', bin_payload , 0, (1 << 32) - 1)
fieldname function min max

Example 8.10: payload.py: Using PySiLK for Conditional Fields with rwsort and rwcut

Example 8.11 shows how to use Example 8.10 with both rwsort and rwcut. The records are sorted into
payload-size order and then output, showing both the bytes and payload values.

8.4.3 Defining a Character String Field for rwcut

PySiLK has no function in the simple API for creating character-string fields. Do not be tempted to use
an enumeration where there are many possible strings produced for the field; an enumeration can be quite
memory-intensive. It will not sort correctly in rwsort or in rwuniq with the --sort-output parameter.

Creating a character-string field with the advanced API (register_field function) is not difficult.
Starting with an example of a string field that works only with rwcut, Example 8.12 is a PySiLK plug-in
that makes large values in the built-in duration field more understandable by breaking it down into days,
hours, minutes, and seconds (including milliseconds). This field does not provide a binary value, so the field
has no usefulness with rwsort or rwgroup, which produce non-text output. Since this field embodies the
same information as the built-in duration field, the built-in field is better suited for use with these tools
as it will yield much better performance. The usefulness of decode_duration with rwstats and rwuniq is

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 208

8.4. EXTENDING RWCUT AND RWSORT WITH PYSILK

<1>$ rwsort inbound .rw --python -file= payload .py --fields = payload \
| rwcut --python -file= payload .py --fields =5, packets ,bytes , payload

pro| packets | bytes| payload |
6| 1007| 40280| 0|
1| 1| 28| 0|
6| 2| 92| 12|
6| 8| 332| 12|
1| 1| 48| 20|

17| 1| 51| 23|
1| 14| 784| 392|

80| 3| 762| 702|
50| 16| 1920| 1472|
17| 1| 2982| 2954|
47| 153| 12197| 8525|
50| 77| 11088| 8932|
17| 681| 212153| 193085|

6| 309| 398924| 386564|
51| 5919| 773077| 583669|
51| 10278| 1344170| 1015274|

6| 820| 1144925| 1112125|
97| 2134784|2770949632|2728253952|

Example 8.11: Calling payload.py

dubious as well; although these tools produce textual output, the lack of a many-to-one mapping makes this
field an ideal candidate for use only with rwcut.

Example 8.13 shows both the built-in duration field and the associated decode_duration field for several
flow records.

'''Define a field for rwcut which formats the flow duration as a string
representation of days , hours , minutes , seconds , and milliseconds .

'''

SECPERHOUR = 3600
SECPERMIN = 60

def decode_duration (rec):
(hours , seconds) = divmod (rec. duration .seconds , SECPERHOUR)
(minutes , seconds) = divmod (seconds , SECPERMIN)
return '%02dd %02 dh %02 dm %02d.%03ds ' % (rec. duration .days , hours , minutes ,

seconds , rec. duration . microseconds // 1000)

register_field (' decode_duration ', column_width =16, rec_to_text = decode_duration ,
description =' Decomposition of duration into days , hours ,'

' minutes , seconds , and milliseconds ')

Example 8.12: decode_duration.py: A Program to Create a String Field for rwcut

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 209

CHAPTER 8. EXTENDING SILK

<1>$ rwcut flows.rw --python -file= decode_duration .py \
--fields = decode_duration , duration

decode_duration | duration |
01 d07h32m49 .161s |113569.161|
00 d00h29m00 .450s| 1740.450|
00 d19h05m22 .667s |68722.667|
00 d00h00m03 .000s| 3.000|

Example 8.13: Calling decode_duration.py

8.4.4 Defining a Character String Field for Five SiLK Tools

A plug-in to create a character-string field not only for rwcut, but also for rwgroup, rwsort, rwstats, and
rwuniq needs a little more code. In Example 8.14 a regular expression is used to provide a pattern for the
site-name portion of a sensor name. Since the regular expression does not permit numeric digits as part of
the site name, the pattern matching ends when a digit is reached in the sensor name. In addition to defining
a function that derives a string from a SiLK flow record, we need a function to pad the strings so their
lengths are the same for all records, and a function to strip the padding.

The functions provided here should work for other string-field plug-ins, except for the call to get_site,
which derives the string from the record. Then we must establish the maximum length of the field, and
supply a few additional parameters to the register_field call. Example 8.15 shows how use of the derived
field reduces the output to fewer lines than the number of sensors.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 210

8.4. EXTENDING RWCUT AND RWSORT WITH PYSILK

import re # compile (), SRE_Pattern .match (), SRE_Match .group ()

Global variables that may be modified for the enterprise .
MAX_FIELD_LEN = 8
regex = re. compile (r"^[-A-Za -z]+")

def get_site (rec):
'''Derive site name from sensor field in flow record .'''

return regex.match(rec. sensor). group ()

def remove_padding (bin):
'''Remove padding from fixed - length string .'''

for Python 3.x, change "bin" to "str(bin , 'UTF -8 ')"
return bin. rstrip ('\0')

def pad_to_fixed_length (rec):
'''Make site names all the same length .'''

for Python 3.x, enclose the entire expression in "bytes(, 'UTF -8 ')"
return get_site (rec). ljust(MAX_FIELD_LEN , '\0')

register_field ('Site ',
bin_bytes = MAX_FIELD_LEN ,
bin_to_text = remove_padding ,
column_width = MAX_FIELD_LEN ,
description ='Site name derived from sensor .',
rec_to_bin = pad_to_fixed_length ,
rec_to_text = get_site)

Example 8.14: sitefield.py: A Program to Create a String Field for Five SiLK Tools

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 211

CHAPTER 8. EXTENDING SILK

<1>$ rwcut flows.rw --python -file= sitefield .py --fields =sensor ,Site
sensor | Site|

NewYork1 | NewYork |
NewYork2 | NewYork |

London0 | London |
London1a | London |
NewYork1 | NewYork |
NewYork2 | NewYork |
NewYork3 | NewYork |

London0 | London |
London1a | London |
London1a | London |
London1a | London |
NewYork2 | NewYork |
NewYork2 | NewYork |
NewYork3 | NewYork |
NewYork3 | NewYork |
NewYork2 | NewYork |
London1a | London |
<2>$ rwuniq flows.rw --python -file= sitefield .py --field=Site --sort - output

Site| Records |
London | 7|

NewYork | 10|

Example 8.15: Calling sitefield.py

8.5 Defining Key Fields and Summary Value Fields for rwuniq and
rwstats

In addition to defining key fields that rwcut can use for display, rwsort can use for sorting, and rwgroup
can use for grouping, rwuniq and rwstats can make use of both key fields and summary value fields. Key
fields and summary fields use different registration functions in the simple API, however the registered
callback functions do not have to be different. In Example 8.16, the same function, rec_bpp, is used to
compute the bytes-per-packet ratio for a flow record for use in binning records by a key and in proposing
candidate values for the summary value.

def rec_bpp (rec):
return int(round(float(rec.bytes) / float(rec. packets)))

register_int_field ('bpp ', rec_bpp , 0, (1 < <32) - 1)
register_int_max_aggregator ('maxbpp ', rec_bpp , (1 < <32) - 1)

Example 8.16: bpp.py

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 212

8.5. DEFINING KEY FIELDS AND SUMMARY VALUE FIELDS FOR RWUNIQ AND RWSTATS

In Example 8.17, command 2 uses the Python file, bpp.py, to create a key field for binning records.
Command 3 creates an summary value field instead. The summary value in the example finds the maximum
value of all the records in a bin, but there are simple API calls for minimum value and sum as well. For
additional summaries, the analyst can use the advanced API function, register_field.

<1>$ rwfilter --type=in --start -date =2015/06/02 \
--end -date =2015/06/18 --protocol =0- \
--max -pass - records =70 --pass=tmp.rw

<2>$ rwuniq tmp.rw --python -file=bpp.py --fields =protocol ,bpp \
--values = records

pro| bpp| Records |
17| 70| 1|

6| 132| 2|
6| 410| 1|

17| 74| 2|
6| 201| 1|
6| 116| 1|

17| 72| 1|
17| 85| 1|

6| 409| 1|
6| 217| 1|

17| 213| 1|
17| 84| 1|

6| 434| 1|
6| 140| 1|
6| 40| 15|
6| 160| 1|
6| 46| 1|
6| 236| 1|
6| 45| 29|

17| 73| 1|
6| 174| 5|
6| 154| 1|

<3>$ rwuniq tmp.rw --python -file=bpp.py --fields = protocol \
--values = maxbpp

pro| maxbpp |
6| 434|

17| 213|

Example 8.17: Calling bpp.py

As shown in this chapter, PySiLK simplifies several previously difficult analyses, without requiring coding
large scripts. While the programming involved in creating these scripts has not been described in much detail,
the scripts shown (or simple modifications of these scripts) may prove useful to analysts.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 213

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 214

Chapter 9

Tuning SiLK for Improved
Performance

While the SiLK tool suite offers a lot of expressive power and can accommodate a wide variety of analyses,
processing network flow records can take a long time. This delay comes from retrieving a large number
of records and analyzing those records through a complex series of steps. The time it takes to perform an
analysis can be reduced by exploiting features of the SiLK suite, the data being processed, and the processing
environment.

Upon completion of this chapter you will be able to

• develop a plan to reduce analysis time

• exploit features of the processing environment to reduce analysis time

• exploit data characteristics to reduce analysis time

• employ features of the SiLK suite to reduce analysis time

Hint 9.1: Response Times and Processor Architectures

This chapter presents a series of examples showing the various strategies, with observed
response times. Variations on host load, processor and disk configuration, storage organiza-
tion, repository structure, repository file sizes, and operating system versions all will affect
the time values. The performance gain for any strategy cannot be guaranteed for all data
sets. However, these techniques do allow retrieval and filtering to be done faster on modern
multiprocessor architectures.

The specific results presented here were obtained on a sixteen-processor shared-memory
architecture, with two cores per processor. Other processor architectures likely will produce
differing amounts of improvement. The times in this chapter are presented to compare and
illustrate response time improvements and may not represent the expected times for your
environment.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 215

CHAPTER 9. TUNING SILK

9.1 Introduction

This chapter is organized around an extended example of strategies to improve analysis response time. For
each strategy, it compares a non-optimized analytic with an optimized one. While not all of these techniques
will be appropriate everywhere, some of them are likely to be applicable to your environment.

9.1.1 Example: Reducing the Run Time of SiLK Analyses

Su Lin, an analyst at a large ISP, has been asked to track down evidence of data transfer using transport
protocols that are not TCP, UDP, or ICMP. She needs to run this analysis every day over the course of a
month. She would like to run it overnight, while other processing is normally low, and have the results ready
by 8:00 am the next morning.

Her first attempt involved sequentially running her analysis on each of 5,000 IP addresses across the last
day’s data. It took about 30 hours to complete—far too long to run it every evening! She’s therefore decided
to do a series of short tests to find out which analysis methods might yield better performance.

Su Lin will examine different ways to reduce the time it takes to perform her analysis. In many of her
examples, output files are silently deleted (omitted for page formatting in the handbook) between calls to
prevent over-writing existing files.

9.1.2 Processor Contention, Data Contention, and Performance

Two processing attributes bound the performance gains that Su Lin seeks, particularly for strategies involving
parallelization.

• Processor contention is when the number of running processes exceeds the available processor resources,
forcing the operating system to delay (wait for an open processor) or time-slice (force temporary
waits to share processors) execution. This increases response time and limits the improvement due to
parallelization.

• Data contention is when multiple processes are competing for transfer of data from the same storage
resource (either disk, the network interface, or less commonly, memory). In data contention, one process
using the resource blocks its availability to other processes, forcing them to wait. This increases the
response time and limits the improvement due to parallelization. While modern disk and network
interfaces support some degree of sharing, there is still some waiting involved.

For many SiLK tools, particularly rwfilter, rwsort, rwuniq, and rwstats, data contention is a more
significant factor on most architectures than processor contention—a phenomenon known as being I/O bound.

Su Lin’s strategies for improving the performance of her analysis depend on reducing the impact of being
I/O bound. She needs to organize the concurrent queries to use different storage resources. For SiLK queries,
this means accessing types individually to pull the separate storage in parallel. While the separate access
does not completely eliminate being I/O bound, it does provide more gain in response times.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 216

9.2. USING CONCURRENT RWFILTER CALLS TO SPREAD THE LOAD ACROSS PROCESSORS

9.2 Using Concurrent rwfilter Calls to Spread the Load Across
Processors

One approach that Su Lin can take to improve the performance of her rwfilter queries is to make more
efficient use of the available processing resources. She can structure her queries in parallel to keep the
processor busy, in a way that provides results concurrently on separate data. She can then combine the
parallelized results to produce her final results.

9.2.1 Parallelizing rwfilter Calls By Type

Su Lin can spread the processing load by setting up parallel rwfilter calls for each pertinent type of network
flow. The operating system on the host machine for the analysis may allocate each parallel call to a separate
processor, which spreads the overall load. She can then call the wait shell command to assure that all of the
parallel calls complete before processing proceeds. (Another way of spreading the load among processors is
to use pipes as described in Section 9.7.)

Su Lin also can apply her knowledge of SiLK data types and networking to improve the performance of
her analysis. For example, she knows that web traffic uses the TCP protocol and can therefore eliminate the
SiLK web types inweb and outweb from her data pull to save time. This is known as type dropping.

Example 9.1 shows the performance improvement that Su Lin achieves by applying these strategies.

1. The naive rwfilter call in Command 1 shows the processing time without parallelism by pulling
records of all types that are not ICMP, TCP, or UDP flows in a single call. It retrieves them in a little
over 8.5 seconds.

2. Commands 2 through 6 pull the same data as separate parallel calls, one for each pertinent type. This
version also drops inapplicable types—specifically inweb and outweb, which are all TCP data and thus
irrelevant to this analysis. This type dropping and parallelism cuts the response time by roughly 68%,
to a little under 3.2 seconds.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 217

CHAPTER 9. TUNING SILK

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=all --fail= oddproto .raw

real 0m8 .539s
user 0m7 .106s
sys 0m1 .424s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=in --fail= oddproto2a .raw &
<3>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out --fail= oddproto2b .raw &
<4>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type= int2int --fail= oddproto2c .raw &
<5>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type= ext2ext --fail= oddproto2d .raw &
<6>$ wait

real 0m3 .188s
user 0m5 .476s
sys 0m0 .823s

Example 9.1: Using Multiple rwfilter Processes to Parallelize by Type

9.2.2 Parallelizing rwfilter Calls By Flow Time

The SiLK repository is organized by date and hour as well as by type. Instead of parallelizing by type, Su Lin
can parallelize by the time of the flow. She will set up a series of rwfilter calls to pull separate repository
files by start time. Her analysis and the resulting performance improvement are shown in Example 9.2.

1. Command 1 calls rwfilter to pull flow data with types in, out, int2int, and ext2ext for the time
period starting on June 15 and ending on June 19. This command takes 5.569 seconds to execute.

2. Command 2 uses a Bash for loop to iterate through the repository files by time. It breaks the time
period up into 6-hour bins and calls rwfilter on the flow records in each bin as a separate, parallel
process.

(a) The for loop first calls the rwfglob command to generate a list of repository files. This command
takes the same selection parameters as rwfilter (in this case, --start-date, --end-date, and
--type) and sends a list of files that match those parameters to standard output.

(b) The loop checks to see if the resulting file contains any data before calling rwfilter on it. Some
time bins will not have the data that Su Lin seeks.

(c) The command mktemp provides a unique output file name for each rwfilter call, all of which are
run concurrently.

(d) The rwfilter calls in the loop have the same parameters as the initial call in Command 1, except
that they are run on the 6-hour time periods defined by the for loop.

3. When the for loop in Command 2 ends, the wait command pauses until all of the separate rwfilter
processes complete (similar to Example 9.1).

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 218

9.2. USING CONCURRENT RWFILTER CALLS TO SPREAD THE LOAD ACROSS PROCESSORS

Overall, Command 2 takes 1.429 seconds to execute—a 73% time savings over the initial rwfilter call
in Command 1.

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/15 --end =2015/06/19 --proto =1 ,6 ,17 \

--type=in ,out ,int2int , ext2ext --fail= oddproto .raw

real 0m5 .569s
user 0m5 .294s
sys 0m0 .272s
<2>$ for d in 15 15 17 18 19; do \

for h in 0 6 12 18; do \
let eh=h+5; \
flist=$(rwfglob --start -date =2015/06/ ${d}T$h \

--end -date =2015/06/ ${d}T$eh --type=in ,out ,int2int , ext2ext \
--no - summary); \

flen=${# flist }; \
if [$flen -gt 0]; then \

OUTNAME =$(mktemp -u --suffix =". raw" oddprotoXXX); \
rwfilter $flist --proto =1 ,6 ,17 --fail= $OUTNAME & \
fi; \

done; \
done; \

wait

real 0m1 .429s
user 0m3 .638s
sys 0m0 .291s

Example 9.2: Using Concurrent rwfilter Processes by Hour

Help with rwfglob. For a list of command options, type rwfglob --help at the command line. For more
information about the rwfglob command, type man rwfglob.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 219

CHAPTER 9. TUNING SILK

Visualizing parallelized rwfilter calls. Figure 9.1 shows the time improvement that Su Lin gains
through parallelizing her initial rwfilter call by time, graphed using Microsoft Excel. (Her analysis found
no data on June 15 and 19, so these days are not included in the graph.)

• The time to run the initial rwfilter call with no parallelization (Command 1 in Example 9.2) is
plotted at the top of the graph. This rwfilter call processed 1619 flow record files from the SiLK
repository.

• The parallelized calls to rwfilter (Command 2 in Example 9.2) are plotted beneath the initial, non-
parallelized rwfilter call. Each call to rwfilter launches as the for loop runs. The runtime for each
parallelized call depends on how much data was captured during that 6-hour time bin. The file count
for each call shows how many flow files were retrieved during that time period.

Out of curiosity, Su Lin adds up the total time it would have taken to run the parallelized rwfilter
commands sequentially: 6.083 seconds. It’s longer than the time it took to execute the rwfilter call in
Command 1 because it includes the time to execute the loop. Even with the overhead of the for loop,
executing these rwfilter commands in parallel saves a significant amount of time.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 220

9.2. USING CONCURRENT RWFILTER CALLS TO SPREAD THE LOAD ACROSS PROCESSORS

Figure 9.1: Response times for rwfilter parallelized by 6-hour time bins

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 221

CHAPTER 9. TUNING SILK

9.3 Combining Results From Concurrent rwfilter Calls via rwuniq,
rwcount, and rwstats

After all concurrent rwfilter commands are done executing, Su Lin must draw the results together for
analysis. Unfortunately, due to the way that SiLK stores files, the presence of flows in specific files may not
align in the way she expects. This causes irregularities in cumulative volumes and trend lines. Processing
the files separately rather than as a single result magnifies these irregularities.

To minimize this problem, Su Lin can bring the files together to generate results with rwcount, rwuniq,
or rwstats before plotting the data. Example 9.3 shows her strategies for combining her results.

1. Command 1 calls rwfilter to retrieve records from the repository, rwsort to order them, then rwuniq
to generate a profile (which in this case is sent to /dev/null, discarding it automatically). The
command runs in a little over 6.1 seconds.

2. Command 2 does the same thing as Command 1, but uses the --presorted parameter for rwuniq,
indicating rwuniq can be more memory-efficient in its processing. This command runs in about the
same time as Command 1.

3. Command 3 skips the call to rwsort, letting rwuniq handle the ordering of the data. This command
runs just slightly slower than Command 1.

4. Command 4 skips the rwfilter call, letting rwuniq open previously retrieved flow record files and
produce a merged result. This command runs much faster, taking a bit over 0.8 seconds to complete.

While a merged input file executes more slowly than letting the profiling tools merge the files, it may be
desirable for archival purposes. In this case, consider using rwsort because it both merges and orders the
flow records. Merging data with rwsort is described further in Section 9.5.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 222

9.3. COMBINING RESULTS FROM CONCURRENT RWFILTER CALLS VIA RWUNIQ, RWCOUNT, AND
RWSTATS

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=in ,out ,int2int , ext2ext --fail= stdout \
| rwsort --fields =dip \
| rwuniq --fields =dip --values =bytes , packets \

--output =/ dev/null

real 0m6 .166s
user 0m5 .503s
sys 0m0 .683s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=in ,out ,int2int , ext2ext --fail= stdout \
| rwsort --fields =dip \
| rwuniq --fields =dip --values =bytes , packets --presorted \

--output =/ dev/null

real 0m6 .181s
user 0m5 .445s
sys 0m0 .738s
<3>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=in ,out ,int2int , ext2ext --fail= stdout \
| rwuniq --fields =dip --values =bytes , packets \

--output =/ dev/null

real 0m6 .202s
user 0m5 .497s
sys 0m1 .595s
<4>$ rwuniq --fields =dip --values =bytes , packets oddproto2a .raw \

oddproto2b .raw oddproto2c .raw oddproto2d .raw \
--output =/ dev/null

real 0m0 .837s
user 0m0 .050s
sys 0m0 .770s

Example 9.3: Response Time for Sorting Records and File Parameters

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 223

CHAPTER 9. TUNING SILK

9.4 Parallelizing via the rwfilter --threads Parameter

Another parallelization strategy that Su Lin can pursue is to request that each rwfilter call operate using
lightweight parallel threads. The --threads parameter causes rwfilter to spawn the number of parallel
threads specified by its argument. Each thread is allocated an input file to filter. While the output is not
parallelized (as it is with concurrent rwfilter commands) the input, parsing, and filtering of records is
parallelized.

9.4.1 Improving rwfilter Performance with --threads

Example 9.4 shows an example of the performance boost that Su Lin can realize by using the rwfilter
--threads parameter.

1. Command 1 is the same naive rwfilter command as in the previous examples, again taking a little
over 8.5 seconds to complete.

2. Command 2 shows the same query, this time with --threads=4, which decreases the response time to
around 3.4 seconds.

3. In Command 3, increasing the argument to --threads=8 decreases the response time still further, to
around 2.5 seconds.

4. In Commands 4 and 5, further increases to --threads=12 and --threads=16 decreases the response
time by smaller amounts, to around 2.4 and 2.2 seconds, respectively.

Figure 9.2 shows the response time for each rwfilter --threads value: one thread (the default, naive
rwfilter call), four threads, eight threads, 12 threads, and 16 threads. (These results were graphed using
Microsoft Excel.)

9.4.2 Effect of --threads On Other rwfilter Parameters

The use of --threads affects some of the other rwfilter parameters. With --threads, the --max-pass and
--max-fail limits may be exceeded. This excess on the maximum output also affects the --print-statistics
and --print-volume-statistics parameters if they are used. For many analysts, however, these drawbacks
are worth the improvement in performance offered by --threads.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 224

9.4. PARALLELIZING VIA THE RWFILTER --THREADS PARAMETER

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --type=all \

--proto =1 ,6 ,17 --fail= oddproto .raw

real 0m8 .568s
user 0m7 .157s
sys 0m1 .402s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --type=all \

--proto =1 ,6 ,17 --threads =4 --fail= oddproto2 .raw

real 0m4 .011s
user 0m9 .646s
sys 0m1 .583s
<3>$ rwfilter --start =2015/06/01 --end =2015/06/30 --type=all \

--proto =1 ,6 ,17 --threads =8 --fail= oddproto3 .raw

real 0m2 .845s
user 0m9 .818s
sys 0m1 .651s
<4>$ rwfilter --start =2015/06/01 --end =2015/06/30 --type=all \

--proto =1 ,6 ,17 --threads =12 --fail= oddproto4 .raw

real 0m2 .258s
user 0m7 .952s
sys 0m1 .760s
<5>$ rwfilter --start =2015/06/01 --end =2015/06/30 --type=all \

--proto =1 ,6 ,17 --threads =16 --fail= oddproto5 .raw

real 0m2 .166s
user 0m8 .423s
sys 0m1 .809s

Example 9.4: Using rwfilter --threads to Reduce Response Time

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 225

CHAPTER 9. TUNING SILK

Figure 9.2: Comparing response times for rwfilter --threads values

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 226

9.4. PARALLELIZING VIA THE RWFILTER --THREADS PARAMETER

9.4.3 Limitations On --threads Performance Improvements

Unfortunately, Su Lin soon discovers that the performance improvement due to use of threads decreases with
the number of concurrent processes (such as when multiple analysts are running rwfilter with --threads).
Figure 9.3 shows this decrease.

• For a single process, the performance improvement is as described earlier in this section.

• For four concurrent rwfilter processes (in this case, four identical processes, representing four users
making equivalent rwfilter calls), --threads=1 (the default) takes about 9.6 seconds. Going to
--threads=4 with four processes improves the response time to approximately 4.5 seconds (a gain of
53% vs 60% for the single process). Going to --threads=8 improves it to approximately 3.9 seconds
(a total gain of 59% versus 71% for the single process). Going to 12 and 16 threads in four processes
improves it to approximately 3.7 and 3.6 seconds, respectively (total gains of 61% and 62% versus 72%
and 74% for the single process).

• For ten concurrent processes, --threads=4 improves the response time by 35%, while going to --threads=16
only improves it by 46%.

These figures indicate that when multiple users share the same storage and processing resources, the amount
of improvement due to threads above four may not be of much benefit.

Figure 9.3: Decreasing Response Time by Using rwfilter --threads Profiled by Number of Running
Processes

The curve shown in Figure 9.3 reflects a common experience in using parallelization to improve perfor-
mance. This experience is codified as Amdahl’s law (after Gene Amdahl, who presented it at the 1967 AFIPS
Fall Joint Computer Conference30). It states that the performance gain by parallelization is limited by the

30Amdahl, Gene M. “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities.” 1967.
AFIPS Conference Proceedings (30): 483–485. doi:10.1145/1465482.1465560. [Accessed May 14, 2020] http://www-inst.eecs.
berkeley.edu/~n252/paper/Amdahl.pdf

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 227

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

CHAPTER 9. TUNING SILK

sequential portions of the program. Amdahl’s law predicts that performance gain will be most dramatic
among the first few parallel threads. After that, the gain will decrease rapidly until no improvement results.

9.5 Constructing Efficient Queries

Su Lin can improve the performance of SiLK by designing her analytic to execute more efficiently. This
often takes the form of describing key characteristics of the traffic being sought, including:

• the type of traffic wanted (in, out, inweb, outweb, int2int, ext2ext)

• the transport protocols wanted (or not wanted)

• packet sizing (at least bounding the byte count or packet count by maximum or minimum)

• timing for the traffic (either in terms of start time or of duration)

• if TCP, whether this is the initiating side or responding side of the traffic (indicated by initiating TCP
flags) and whether they are complete or partial TCP sessions (indicated by terminating TCP flags)

• IP address ranges of interest (either on the internal or external ends)

• whether the traffic represents a single interaction or multiple interactions

• whether the result desired is a count, a frequency, or some statistical summary

• whether IPv6 data is useful for this analysis

Hint 9.2: Performance for IPv4 Versus IPv6 Addresses

IPv4 data is generally processed more quickly than IPv6 data. If IPv6 addresses are not useful
for your analysis but SiLK has been configured for IPv6, you can force SiLK to generate IPv4
data by doing one of the following:

• Use the following Bash command to override SiLK’s IPv6 configuration (i.e., the
SILK_IPV6_POLICY environment variable):

export SILK_IPV6_POLICY=ignore

• Specify the --ipv6-policy=ignore parameter to make individual SiLK commands
generate IPv4 data instead of IPv6 data.

This section describes strategies that Su Lin can use to construct more efficient queries.

9.5.1 Pipelining Calls to SiLK commands

The characteristics listed above in Section 9.5 often form the basis of added partitioning parameters on calls
to rwfilter or added thresholds for rwuniq or rwstats. Su Lin can pipeline multiple invocations of these

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 228

9.5. CONSTRUCTING EFFICIENT QUERIES

tools together for efficiency. In practice, rwfilter usually has the longest response time. To work around
this issue, she can structure the analysis as a series of calls to rwuniq or rwstats that explore data that’s
already been retrieved by rwfilter instead of pulling fresh data from the repository at every step.

Example 9.5 shows the response time improvement from minimizing calls to rwfilter and using pipelin-
ing between SiLK commands instead of writing data to disk. Su Lin applies the concepts behind the rwfilter
manifold described in Section 4.2.1, which can also improve performance by pipelining successive calls to
rwfilter instead of writing files to disk at each step.

1. Command 1 shows a series of calls that use rwfilter to pull the same data three times. Each rwfilter
call feeds into a rwuniq call to profile the data by source address, by destination address, and by start
time. This series of calls takes just over 17 seconds to run.

2. Command 2 shows a series of calls that does the same thing as Command 1, but only calls rwfilter
once. it stores the result in a file that is then profiled by the three rwuniq calls. This series of calls
takes just over 6 seconds to run, showing the impact of avoiding repeated rwfilter calls.

3. Command 3 shows a pipelined series of calls that does the same thing as Command 1, but passes the
data via pipes from a single rwfilter call to the three rwuniq calls. It links the rwuniq calls with
--copy-input=stdout to pass all of the flows to each rwuniq instance. This series of calls takes just
over 5.3 seconds to run, reflecting the savings due to pipelining rather than writing and reading a file.

9.5.2 Using Flow Characteristics To Improve rwfilter Efficiency

Su Lin can take advantage of different flow characteristics to more closely define the scope of rwfilter
queries, improving their speed and efficiency. Her goal is to more efficiently identify possible file transfer
using uncommon protocols from the internal network to external IP addresses. To do this, she progressively
refines her rwfilter query to concentrate only on records that show communication between internal and
external hosts via uncommon protocols. Her analysis is shown in Example 9.6.

1. Command 1 displays the naive approach, paralleling the one used in preceding examples: find all
uncommon protocol usage with rwfilter, then use rwuniq to aggregate bytes transferred for each
destination IP address. The advantage of this approach is that it is simple to write. Its disadvantage
is that it could retrieve records that are not data transfers and that destination addresses are not
necessarily external addresses. This command takes a little over 8.6 seconds.

2. For this data, Command 2 shows that the output contains the header line and entries for nine addresses,
three of which were found to be internal addresses. These addresses are irrelevant to Su Lin’s inquiry
and can be eliminated from the rwfilter query to save time.

3. Command 3 displays a revised approach: find all outbound uncommon protocol usage, then aggregate
bytes transferred in flows of three packets or more to each external IP address (the destination address
for an outgoing flow). This approach has the advantage of still being fairly simple to write with
fewer uninteresting records included in results. Its disadvantage is that it may will miss low-and-slow
transfers that divide into separate flows, and might include addresses that receive occasional bursts of
packets containing protocol signals rather than file transfer. This command took a bit over 3.5 seconds
to execute.

4. Command 4 shows that this query identified six external addresses and no internal addresses.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 229

CHAPTER 9. TUNING SILK

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out ,outweb ,int2int , ext2ext --fail= stdout \
| rwuniq --fields =dip , protocol \

--values =bytes ,flows , distinct :sip \
--output =oddproto -dip.txt ; \

rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \
--type=out ,outweb ,int2int , ext2ext --fail= stdout \

| rwuniq --fields =sip , protocol \
--values =bytes ,flows , distinct :dip \
--output =oddproto -sip.txt ; \

rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \
--type=out ,outweb ,int2int , ext2ext --fail= stdout \

| rwuniq --fields =stime , protocol --bin -time =3600 \
--values =bytes ,flows --output =oddproto -stime.txt

real 0m17 .005s
user 0m13 .658s
sys 0m5 .043s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out ,outweb ,int2int , ext2ext --fail= oddproto .raw ; \
rwuniq --fields =dip , protocol \

--values =bytes ,flows , distinct :sip oddproto .raw \
--output =oddproto -dip.txt ; \

rwuniq --fields =sip , protocol \
--values =bytes ,flows , distinct :dip oddproto .raw \
--output =oddproto -sip.txt ; \

rwuniq --fields =stime , protocol --bin -time =3600 \
--values =bytes ,flows oddproto .raw \
--output =oddproto -stime.txt

real 0m6 .013s
user 0m4 .787s
sys 0m1 .209s
<3>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out ,outweb ,int2int , ext2ext --fail= stdout \
| rwuniq --fields =dip , protocol \

--values =bytes ,flows , distinct :sip \
--output =oddproto -dip.txt --copy -input= stdout \

| rwuniq --fields =sip , protocol \
--values =bytes ,flows , distinct :dip \
--output =oddproto -sip.txt --copy -input= stdout \

| rwuniq --fields =stime , protocol --bin -time =3600 \
--values =bytes ,flows --output =oddproto -stime.txt

real 0m5 .351s
user 0m4 .758s
sys 0m1 .318s

Example 9.5: Avoiding multiple rwfilter Commands to Increase Performance

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 230

9.5. CONSTRUCTING EFFICIENT QUERIES

5. Command 5 shows another improved approach: find outgoing uncommon protocol traffic with byte
counts that indicate more than header information, then aggregate bytes transferred to each external
IP address, presenting only aggregates greater than the threshold count of bytes transferred. The
advantage to this approach is that it uses a more robust recognition of file transfer that would allow
identification of low-and-slow transfers. Its disadvantage is the need to calibrate thresholds properly.
This command also took a bit over 3.5 seconds to execute.

6. Command 6 shows that it found five external addresses. Examination of these addresses found that
they were all recipients of tunneled traffic, either VPN or OSPF tunnels.

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=all --fail= stdout \
| rwuniq --fields =dip --values =bytes \

--output =dip -bytes.txt

real 0m8 .624s
user 0m7 .122s
sys 0m1 .509s
<2>$ wc -l dip -bytes.txt
10 dip -bytes.txt
<3>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out , ext2ext --fail= stdout \
| rwuniq --fields =dip --values =bytes , packets --packets =3- \

--output =dip3 -bytes.txt

real 0m3 .550s
user 0m3 .197s
sys 0m1 .071s
<4>$ wc -l dip3 -bytes.txt
7 dip3 -bytes.txt
<5>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out , ext2ext --fail= stdout \
| rwfilter stdin --bytes -per =65- --pass= stdout \
| rwuniq --fields =dip --values =bytes , packets --bytes =2000 - \

--output =dipb -bytes.txt

real 0m3 .525s
user 0m3 .203s
sys 0m1 .719s
<6>$ wc -l dipb -bytes.txt
6 dipb -bytes.txt

Example 9.6: Closely Defining Analysis Problem to Increase Performance

9.5.3 Specifying Fewer SiLK Types In rwfilter Calls

One reason for the performance improvement in Example 9.6 was that Su Lin’s rwfilter queries targeted
the SiLK types relevant to the behavior she is investigating. Instead of using --types=all, which references

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 231

CHAPTER 9. TUNING SILK

six types (in, out, inweb, outweb, int2int, and ext2ext), Su Lin limited her queries to just two types for
outbound non-TCP traffic (out and ext2ext). This caused rwfilter to open fewer parts of the repository
and thus execute more quickly.

Example 9.7 isolates the effect of reducing the number of SiLK types in a rwfilter call.

1. Command 1 shows the naive query used in previous examples, which takes 8.591 seconds to execute.

2. The rwfilter call in Command 2 uses a more restrictive --type parameter that only pulls records with
four SiLK flow types (--type=in,out,int2int,ext2ext). The execution time falls to 6.13 seconds,
an improvement of approximately 29%.

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=all --fail= oddproto .raw

real 0m8 .591s
user 0m7 .067s
sys 0m1 .516s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=in ,out ,int2int , ext2ext --fail= oddproto2 .raw

real 0m6 .130s
user 0m5 .435s
sys 0m0 .687s

Example 9.7: Using Only Needed rwfilter Types to Increase Performance

Figure 9.4 shows the time improvement that Su Lin gains through type dropping (graphed using Microsoft
Excel).

9.5.4 Constraining rwfilter Output

An additional way to improve the response time for rwfilter lies in exploiting the fact that it is more I/O
bound than compute bound. Su Lin can use partitioning parameters such as --type, --packets, or --bytes
to constrain the output that rwfilter generates. She can also use the --start and --end parameters
to limit rwfilter output by time period. This is somewhat counter-intuitive: longer and more complex
rwfilter commands often run faster than shorter and simpler ones.

In Example 9.8, Su Lin contrasts a naive rwfilter command (Command 1) against a more complex
rwfilter command (Command 2) that uses both a more restrictive --types parameter and additional
--packets and --bytes parameters. The response time improves from 8.5 seconds to just over 6 seconds.

9.5.5 Merging the Results of Multiple rwfilter Calls

It can be difficult to produce an efficient single rwfilter command that pulls all of the data of interest.
In some analyses, several calls to rwfilter are needed. Examples of when multiple commands are useful
include:

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 232

9.5. CONSTRUCTING EFFICIENT QUERIES

Figure 9.4: Response times for rwfilter with all SiLK types and limited SiLK types

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=all --fail= oddproto .raw

real 0m8 .623s
user 0m7 .103s
sys 0m1 .511s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 \

--proto =50 ,51 ,83 --type=in ,out ,int2int , ext2ext \
--packets =3- --bytes =400 - --pass= oddproto2 .raw

real 0m6 .096s
user 0m5 .419s
sys 0m0 .671s

Example 9.8: Using Additional Parameters with rwfilter to Increase Performance

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 233

CHAPTER 9. TUNING SILK

• comparing activity during an incident with activity a week earlier and a week later

• comparing activity on an affected network segment against activity on an unaffected one

• identifying progress over time of activity indicative of a particular group of intruders

• identifying the impact of fielding a new defensive measure or modifying a service to improve security

In these cases, Su Lin can pull data separately for the subsets of traffic she desires for comparison or
identification. She can then merge her results to form a common pool of data for computing statistical
summaries and trends.

SiLK provides several ways to do this merging. Three tools that are particularly useful are rwcat,
rwappend, and rwsort.

• rwcat concatenates the series of flow records in each of its input files into a single series for output,
which is most useful for analyses where the order of records in not important.

• rwappend inserts the series of flow records in each file (in order) into the end of the output file, which
is most useful for analyses where the data is already in the desired order.

• rwsort does a merge-sort of the records in all of its input files to produce a single ordered output
file, which is most useful when the analyst either cannot depend on the order of the data, or needs to
impose a specific order.

These tools have already been introduced and are discussed more thoroughly in Sections 2.2.7 (for rwsort)
and 6.2.4(for rwappend and rwcat).

Example 9.9 shows how Su Lin uses these three commands to merge separate flow files.

1. Commands 1-5 generate four separate flow files.

2. Command 6 shows how to use rwcat to simply concatenate the flow files. This takes approximately
0.01 seconds for these data, but the data will be in no particular order.

3. Command 7 shows how to use rwappend to perform a similar amalgamation of the records in the four
input files, taking approximately the same time as the rwcat command. However, the output file
records are in the order of the input files.

4. Command 8 shows how to use rwsort to merge the four input files. This takes about the same amount
of time as the rwcat and rwappend commands. However, the records from all files are put in time
order by start time on the output.

The distinction between these three commands is based on what can be assumed about the semantics of
ordering, rather than which command runs fastest. In particular, if Su Lin needs records that are stored in
a dependable order, she will use rwsort to merge them. It takes approximately the same amount of time as
the other methods and produces a file that she will not have to sort later!

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 234

9.5. CONSTRUCTING EFFICIENT QUERIES

<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \
--type=in --fail= oddproto2a .raw &

<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \
--type=out --fail= oddproto2b .raw &

<3>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \
--type= int2int --fail= oddproto2c .raw &

<4>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \
--type= ext2ext --fail= oddproto2d .raw &

<5>$ wait
<6>$ rwcat oddproto2a .raw oddproto2b .raw oddproto2c .raw \

oddproto2d .raw --output = oddproto .raw

real 0m0 .012s
user 0m0 .003s
sys 0m0 .002s
<7>$ rwappend --create = oddproto2a .raw oddproto .raw \

oddproto2a .raw oddproto2b .raw oddproto2c .raw \
oddproto2d .raw

real 0m0 .013s
user 0m0 .001s
sys 0m0 .005s
<8>$ rwsort --fields =stime oddproto2a .raw oddproto2b .raw \

oddproto2c .raw oddproto2d .raw --output = oddproto .raw

real 0m0 .016s
user 0m0 .005s
sys 0m0 .004s

Example 9.9: Combining Flow Files with rwcat, rwappend, and rwsort

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 235

CHAPTER 9. TUNING SILK

9.6 Using Coarse Parallelism

Flow record files can be quite large and Su Lin knows from experience that processing a very large file can
be slow. The SiLK tools need to use paging (moving data in and out of memory to disk) to accommodate
very large files. It may be faster to divide these large flow record sizes into manageable pieces using a
command such as rwsplit, then parallelize the pieces with separate commands.This process is known as
coarse parallelism since it exploits larger features of the data to work concurrently.

Su Lin wants to find out if splitting up her files with rwsplit to perform coarse parallelism will improve
the performance of her analysis. Her analytic is shown in Example 9.10 .

1. The rwfilter call in Command 1 pulls a large amount of data (all of the TCP, UDP, and ICMP
flows in the data set), then uses rwsort to aggregate source and destination addresses. It then invokes
rwuniq to profile possible file transfers. This information can be used to give context to results for less
commonly-used protocols. This command takes a bit over 32.7 seconds.

2. Command 2 starts with similar calls to rwfilter and rwsort. It then calls rwsplit to divide the
records into several files. Since the rwuniq command summarizes by source and destination IP address,
this rwsplit command divides the records into portions governed by the number of IP addresses. This
produces three parts, each of which is then summarized in parallel with the others.
This command takes a little over 37.5 seconds to execute. This is a bit longer than Command 1, since
this data set is too small to require paging of memory even when pulling all of the relevant data.
However, this method may result in shorter response times for larger datasets than the one Su Lin uses
for her tests.

3. Command 3 shows the length of the result files, which, accounting for headings one each file, indicates
one address is split across two files.

4. By using a UNIX text sort, the files can be brought together and the duplication dealt with, as shown
in Command 4.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 236

9.6. USING COARSE PARALLELISM

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out ,outweb , ext2ext --pass= stdout \
| rwsort --fields =dip ,sip \
| rwuniq --fields =dip --values =bytes , packets --bytes =400 - \

--packets =3- --output = comproto .txt

real 0m24 .942s
user 0m20 .899s
sys 0m9 .828s
<2>$ rwfilter --start =2015/06/01 --end =2015/06/30 --proto =1 ,6 ,17 \

--type=out ,outweb , ext2ext --pass= stdout \
| rwsort --fields =dip ,sip \
| rwsplit --ip -limit =800 --basename ='comproto ' ; \
rwuniq comproto .00000000. rwf --fields =dip --presort \

--values =bytes , packets --bytes =400 - --packets =3- \
--output = comproto .00000000. txt& \

rwuniq comproto .00000001. rwf --fields =dip --presort \
--values =bytes , packets --bytes =400 - --packets =3- \
--output = comproto .00000001. txt& \

rwuniq comproto .00000002. rwf --fields =dip --presort \
--values =bytes , packets --bytes =400 - --packets =3- \
--output = comproto .00000002. txt& \

wait

real 0m34 .255s
user 0m26 .841s
sys 0m12 .725s
<3>$ wc -l comproto *. txt

689 comproto .00000000. txt
58 comproto .00000001. txt

242 comproto .00000002. txt
986 comproto .txt

1975 total
<4>$ sort comproto .00000000. txt comproto .00000001. txt \

comproto .00000002. txt comproto .txt | uniq | wc -l
989

Example 9.10: Coarse Parallelism of rwuniq using rwsplit

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 237

CHAPTER 9. TUNING SILK

9.7 Using Named Pipes and Process Substitution

When flow files get large, writing and reading them from disk can be quite slow. While temporary files are
a useful tool in analysis, they can also greatly slow down the analysis process. To avoid this delay, Su Lin
can make use of process-to-process communication. UNIX systems have a variety of options for this:

• Pipelining processes (pipes for short), where a generating process sends input to a receiving process
progressively, either via standard output and input or via specially-created named pipes (as is used in
Section 4.1.2). Pipes are used extensively throughout this handbook.

• Process substitution, where a command string (possibly involving pipes) is used in place of a file or
stream.

• Sockets, which are used for either process-to-process or host-to-host communication. While they are
very powerful tools for harnessing multiple computers in a single analysis, they are complex to set up
and won’t be further discussed in this handbook.

Example 9.11 shows how Su Lin uses pipes and process substitution to make her analytic faster and more
efficient.

1. Commands 1 through 3 show a naive approach, where all of the possibly-relevant traffic is gathered
into a flow record file. The file is refiltered twice to isolate specific cases. Each rwfilter call feeds
into a rwuniq call to generate two profiles: one for transport protocol 50, and the other for transport
protocols that are not 50, 1 (ICMP), 6 (TCP) or 17 (UDP). This command takes a little over 17.3
seconds on this data set.

2. Command 4 uses mkfifo to create a named pipe.

3. Command 5 pulls records from the repository and filters out records with the ICMP, TCP, and UDP
protocols. It then passes the records for transport protocol 50 to the named pipe and the records for
other protocols to rwuniq to generate a profile.

4. Concurrently, Command 6 pulls the protocol 50 records from the named pipe and generates a similar
profile.

5. Command 7 uses wait to let Commands 5 and 6 complete. Altogether, this sequence with the named
pipes takes a little over 3.5 seconds to complete.

6. Command 8 shows the use of process substitution in place of the named pipe. The first call to rwfilter
is the same as in Command 5. The second call to rwfilter uses process substitution, indicated by
the use of >(, as the argument to its --pass parameter.

7. Following the >(, Command 8 calls rwuniq with input set to the protocol 50 records produced by the
--pass and output sent to a file—the same profile produced in previous commands, ending with a
close parenthesis. The second rwfilter call also uses --fail=stdout to send non-protocol-50 records
to a final rwuniq call to generate a similar profile for those records.
Altogether, this command sequence takes a little over 3.5 seconds to execute. It does not require the
mkfifo or wait commands; concurrency is handled by the process substitution.

8. Command 9 then counts the lines in all of the output text files, reflecting that each port50 and not50
profiles from rwuniq calls produced the same output.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 238

9.7. USING NAMED PIPES AND PROCESS SUBSTITUTION

Show real time , user time , and processor time for each command
<1>$ rwfilter --start =2015/06/01 --end =2015/06/30 \

--type=out , ext2ext --proto =0- --pass= oddproto .raw
<2>$ rwfilter oddproto .raw --proto =50 --pass= stdout \
| rwuniq --fields =dip --values =bytes , packets --packets =3- \

--output =dip - port50 .txt
<3>$ rwfilter oddproto .raw --proto =1 ,6 ,17 ,50 --fail= stdout \
| rwuniq --fields =dip --values =bytes , packets --packets =3- \

--output =dip -not50.txt

real 0m17 .367s
user 0m13 .010s
sys 0m2 .270s
<4>$ mkfifo /tmp/ proto50 .fifo
<5>$ rwfilter --start =2015/06/01 --end =2015/06/30 \

--type=out , ext2ext --proto =1 ,6 ,17 --fail= stdout \
| rwfilter stdin --proto =50 --pass =/ tmp/ proto50 .fifo \

--fail= stdout \
| rwuniq --fields =dip --values =bytes , packets --packets =3- \

--output =dip3 -not50.txt&
<6>$ rwuniq --fields =dip --values =bytes , packets --packets =3- \

/tmp/ proto50 .fifo --output =dip3 - port50 .txt&
<7>$ wait

real 0m3 .559s
user 0m3 .257s
sys 0m1 .025s
<8>$ rwfilter --start =2015/06/01 --end =2015/06/30 \

--type=out , ext2ext --proto =1 ,6 ,17 --fail= stdout \
| rwfilter stdin --proto =50 --pass =>(rwuniq \

--fields =dip --values =bytes , packets --packets =3- \
--output =dip4 - port50 .txt) --fail= stdout \

| rwuniq --fields =dip --values =bytes , packets --packets =3- \
--output =dip4 -not50.txt

real 0m3 .583s
user 0m3 .197s
sys 0m0 .364s
<9>$ wc -l dip *. txt

5 dip3 -not50.txt
3 dip3 - port50 .txt
5 dip4 -not50.txt
3 dip4 - port50 .txt
5 dip -not50.txt
3 dip - port50 .txt

24 total

Example 9.11: Pipes and Process Substitution to Improve Response Time

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 239

CHAPTER 9. TUNING SILK

9.8 Specifying Local Temporary Files

The location of temporary file storage can affect the performance of Su Lin’s analysis. Several SiLK com-
mands (in particular, rwsort, rwstats, and rwuniq) have a --temp-dir parameter that specifies where
temporary files are generated. In general, the default location (/tmp, the system temporary partition) works
quite well.

However, where this partition is too small or otherwise not suitable for a particular analysis, Su Lin can
improve the speed of her analysis by using a local directory on the host where the analysis is being performed
instead of a remote or network-mounted directory. This avoids the overhead of reading and writing to disk
over a network.

9.9 Administrative Actions to Improve SiLK Performance

While this chapter has focused on strategies that Su Lin can apply as an analyst to decrease the time for
running her analyses, the administrators that configure the SiLK installation and repository can also improve
the response time of analyses. Strategies that administrators can use include:

• Do not compile the SiLK installation to support IPv6 unless there is IPv6 traffic on their network.
Many modern networks, particularly those that handle mobile traffic or embedded devices, will have
IPv6 traffic present, so this option should be used with care.

• Remove or comment out sensors that have been dropped, obviated, or otherwise produce no data.
Removing them from the silk.conf file may improve performance.

• Remove unused SiLK data types (especially from the default-types definition) in the silk.conf file.

9.10 Summary of Strategies to Improve SiLK Performance

Su Lin now has several strategies for improving the performance of her analysis, including parallelizing
rwfilter calls, dropping SiLK data types, using pipes and process substitution, and storing temporary files
on a local disk. Some of these strategies offer significant time savings over her initial, naive SiLK calls! By
combining these strategies, she should be able to reduce the run time for her analysis enough to execute it
every evening.

The strategies in this chapter are intended to be a jumping-off point for further exploration and tuning
of your analyses. Applying them can speed up the processing of large datasets with SiLK. Over time, you
will discover which approaches are most beneficial to your analyses and work best for your hardware and
network configuration.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 240

Appendix A

TCP/IP, UDP and ICMP Headers

Transmission Control Protocol/Internet Protocol (TCP/IP) is the foundation of internetworking. All packets
analyzed by the SiLK system use protocols supported by the TCP/IP suite.

This appendix describes the format of the IP and TCP headers and the structure of UDP and ICMP
messages, all of which are relevant to SiLK analyses. For each protocol, it shows the fields that are recorded
by SiLK’s data collection tools and lists common services.

A.1 Structure of the IP Header

IP passes collections of data as datagrams. Two versions of IP are currently used: versions 4 and 6, referred
to as IPv4 and IPv6, respectively. IPv4 still constitutes the vast majority of IP traffic in the Internet. IPv6
usage is growing, and both versions are fully supported by the SiLK tools. Figure A.1 shows the breakdown
of IPv4 datagrams. Fields that are not recorded by the SiLK data collection tools are grayed out. With
IPv6, SiLK records the same information, although the addresses are 128 bits, not 32 bits.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 241

APPENDIX A. TCP/IP, UDP AND ICMP HEADERS

4-bit
version

4-bit header
length

16-bit header identification 3-bit flags 13-bit fragmentation offset

8-bit type of service
(TOS)

8-bit time to live
(TTL) 8-bit protocol 16-bit header checksum 20 bytes

32-bit source IP address

32-bit destination IP address

options (if any)

data

16-bit Packet Length

0 15 16 31

Figure A.1: Structure of the IPv4 Header

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 242

A.2. STRUCTURE OF THE TCP HEADER

Rsvd

CWRNS FINURG ACK PSH RST SYNECE NS

Figure A.2: TCP Header

A.2 Structure of the TCP Header

TCP, the most commonly encountered transport protocol on the Internet, is a stream-based protocol that
reliably transmits data from the source to the destination. Figure A.2 shows a breakdown of the TCP header,
which adds 20 additional bytes to the IP header. Consequently, TCP packets will always be at least 40 bytes
(60 for IPv6) long. As the shaded portions of Figure A.2 show, most of the TCP header information is not
retained in SiLK flow records.

A.2.1 TCP Flags

TCP uses flags to transmit state information among participants. A flag has two states: high or low; so a
flag represents one bit of information. There are six commonly used flags:

ACK: Short for “acknowledge,” ACK flags are sent in almost all TCP packets and used to indicate that
previously sent packets have been received.

FIN: Short for “finalize,” the FIN flag is used to terminate a session. When a packet with the FIN flag
is sent, the target of the FIN flag knows to expect no more input data. When both have sent and
acknowledged FIN flags, the TCP connection is closed gracefully.

PSH: Short for “push,” the PSH flag is used to inform a TCP receiver that the data sent in the packet
should immediately be sent to the target application (i.e., the sender has completed this particular
send), approximating a message boundary in the stream.

RST: Short for “reset,” the RST flag is sent to indicate that a session is incorrect and should be terminated.
When a target receives a RST flag, it terminates immediately. Some implementations terminate sessions
using RST instead of the more proper FIN sequence.

SYN: Short for “synchronize,” the SYN flag is sent at the beginning of a session to establish initial sequence
numbers. Each side sends one SYN packet at the beginning of a session.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 243

APPENDIX A. TCP/IP, UDP AND ICMP HEADERS

URG: Short for “urgent” data, the URG flag is used to indicate that urgent data (such as a signal from
the sending application) is in the buffer and should be used first. The URG flag should only be seen in
Telnet-like protocols such as Secure Shell (SSH). Tricks with URG flags can be used to fool intrusion
detection systems (IDS).

Reviewing the state machine will show that most state transitions are handled through the use of SYN, ACK,
FIN, and RST. The PSH and URG flags are less directly relevant. Two other rarely used flags are understood
by SiLK: ECE (Explicit Congestion Notification Echo) and CWR (Congestion Window Reduced). Neither
is relevant to security analysis at this time, although they can be used with the SiLK tool suite if required.
A ninth TCP flag, NS (Nonce Sum), is not recognized or supported by SiLK.

A.2.2 Major TCP Services

Traditional TCP services have well-known ports; for example, 80 is Web, 25 is SMTP, and 53 is DNS. IANA
maintains a list of these port numbers at https://www.iana.org/assignments/service-names-port-numbers.
This list is useful for legitimate services, but it does not necessarily contain new services or accurate port
assignments for rapidly changing services such as those implemented via peer-to-peer networks. Furthermore,
there is no guarantee that traffic seen (e.g., on port 80) is actually web traffic or that web traffic cannot be
sent on other ports.

A.3 Structure of UDP and ICMP Headers

After TCP, the most common protocols on the Internet are UDP and ICMP. Transport layer protocols like
TCP and UDP use their port numbers to deliver packets inside the host to the correct process or service. In
contrast, IP uses its addressing and routing to deliver packets to the correct interface on the correct host.

While TCP provides other functions, such as data streams and reliability, UDP provides only delivery.
UDP does not understand that sequential packets might be related (as in streams); UDP leaves that up
to higher layer protocols. UDP does not provide reliability functions, like detecting and recovering lost
packets, reordering packets, or eliminating duplicate packets. UDP is a fast but unreliable message-passing
mechanism used for services where throughput is more critical than accuracy. Examples include audio/video
streaming, as well as heavy-use services such as the Domain Name System (DNS).

ICMP, a reporting protocol that works in tandem with IP, sends error messages and status updates, and
provides diagnostic capabilities like echo.

A.3.1 UDP and ICMP Packet Structure

Figure A.3 shows a breakdown of UDP and ICMP packets, as well as the fields collected by SiLK. A UDP
packet has both source and destination ports, assigned in the same way TCP assigns them, as well as a
payload.

ICMP is a straight message-passing protocol and includes a large amount of information in its first
two fields: Type and Code. The Type field is a single byte indicating a general class of message, such as
“destination unreachable.” The Code field contains a byte indicating greater detail about the type, such as
“port unreachable.” ICMP messages generally have a limited payload; most messages have a fixed size based
on type, with the notable exceptions being echo request (ICMPv4 type 8 or ICMPv6 type 128) and echo
reply (ICMPv4 type 0 or ICMPv6 type 129).

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 244

https://www.iana.org/assignments/service-names-port-numbers

A.3. STRUCTURE OF UDP AND ICMP HEADERS

Figure A.3: UDP and ICMP Headers

A.3.2 Major UDP Services and ICMP Messages

UDP services are covered in the IANA webpage whose URL is listed above. As with TCP, the values given
by IANA are slightly behind those currently observed on the Internet. IANA also excludes port utilization
(even if common) by malicious software such as worms. Although not official, numerous port databases on
the web can provide insight into the current port utilization by services.

ICMPv4 types and codes are listed at https://www.iana.org/assignments/icmp-parameters. ICMPv6
types and codes are listed at https://www.iana.org/assignments/icmpv6-parameters. These lists are defini-
tive and include references to RFCs explaining the types and codes.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 245

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml

This page intentionally left blank.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 246

Appendix B

Common Features of SiLK Commands

This appendix lists the features, including parameters, that are common across SiLK commands.

B.1 Getting Help with SiLK Tools

All SiLK tools include a help screen that provides a summary of command information. To view the help
screen, specify the --help parameter with the command. SiLK is also distributed with UNIX manual (or
man) pages that explain all the parameters and functionality of each tool in the suite.

$ command --help
$ man command

B.2 Displaying the Current Version of SiLK

All SiLK tools have a --version parameter that identifies the version installed. Since the SiLK tool suite
is still being extended and evolved, this version information may be quite important.

$ command --version

B.3 Parameters Common to Important SiLK Commands

Many of the SiLK tools share features such as common parameters, handling the two versions of IP ad-
dresses, and controlling the overwriting of existing output files. Table B.1. shows these options for the most
commonly-used SiLK tools.

Table B.2 detailed descriptions of the options in Table B.1. Acceptable values for --ip-format are
listed and described in Table B.3, values for --timestamp-format are described in Table B.4, and values for
--ipv6-policy are described in Table B.2.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 247

APPENDIX B. COMMON FEATURES OF SILK COMMANDS

Parameter rwfilter rwstats rwcount rwcut rwsort rwuniq

--help 3 3 3 3 3 3

--legacy-help 3

--version 3 3 3 3 3 3

--site-config-file 3 3 3 3 3 3

filenames 3 3 3 3 3 3

--xargs 3 3 3 3 3 3

--print-filenames 3 3 3 3 3 3

--copy-input 3 3 3 3

--pmap-file 3 3 3 3 3

--plugin 3 3 3 3 3

--python-file 3 3 3 3 3

--output-path 3 3 3 3 3

--no-titles 3 3 3 3

--no-columns 3 3 3 3

--column-separator 3 3 3 3

--no-final-delimiter 3 3 3 3

--delimited 3 3 3 3

--ipv6-policy 3 3 3

--ip-format 3 3 3

--timestamp-format 3 3 3 3

--integer-sensors 3 3 3

--integer-tcp-flags 3 3 3

--pager 3 3 3 3

--note-add 3 3

--note-file-add 3 3

--dry-run 3 3

Table B.1: Common Parameters in Essential SiLK Tools

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 248

B.3. PARAMETERS COMMON TO IMPORTANT SILK COMMANDS

Parameter Description
--help Prints usage description and exits
--legacy-help Prints help for legacy switches
--version Prints this program’s version and installation parameters
--site-config-file Specifies the name of the SiLK configuration file to use instead of the file

in the root directory of the repository
filenames Specifies one or multiple filenames as non-option arguments
--xargs Specifies the name of a file (or stdin if omitted) from which to read input

filenames
--print-filenames Displays input filenames on stderr as each file is opened
--copy-input Specifies the file or pipe to receive a copy of the input records
--pmap-file Specifies a prefix-map filename and a map name as mapname:path to create

a many-to-one mapping of field values to labels. For rwfilter, this creates
new partitioning options: --pmap-src-mapname , --pmap-dst-mapname , and
--pmap-any-mapname . For other tools, it creates new fields src-mapname
and dst-mapname (see Section 6.2.7)

--plugin For rwfilter, creates new switches and partitioning options with a plug-in
program written in the C language. For other tools, creates new fields.

--python-file For rwfilter, creates new switches and partitioning options with a plug-in
program written in Python. For other tools, creates new fields

--output-path Specifies the output file’s path
--no-titles Doesn’t print column headings
--no-columns Doesn’t align neat columns. Deletes leading spaces from each column
--column-separator Specifies the character displayed after each column value
--no-final-delimiter Doesn’t display a column separator after the last column
--delimited Combines --no-columns, --no-final-delimiter, and, if a character is

specified, --column-separator
--ipv6-policy Determines how IPv4 and IPv6 flows are handled when SiLK has been

installed with IPv6 support (see Table B.1)
--ip-format Chooses the format of IP addresses in output (see Table B.3)
--timestamp-format Chooses the format and/or timezone of timestamps in output (see Ta-

ble B.4)
--integer-sensors Displays sensors as integers, not names
--integer-tcp-flags Displays TCP flags as integers, not strings
--pager Specifies the program used to display output one screen at a time
--note-add Adds a note, specified in this option, to the output file’s header
--note-file-add Adds a note from the contents of the specified file to the output file’s header
--dry-run Checks parameters for legality without actually processing data

Table B.2: Parameters Common to Several Commands

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 249

APPENDIX B. COMMON FEATURES OF SILK COMMANDS

Value Description
canonical Displays IPv4 addresses as dotted decimal quad and most IPv6 addresses as colon-

separated hexadectets. IPv4-compatible and IPv4-mapped IPv6 addresses will be dis-
played in a combination of hexadecimal and decimal. For both IPv4 and IPv6, leading
zeroes will be suppressed in octets and hexadectets. Double-colon compaction of IPv6
addresses will be performed.

zero-padded Octets are zero-padded to three digits, and hexadectets are zero-padded to four digits.
Double-colon compaction is not performed, which simplifies sorting addresses as text.

decimal Displays an IP address as a single, large decimal integer.
hexadecimal Displays an IP address as a single, large hexadecimal integer.
force-ipv6 Display all addresses as IPv6 addresses, using only hexadecimal. IPv4 addresses are

mapped to the ::FFFF:0:0/96 IPv4-mapped netblock.

Table B.3: --ip-format Values

Value Description
default Formats timestamps as YYYY/MM/DDThh:mm:ss.sss (rwcut and rwcount may display mil-

liseconds; rwuniq and rwstats never do)
iso Formats timestamps as YYYY-MM-DD hh:mm:ss.sss
m/d/y Formats timestamps as MM/DD/YYYY hh:mm:ss.sss
epoch Formats timestamps as the number of seconds since 1970/01/01 00:00:00 UTC (UNIX

epoch) ssssssssss.sss

no-msec Truncates milliseconds (.sss) from sTime, eTime, and dur fields – rwcut only
utc Specifies timezone to use Coordinated Universal Time (UTC)
local Specifies timezone to use the TZ environment variable or the system timezone

Table B.4: --timestamp-format format, modifier, and timezone Values

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 250

Appendix C

Additional Information on SiLK

Network Traffic Analysis with SiLK has been designed to provide an overview of data analysis with SiLK on
an enterprise network. This overview has included the definition of network flow data, the collection of that
data on the enterprise network, and the analysis of that data using the SiLK tool suite. The last chapter
provided a discussion on how to extend the SiLK tool suite to support additional analyses.

This handbook provides a large group of analyses in the examples, but these examples are only a small
part of the set of analyses that SiLK can support. The SiLK community continues to develop new analytical
approaches and provide new insights into how analysis should be done. The authors wish the readers of this
handbook good fortune in participation as part of this community.

C.1 SiLK Support and Documentation

The SiLK tool suite is available in open-source form at https://tools.netsa.cert.org/silk.

Before asking others to help with SiLK questions, it is wise to look first for answers in these resources:

SiLK_tool --help: All SiLK tools (e.g., rwfilter or rwcut) support the --help option to display terse
information about the syntax and usage of the tool.

man pages: All SiLK tools have online documentation known as manual pages, or man pages, that describe
the tool more thoroughly than the --help text. The description is not a tutorial, however. man pages
can be accessed with the man command on a system that has SiLK installed or via web links listed on
the SiLK Documentation webpage at https://tools.netsa.cert.org/silk/docs.html#manuals.

The SiLK Reference Guide: This guide contains the entire collection of man pages for all the SiLK tools
in one document. It is provided at https://tools.netsa.cert.org/silk/reference-guide.html in HTML for-
mat and at https://tools.netsa.cert.org/silk/reference-guide.pdf in Adobe® Portable Document Format
(PDF) .

SiLK Tool Suite Quick Reference booklet: This very compact booklet (located at https://tools.netsa.
cert.org/silk/silk-quickref.pdf) describes the dozen most used SiLK commands in a small (5.5′′× 8.5′′)
format. It also includes tables of flow record fields and transport layer protocols.

SiLK FAQ: This webpage answers frequently asked questions about the SiLK analysis tool suite. Find it
at https://tools.netsa.cert.org/silk/faq.html.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 251

https://tools.netsa.cert.org/silk
https://tools.netsa.cert.org/silk/docs.html#manuals
https://tools.netsa.cert.org/silk/reference-guide.html
https://tools.netsa.cert.org/silk/reference-guide.pdf
https://tools.netsa.cert.org/silk/silk-quickref.pdf
https://tools.netsa.cert.org/silk/silk-quickref.pdf
https://tools.netsa.cert.org/silk/faq.html

APPENDIX C. ADDITIONAL INFORMATION

C.2 FloCon Conference and Social Media

The CERT Division of the SEI supports FloCon®, an annual international conference devoted to large-scale
data analysis for improving the security of networked systems—including flow analysis. More information
on FloCon is provided at https://resources.sei.cmu.edu/news-events/events/flocon.

Since the FloCon conference covers a range of network security topics, including network flow analysis,
the conference organizers encourage ongoing discussions. In support of this, the following social networking
opportunities are offered:

@FloCon_News Twitter account: The FloCon conference organizers post notices related to FloCon
here. View (and follow!) the FloCon tweets at https://twitter.com/FloCon_News.

“FloCon Conference” LinkedIn member: The FloCon Conference member page
(https://www.linkedin.com/in/flocon) displays postings from the conference organizers, as well as from
participants.

“FloCon” LinkedIn group: You can request membership to this private LinkedIn group at
https://www.linkedin.com/groups?gid=3636774. Here, members discuss matters related to the FloCon
conference and network flow analysis.

C.3 Email Addresses and Mailing Lists

The primary SiLK email addresses and lists are described below:

netsa-tools-discuss@cert.org: This distribution list is for discussion of tools produced by the CERT/CC
for network situational awareness, as well as for discussion of flow usage and analytics in general.
The discussion might be about interesting usage of the tools or proposals to enhance them. You can
subscribe to this list at https://lists.sei.cmu.edu.

netsa-help@cert.org: This email address is for bug reports and general inquiries related to SiLK, especially
support with deployment and features of the tools. It provides relatively quick response from CERT/CC
users and maintainers of the SiLK tool suite. While a specific response time cannot be guaranteed,
this address has proved to be a valuable asset for bugs and usage issues.

netsa-contact@cert.org: This email address provides an avenue for recipients of CERT Situational Aware-
ness Group technical reports to reach the reports’ authors. The focus is on analytical techniques. Public
reports are provided at https://www.cert.org/netsa/publications.

flocontact@cert.org: General email address for inquiries about FloCon.

flocommunity@cert.org: This distribution list addresses a community of analysts built on the core of
the FloCon conference. The list is not focused exclusively on FloCon itself, although it will include
announcements of FloCon events.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 252

https://resources.sei.cmu.edu/news-events/events/flocon
https://twitter.com/FloCon_News
https://www.linkedin.com/in/flocon
https://www.linkedin.com/groups?gid=3636774
mailto:netsa-tools-discuss@cert.org
https://lists.sei.cmu.edu/mailman/listinfo
mailto:netsa-help@cert.org
mailto:netsa-contact@cert.org
https://www.cert.org/netsa/publications
mailto:flocontact@cert.org
mailto:flocommunity@cert.org

Appendix D

Further Reading and Resources

This chapter gives helpful background information for many of the topics discussed in this guide. It is
intended to be a starting point for further learning!

D.1 Unix and Linux

SiLK is implemented on UNIX (e.g., Apple® OS X®, FreeBSD®, Solaris®) and UNIX-like operating systems
and environments (e.g., Linux®, Cygwin). Consequently, an analyst must be able to work with UNIX to use
the SiLK tools.

Basic knowledge of UNIX, Linux, or their related operating systems is essential to using SiLK. Many
classes, tutorials, and books are available for learning Unix and Linux. The resources in this section can
help you to get started.

D.1.1 Useful UNIX Commands

Table D.1 lists some useful UNIX commands. To see more information on these commands type man followed
by the command name.

D.1.2 Online Tutorials on Unix and Linux

• UNIX Tutorial for Beginners (20+ In-depth Unix Training Videos). Software Testing Help website.
https://www.softwaretestinghelp.com/unix-tutorials/

• Introduction to Linux (LFS101). Linux Foundation Website. https://training.linuxfoundation.org/
training/introduction-to-linux/

D.1.3 Books on Unix and Linux

• Peek, Jerry, et al. Learning the UNIX Operating System (Fifth Edition), O’Reilly Media. April, 2014.
http://shop.oreilly.com/product/9780596002619.do

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 253

https://www.softwaretestinghelp.com/unix-tutorials/
https://training.linuxfoundation.org/training/introduction-to-linux/
https://training.linuxfoundation.org/training/introduction-to-linux/
http://shop.oreilly.com/product/9780596002619.do

APPENDIX D. FURTHER READING

Command Description
cat Copies streams and/or files onto standard output (show file content)
cd Changes [working] directory
chmod Changes file-access permissions. Needed to make script executable
cp Copies a file from one name or directory to another
cut Isolates one or more columns from a file
date Shows the current or calculated day and time
echo Writes arguments to standard output
exit Terminates the current shell or script (log out) with an exit code
export Assigns a value to an environment variable that programs can use
file Identifies the type of content in a file
grep Displays from a file those lines matching a given pattern
head Shows the first few lines of a file’s content
kill Terminates a job or process
less Displays a file one full screen at a time
ls Lists files in the current (or specified) directory

-l (for long) parameter to show all directory information
man Shows the online documentation for a command or file
mkdir Makes a directory
mv Renames a file or moves it from one directory to another
ps Displays the current processes
pwd Displays the working directory
rm Removes a file
sed Edits the lines on standard input and writes them to standard output
sort Sorts the contents of a text file into lexicographic order
tail Shows the last few lines of a file
time Shows the execution time of a command
top Shows the running processes with the highest CPU utilization
uniq Reports or omits repeated lines. Optionally counts repetitions
wc Counts the words (or, with -l parameter, counts the lines) in a file
which Verifies which copy of a command’s executable file is used
$(...) Inserts the output of the contained command into the command line
var=value Assigns a value to a shell variable. For use by the shell only, not programs

Table D.1: Some Common UNIX Commands

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 254

D.2. NETWORKING AND TCP/IP

• Siever, Ellen, et al. Linux in a Nutshell: A Desktop Quick Reference (Sixth Edition). O’Reilly Media.
September, 2009. http://shop.oreilly.com/product/9780596154493.do

D.2 Networking and TCP/IP

A knowledge of computer networking and TCP/IP are also essential for effectively using SiLK.

D.2.1 Online Courses on Networking and TCP/IP Fundamentals

• Coursera offers a variety of online courses on networking and TCP/IP. You can get started with The Bits
and Bytes of Networking (https://www.coursera.org/learn/computer-networking) and Introduction to
TCP/IP (https://www.coursera.org/learn/tcpip).

• Udemy Academy also offers online tutorials on networking and TCP/IP. Introduction to networking for
complete beginners (https://www.udemy.com/course/introduction-to-networking-for-complete-)beginners/
is a good place to start.

D.2.2 Books on Networking and TCP/IP Fundamentals

• Kurose, James, and Ross, Keith. Computer Networking: A Top-Down Approach. Pearson, 6th edition.
March 5, 2012.

• Lowe, Doug. Networking All-in-One For Dummies. 7th edition. For Dummies. April 10, 2018.

• Fall, Kevin R. and Stevens, W. Richard . TCP/IP Illustrated, Volume 1: The Protocols, Edition 2.
Addison-Wesley. November 8, 2011

D.3 Network Flow and Related Topics

Much has been written on NetFlow, SiLK, and related analysis. Here we provide a non-comprehensive list of
examples you may wish to consider. Several related topics will enhance your ability to to use SiLK effectively.

D.3.1 Technical Papers

Rick Hofstede, et al. Flow Monitoring Explained: From Packet Capture to Data Analysis With NetFlow and
IPFIX, IEEE Communications Surveys and Tutorials (Volume 16, Issue 4, Fourth quarter 2014) https://
ieeexplore.ieee.org/document/6814316/?arnumber=6814316&tag=1

T. Taylor, S. Brooks, J. McHugh. “NetBytes Viewer: An Entity-Based NetFlow Visualization Utility for
Identifying Intrusive Behavior.” In: Goodall J.R., Conti G., Ma KL. (eds) VizSEC 2007. Mathematics and
Visualization. Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-540-78243-8_
7#citeas

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 255

http://shop.oreilly.com/product/9780596154493.do
https://www.coursera.org/learn/computer-networking
https://www.coursera.org/learn/tcpip
https://www.udemy.com/course/introduction-to-networking-for-complete-)beginners/
https://ieeexplore.ieee.org/document/6814316/?arnumber=6814316&tag=1
https://ieeexplore.ieee.org/document/6814316/?arnumber=6814316&tag=1
https://link.springer.com/chapter/10.1007/978-3-540-78243-8_7#citeas
https://link.springer.com/chapter/10.1007/978-3-540-78243-8_7#citeas

APPENDIX D. FURTHER READING

T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks and J. McHugh, “FloVis: Flow Visualiza-
tion System,” 2009 Cybersecurity Applications and Technology Conference for Homeland Security, Washing-
ton, DC, 2009, pp. 186-198. doi: 10.1109/CATCH.2009.18 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=4804443&isnumber=4804414

Jeff Janies, Red Jack. Protographs: Graph-Based Approach to NetFlow Analysis. FloCon 2011 https://
resources.sei.cmu.edu/asset_files/Presentation/2011_017_101_50576.pdf

M. Thomas, L. Metcalf, J. Spring, P. Krystosek and K. Prevost, “SiLK: A Tool Suite for Unsam-
pled Network Flow Analysis at Scale,” 2014 IEEE International Congress on Big Data, Anchorage, AK,
2014, pp. 184-191. doi: 10.1109/BigData.Congress.2014.34 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6906777&isnumber=6906742

V. Marinov, J. Schoenwaelder. “Design of an IP Flow Record Query Language.” In: D. Hausheer, J.
Schoenwaelder (eds) Resilient Networks and Services. AIMS 2008. Lecture Notes in Computer Science, vol
5127. Springer, Berlin, Heidelberg, 2008

M. M. Najafabadi, T. M. Khoshgoftaar, C. Calvert and C. Kemp,“Detection of SSH Brute Force Attacks
Using Aggregated Netflow Data,” 2015 IEEE 14th International Conference on Machine Learning and Ap-
plications (ICMLA), Miami, FL, 2015, pp. 283-288. doi: 10.1109/ICMLA.2015.20 http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=7424322&isnumber=7424247

Udaya Wijesinghe, Udaya Tupakula, Vijay Varadharajan. “An Enhanced Model for Network Flow Based
Botnet Detection.” Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney,
Australia, 27 - 30 January 2015 http://crpit.com/confpapers/CRPITV159Wijesinghe.pdf

D.3.2 Books on Network Flow and Network Security

Michael W. Lucas. Network Flow Analysis. no starch press. June 2010, ISBN-13: 978-1-59327-203-6
https://nostarch.com/networkflow

Omar Santos, Network Security with NetFlow and IPFIX. 2016 Cisco Systems, Inc, Cisco Press, Indi-
anapolis, IN http://www.ciscopress.com/store/network-security-with-netflow-and-ipfix-big-data-analytics-9781587144387

D.4 Bash Scripting Resources

Throughout this book, we use bash scripts to organize and execute collections of SiLK commands. There
are many books, online classes, and web tutorials on Bash and its uses. Here are some that may be helpful.

D.4.1 Online Tutorial

Online Shell Scripting Tutorial: https://www.shellscript.sh

D.4.2 Books on Bash Scripting

Many books have been written on Bash and shell scripting in general. See the following publishers for their
current list of titles relating to Bash.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 256

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4804443&isnumber=4804414
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4804443&isnumber=4804414
https://resources.sei.cmu.edu/asset_files/Presentation/2011_017_101_50576.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2011_017_101_50576.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906777&isnumber=6906742
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906777&isnumber=6906742
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7424322&isnumber=7424247
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7424322&isnumber=7424247
http://crpit.com/confpapers/CRPITV159Wijesinghe.pdf
https://nostarch.com/networkflow
http://www.ciscopress.com/store/network-security-with-netflow-and-ipfix-big-data-analytics-9781587144387
https://www.shellscript.sh

D.5. VISUALIZING SILK DATA

Google search for Bash scripting books: https://www.google.com/search?q=list+of+books+on+
Bash+scripting

O’Reilly
https://www.oreilly.com
https://ssearch.oreilly.com/?q=bash

No Starch Press, Inc.
https://nostarch.com
https://nostarch.com/search/node/bash%20scripting

John Wiley and Sons/WROX
http://www.wrox.com/WileyCDA/Section/id-WROX_SEARCH_RESULT.html?query=bash

Addison Wesley
https://openlibrary.org/search?q=bash+scripting&mode=everything

Linux Training Academy
https://www.linuxtrainingacademy.com/books

D.5 Visualizing SiLK Data

Visualization can be integrated into the workflow for network flow analysis. Graphing the results enables
you to find trends and relationships that are hard to spot if you only examine the numeric output of SiLK
commands.

Use your favorite spreadsheet, graphing, and numerical analysis tools to generate plots of the intermediate
and final results of single path, multi-path, and exploratory analyses. The visualizations in Network Traffic
Analysis with SiLK were done using Microsoft Excel.

The following document gives an overview of three techniques for visualizing SiLK data (describe, analyze,
and explore):

Krystosek, Paul. Visualization of Network Flow Data. FloCon 2014. January, 2014. https://resources.
sei.cmu.edu/library/asset-view.cfm?assetid=300450

D.5.1 Rayon

Rayon is a Python library and set of tools for generating basic, two-dimensional statistical visualizations.
Rayon can be used to automate reporting; provide data visualization in command-line, GUI or web applica-
tions; or do ad-hoc exploratory data analysis.

Download the Rayon library and documentation from https://tools.netsa.cert.org/rayon/index.html

The following document shows how Rayon visualizations work with the Unix command line and SiLK:

Groce, Phil, The Rayon Tools: Visualization at the Command Line. FloCon 2014. January, 2014.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=300462

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 257

https://www.google.com/search?q=list+of+books+on+Bash+scripting
https://www.google.com/search?q=list+of+books+on+Bash+scripting
https://www.oreilly.com
https://ssearch.oreilly.com/?q=bash
https://nostarch.com
https://nostarch.com/search/node/bash%20scripting
http://www.wrox.com/WileyCDA/Section/id-WROX_SEARCH_RESULT.html?query=bash
https://openlibrary.org/search?q=bash+scripting&mode=everything
https://www.linuxtrainingacademy.com/books
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=300450
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=300450
https://tools.netsa.cert.org/rayon/index.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=300462

APPENDIX D. FURTHER READING

D.5.2 FloViz

FloViz is a comprehensive and extensible set of visualization tools. It is integrated with the SiLK tool suite
via a relational database that stores data such as sets and multisets (bags) that are derived from NetFlow
and similar sources.

You can find more information about FloViz at https://web.cs.dal.ca/~sbrooks/projects/NetworkVis/
index.html

D.5.3 Graphviz—Graph Visualization Software

Network flow records can be visualized as directed graphs. Graphviz can be used to produce such visual-
izations. It’s open source graph visualization software that represents structural information as diagrams of
abstract graphs and networks.

To download Graphviz executables, source code, and documentation, visit https://www.graphviz.org

D.5.4 The Spinning Cube of Potential Doom

First implemented as a demonstration, it is an interesting display of network traffic at the Supercomputing
conference in 2004. It has since taken on a life of its own.

http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/1998/cube-of-doom

Stephen Lau. “The Spinning Cube of Potential Doom.” Commun. ACM 47, 6 (June 2004), 25-26.
https://dx.doi.org/10.1145/990680.990699

D.6 Networking Standards

Service Name and Transport Protocol Port Number Registry
https://www.iana.org/assignments/service-names-port-numbers

RFC 871, A Perspective on the ARPANET Reference Model.
https://tools.ietf.org/html/rfc871

ETF RFC 3954, Cisco Systems NetFlow Services Export Version 9, 2004
https://www.ietf.org/rfc/rfc3954.txt

RFC 4291, IP Version 6 Addressing Architecture
https://tools.ietf.org/html/rfc4291

RFC 6890, Special-Purpose IP Address Registries
https://tools.ietf.org/html/rfc6890.

IPFIX standards:

RFC3917: Requirements for IP Flow Information Export (IPFIX)

RFC3955: Candidate Protocols for IP Flow Information Export (IPFIX)

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 258

https://web.cs.dal.ca/~sbrooks/projects/NetworkVis/index.html
https://web.cs.dal.ca/~sbrooks/projects/NetworkVis/index.html
https://www.graphviz.org
http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/1998/cube-of-doom
https://dx.doi.org/10.1145/990680.990699
https://www.iana.org/assignments/service-names-port-numbers
https://tools.ietf.org/html/rfc871
https://www.ietf.org/rfc/rfc3954.txt
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc6890

D.6. NETWORKING STANDARDS

RFC5101: Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP
Traffic Flow Information (IPFIX)

RFC5102: Information Model for IP Flow Information Export

RFC5103: Bidirectional Flow Export Using IP Flow Information Export

RFC5153: IPFIX Implementation Guidelines

RFC5470: Architecture for IP Flow Information Export

RFC5471: Guidelines for IP Flow Information Export (IPFIX) Testing

RFC5472: IP Flow Information Export (IPFIX) Applicability

RFC5473: Reducing Redundancy in IP Flow Information Export (IPFIX) and Packet Sampling
(PSAMP) Reports

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 259

Index

ACK, 77, 243
actionable awareness, 51, 163, 165
active timeout, 4
actual awareness, 51, 54
address relationships, 73
advanced analysis, see exploratory analysis
aggregate bags, 149–154

creating from flow records, 149
creating from text, 151
displaying contents of, 150
extracting bags and IPsets, 153
relationship to prefix maps, 154
sorting contents of, 150
thresholding, 151

AH, 34
all, 7, 25, 231
analysis, see network traffic analysis
analytical chaining, 164, 166
anchoring bias, 13
annotating files, 144
anonymization, 148

bags, 88–95, 136–142, 178
adding, 137
binning, 93
comparing contents of, 93
counters, 88, 89
cover sets, 139
creating, 89, 90
displaying counts and key values, 92
dividing, 139
extracting from aggregate bags, 153
finding scanners, 142
formatting display of, 93
intersecting with IPsets, 95
key values, 88, 89
multiple, 89
multiplying by a scalar value, 139
relationship to IPsets, 88, 141
relationship to prefix maps, 154
sensor inventories, 121

subtracting, 137
summarizing NTP traffic, 132
summarizing web traffic, 89
thresholding, 92, 141, 142
viewing file information, 111

bandwidth analysis, 113
Bash, 124, 196, 256
basic analysis, see single-path analysis
behavioral analysis, 42
bins, 31, 34, 39, 40

allocating flows, packets and bytes, 82
bag counts, 93
bottom-N and top-N, 34
counting traffic volumes, 39
plotting, 40
size of, 32
skipping zero-size, 41
varying sizes of, 40

boolean expressions in PySiLK, 201
bottom-N lists, 34
bottom-up analysis, 63
bytes, 3, 19, 29–32

counting, 31, 35, 39, 113
destination port usage, 66
field number, 3
filtering by byte count, 32, 43, 55, 61
sorting by count, 41
summary statistics, 35
thresholding, 82

cache flush, 5
case studies, 52–56, 59–67, 71, 80, 115–118, 121–125,

165–169, 173–193
dataset for, 14
scripting, 124

CIDR notation, 44, 64, 123, 155, 166
client, 76, 80
coarse parallelism, 145, 236
cognitive bias, 13
complement intersect, 95
composite keys, 149

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 260

INDEX

compound keys, 85
conditional fields, 206
confirmation bias, 14
conservatism bias, 14
counters, 88, 92

comparing, 93
examples of, 89

country codes, 3, 158
cover sets, 95, 139, 142

data contention, 216
data structures, 202
data types, 8
dataset for examples, 14, 173
date format, 8
desired awareness, 51, 52
destination IP address, 2, 3, 29, 47, 124, 135

CIDR notation for, 64
creating IPsets, 44
displaying, 27
matching queries and responses, 109
sorting by, 41

destination IP type, 3
destination port, 2, 3, 29, 66, 135, 149

displaying, 27
matching queries and responses, 110

DHCP, 35, 155
differential awareness, 51, 113, 115, 163, 165
dIP, see destination IP address
distributed environments, 201
DNS, 35, 47, 52, 53, 64, 87, 97–99, 155, 166, 244

asynchronous, 47
recursive vs. authoritative resolvers, 52, 56

Domain Name System, see DNS
domain names, 47
dPort, see destination port
dType, see destination IP type
duration, 3, 29

filtering by, 61
Dynamic Host Configuration Protocol, see DHCP

echo reply messages, 190
email addresses for SiLK, 252
end time, 3, 29
enterprise network, 6, 121

sensor information, 6, 19
subnet, 45

entry, 93
environment variables, 28, 29, 158, 196, 228, 254
ESP, 34

eTime, see end time
event analysis, 113
exploratory analysis, 10, 127–134

case studies, 173
commands, 134
dataset for examples, 14
for situational awareness, 163
relationship to single and multi-path analysis,

127
starting points, 129
workflow, 128

ext2ext, 7, 228, 231

FCCX dataset, 14, 156
network diagram for, 14

field numbers, 3
fields

character string, 208, 210
conditional, 206
extending with PySiLK, 205
names and numbers for, 28
sorting by, 41
stored vs. derived, 3

FIFO, 71
files

annotation, 144
appending, 143
bag, 111
binary, 27
combining, 143, 232
filtering, 25
flow repository, 7, 20
IPset, 43, 111
local vs. network, 240
network flow record, 3, 25, 29, 32
prefix map, 111, 155
simple anonymization, 148
splitting, 145
temporary, 43, 240
variable record length, 30
viewing contents of, 27
viewing information about, 29, 111

filtering, 11, 61, 71
all destinations, 75
by byte count, 32
by country code, 158
complex, 75, 202
extending with PySiLK, 197
extending with silkpython, 196
improving performance of, 215

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 261

INDEX

inbound client traffic, 80
inbound server traffic, 77, 80
inbound TCP traffic, 76
internal, external, and non-routable addresses,

158
IPsets, 87
isolating behaviors of interest, 87
low-packet flows, 80
manifold, 75
outbound client traffic, 80
outbound server traffic, 80
overlapping traffic, 75
pass-fail, 75
removing unwanted flows, 64, 79
role of partitioning parameters, 23
tuple files, 134
with prefix maps, 154, 158

FIN, 243
five-tuple, 3, 135
flags, see TCP flags
FloCon conference, 252
FloViz, 258
flow data, see network flow records
flow file, see network flow records
flow label, 2
flow record, see network flow records
flow repository, 2, 7

improving performance, 240
querying, 18
retrieving records from, 23
structure of, 7
viewing time information, 22

flow type, 3, 7, 8, 32, 217, 232
limiting in queries, 231
removing, 240
retrieving and filtering data, 25, 228
viewing, 20

flows, 1, 4, 64, 118, 131
approximating over time, 81
asymmetric, 123
counting, 31, 34, 39, 113
destination port usage, 66
grouping, 104
low-byte vs. high-byte, 31
mismatched, 176
split, 4
statistical summaries of, 31
thresholding, 82

formulate, 10

frequency analysis, 113
FTP, 107

Graphviz, 258
grouping

extending with silkpython, 196, 205
groups, 104

by prefix label, 160
creating from IPsets, 107
matching queries and responses, 108
sorting, 104, 105
summarizing, 105
thresholding, 105

help with SiLK, 247
HTTP, 71

I/O bound, 8, 216, 232
ICMP, 34, 35, 53, 66, 143, 181, 185, 217, 238, 244

message attributes, 187
messages, 245

IDS, 57
in, 7, 76, 80, 91, 115, 228, 231
incident response, 13, 59, 63, 80
information bias, 13
information exposure, 181
inicmp, 7
innull, 7
input parameters, 23
input/output bound, see I/O bound
int2int, 7, 228, 231
intermediate analysis, see multi-path analysis
intrusion detection signatures, 57
inweb, 7, 91, 228, 231
IP, 241, 255
IP addresses, 2, 91, 99, 123, 228

associating with sensor, 122
bags, 88
binning, 93
CIDR notation, 44, 155
counting, 35, 45, 141
counting bytes, packets and flows, 40
displaying in an IPset, 45
displaying prefix labels, 161
filtering by CIDR block, 64
filtering with prefix maps, 159
formatting, 250
grouping communications for, 105
IPsets, 43
IPv4 vs. IPv6, 28

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 262

INDEX

labeling with prefix maps, 154, 155
limiting, 95, 98
masking, 95
minimum and maximum, 45
removing from bags, 139
resolving to domain name, 47
sorting by, 41
thresholding, 82
wildcard notation, 45

IPFIX, 3, 258
IPSEC, 34
IPsets, 19, 43–47, 97–104

algebraic operations, 97
combining, 98, 124
counting members of, 45, 101
counting unique source IPs, 188
cover set, 139
creating, 43, 97, 141
creating bags from, 90
difference between, 98, 141
displaying members of, 45
displaying network structure, 101
extracting from aggregate bags, 153
extracting from bags, 95, 139, 142
filtering with, 87
finding scanners, 141
generating from rwfilter, 87
grouping, 107
internal and external hosts, 184
intersecting, 101
intersecting with bags, 95
limiting IP addresses, 98
members of, 99
membership in, 99
relationship to bags, 88, 141
relationship to prefix maps, 154
sensor inventories, 121
summary statistics for, 45, 101
symmetric difference, 98
time period for, 98
viewing file information, 111

IPv4, 28, 139, 206, 228, 241, 249
formatting IP addresses, 250
overriding IPv6 configuration, 228
prefix maps, 155, 191

IPv6, 28, 206, 228, 240, 241, 249
formatting IP addresses, 250
overriding IPv6 configuration, 228
prefix maps, 155

iterating, 12, 74, 127

key values, 88, 92
comparing, 93
composite, 149
examples of, 89
in cover sets, 95

keys, 88, 92
combination, 205
compound, 85

labeling flow data, 154
load balancing, 217
load scheme, 82
local files, 240
low-packet flows, 80, 141, 142, 164, 165

manifold, 71, 75, 76, 79, 163
command examples, 76, 79, 81
filtering low-packet flows, 80
non-overlapping, 75
overlapping, 75
use in profiling, 87

masking, 95, 189
matched groups, 108

partial associations, 110
matching

flows, 176
incomplete sessions, 176
partial associations, 110
sorting before, 108, 111

mkfifo, 71, 238
multi-path analysis, 9, 69–74

case studies, 121
common commands, 74
dataset for examples, 14
exploring relationships, 73
for situational awareness, 113
interpreting results, 73
pitfalls, 74
relationship to exploratory analysis, 127
relationship to single-path analysis, 69, 71
scripting, 124
workflow, 70

multi-threaded processes, 224

named pipes, 71, 238
NetFlow, 2
network

displaying structure of, 101

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 263

INDEX

threat hunting, 114
viewing information, 45

network flow, see flows, network flow records
network flow records, 1–3, 255

collection of, 6
combining files, 143
counting, 39
counting by prefix value, 161
counting in file, 29
creating bags from, 89
creating from text, 147
creating IPsets from, 43
fields in, 3
filtering, 23
flow label, 2
generation of, 3
grouping, 104
labeling with group IDs, 104
labeling with prefix maps, 154
pulling from repository, 23
querying, 18
removing unwanted flows, 64, 79
sorting, 41
splitting files, 145
storage of, 7
thresholding, 82
time and date, 8
variable length, 30
viewing in text format, 27
where collected, 6

network mask, 47, 95
network services, 129
Network Time Protocol, see NTP
network traffic, 2, 7

anomalies, 174
asymmetric and missing data, 123
categorizing, 75
counting, 31, 39
excluding, 19
filtering, 23
finding commonly-used protocols, 34
plotting, 40
profiling around an event, 59
profiling with IPsets, 99
summarizing, 31
types of, 7
web services, 71

network traffic analysis, 9
case studies, 59, 121, 173

exploratory, 10, 127
multi-path, 9, 69
single-path, 9, 17
workflow, 10, 22

next-hop IP, 3, 107, 176
use in groups, 105
use in matching, 110

nhIP, see next-hop IP
NTP, 129

other, 7
out, 7, 80, 115, 189, 228, 231
outicmp, 7
outnull, 7
output parameters

for rwfilter, 24
outweb, 7, 228, 231

packets, 3, 19, 29
counting, 31, 39, 113
field number, 3
headers, 57
sorting by count, 41
TCP, 243
thresholding, 82
time distribution, 81
UDP and ICMP, 244

PAGER environment variable, 29
parallelization, 145, 217–228, 236

by flow time, 218
by threads, 224

partitioning, 10
partitioning parameters, 23

data structures for, 202
extending with PySiLK, 197, 199
Python boolean expressions, 201
use in narrowing queries, 232

pass-fail filtering, 23, 75
performance improvement, 71, 75, 145, 215–240
Perl, 147
pipes, 23, 24, 31, 41, 71, 75, 142, 174

named, 71, 238
performance improvement with, 228
when to use, 32

plots, 40
plug-ins, 195, 196

code examples, 200, 206, 208–210, 212
use with rwfilter, 197
with silkpython, 196

pmaps, see prefix maps

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 264

INDEX

port knocking, 199
port-protocol pairs, see protocol-port pairs
ports, 2, 71, 115, 174

summarizing traffic with bags, 88
traffic anomalies, 174

prefix maps, 154–162
counting records by prefix label, 160
country codes, 158
creating, 155, 191
displaying prefix labels, 159
filtering with, 158
grouping by prefix label, 160
internal, external, and non-routable addresses,

158
IPv4, 155, 156, 191
IPv6, 155
naming, 155
protocol-port, 155, 182
querying, 161
relationship to aggregate bags, bags, and sets,

154
sorting by prefix label, 160
statistics by prefix label, 160
use with rwuniq, 186, 191
user-defined vs. predefined, 154, 158
viewing file information, 111

process substitution, 238
processor contention, 216
profiling, 114
progressive broadening, 164
progressive exclusion, 163
protocol, 3, 29

behavioral analysis of activity, 42
displaying, 27
field number, 3
ICMP, 35
sorting by, 41
summarizing traffic with bags, 88
TCP, 34
top-n and bottom-n, 34
UDP, 35

protocol-port pairs, 154, 155
building prefix map, 162, 182
displaying prefix labels, 161
labeling with prefix maps, 155
notation for, 155

PSH, 243
PySiLK, 195–213

code examples, 198, 200–203, 206, 208–210, 212

complex filtering with, 202
conditional values, 206
defining character string fields, 208, 210
defining key and summary value fields, 212
distributed environments, 201
extending fields, 205
preserving state information, 198, 199
programming with, 196
requirements, 196
use with rwcut, 206
use with rwfilter, 197
use with rwsort, 206

Python, 147, 195, 196
boolean expressions and rwfilter, 201
data structures as partitioning parameters, 202

PYTHONPATH environment variable, 196

queries, 10, 18, 23, 61
complex, 75
improving performance of, 215, 228
in exploratory analysis, 129
merging results of, 232
narrowing focus of, 26, 229–232
pass-fail, 23
prefix maps, 161

query matching, 108

range, 85
Rayon, 257
recency bias, 14
records, 30, 32, see network flow records
reducing analysis time, 215–240
repository, see flow repository
response matching, 108
response time, 215, 224
reverse DNS lookup, 47
RIP, 35
router exhaustion, 5
routers, 3
Routing Information Protocol, see RIP
RST, 243
*.rw vs. *.raw files, 24
rwaggbag, 149–150

command examples, 150
compared to rwuniq, 151
help, 150

rwaggbagbuild, 151
command examples, 151
help, 151

rwaggbagcat, 150

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 265

INDEX

command examples, 150–152
help, 151

rwaggbagtool, 151–154
command examples, 152–154
extracting bags and IPsets, 153
help, 152
thresholding, 151

rwappend, 143–145, 234
command examples, 135, 234
help, 145

rwbag, 89–90, 114
command examples, 71, 89, 122, 125, 142, 178
help, 89

rwbagbuild, 90–92, 114
command examples, 91, 133
file format, 91
help, 90

rwbagcat, 89, 92–93
command examples, 71, 91–93, 95, 115, 133, 137,

139, 153
dividing and multiplying bags, 141
help, 92

rwbagtool, 93–95, 137–141
adding and subtracting bags, 137
command examples, 95, 122, 125, 137, 139, 142,

178
dividing and multiplying bags, 139
extracting cover sets, 95
help, 94
intersecting bags and IPsets, 95
logical operations on key/counter values, 94

rwcat, 143–145, 234
annotation, 144
command examples, 144, 234
help, 145

rwcount, 19, 39–41, 81–82, 114
additional parameters, 248
command examples, 39, 131, 164
default bin size, 41
help, 40
improving performance of, 222
load scheme, 82
prefix maps, 160
skip zero size bins, 41
time series plots, 40

rwcut, 19, 27–29
additional parameters, 248
command examples, 28, 41, 64, 96, 105, 107, 109,

110, 118, 148, 160, 206, 209, 210

conditional values, 206
default fields, 29
defining character string fields, 208
delimiters, 29
display order of fields, 29
displaying fields, 27
extending with PySiLK, 206
help, 28
number of records, 28
prefix maps, 159
relationship to rwtuc, 149
use in behavioral analysis, 42
use with silkpython, 196, 205

rwfglob, 218
command examples, 219
help, 219

rwfileinfo, 29–30, 111, 144
command examples, 30, 111, 144, 145, 148, 159
default fields, 30
help, 30

rwfilter, 8, 19, 23–27, 31, 75–81, 87
additional parameters, 248
code examples, 201
command examples, 25, 26, 32, 44, 62, 64, 71,

76, 79, 81, 84, 85, 88, 89, 91, 96, 98, 99,
108, 109, 115, 122, 125, 130, 131, 133, 135,
136, 141, 142, 144, 145, 147, 148, 150, 151,
159, 164, 166, 174, 177, 178, 185, 188–190,
217, 219, 222, 224, 229, 231, 236, 238

complex filtering, 75
concurrent calls to, 217, 222
data flow in, 24
displaying file names, 26
extending with PySiLK, 197, 202
file naming conventions, 24
filtering by SiLK type, 231
filtering by byte count, 32
finding low-packet flows, 80
help, 26
IDS signatures, 57
improving performance of, 217, 228, 229
in distributed environments, 201
input parameters, 23
IP address, 25
manifold, 75, 76, 79, 80
multi-threaded, 224
multiple input files, 143
output parameters, 24
parallelizing, 217

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 266

INDEX

parallelizing by flow type, 217
parallelizing by threads, 224
parallelizing by time, 218
parameter relationships, 24
partitioning parameters, 23
pass-fail filtering, 24, 25, 75
plug-ins, 200
prefix maps, 158
Python boolean expressions, 201
selection parameters, 23
use as partitioning parameters, 26

sensor, 25
start and end times, 25
tuple files, 134
type, 25
use in behavioral analysis, 42
use with silkpython, 196
use with multiple files, 26

rwgroup, 104–108
command examples, 105, 107, 108
defining character string fields, 210
extending with silkpython, 210
grouping by session, 105
help, 108
prefix maps, 160
sorting before use, 104, 105
thresholding, 105
use with silkpython, 196, 205

rwidsquery, 57–58
command examples, 57
help, 58

rwmatch, 108–111
command examples, 109, 110, 177
discarding queries, 110
help, 111
incomplete matches, 109
sorting before use, 104, 108, 111

rwnetmask, 95
command examples, 96, 189
help, 96

rwpmapbuild, 155–158
command examples, 156, 162, 182, 191
help, 158
input file format, 155

rwpmaplookup, 161–162
command examples, 162
help, 162

rwresolve, 47–49
command example, 47

help, 49
rwscan, 90

command examples, 91
help, 91

rwset, 19, 43–45, 87
command examples, 44, 88, 98, 99, 108, 122, 125,

141, 188–191
help, 44

rwsetbuild, 19, 43–45, 97
command examples, 44, 95, 97, 122, 125, 184
help, 44, 97

rwsetcat, 19, 45–47, 101–104
command examples, 45, 46, 95, 98, 99, 103, 122,

125, 141, 142, 154, 188–191
displaying network structure, 101
help, 46

rwsetmember, 99–101
command examples, 99
help, 99

rwsettool, 97–99
command examples, 98, 99, 101, 122, 125, 139,

141, 142
difference, 98
displaying repository dates, 98
help, 99
intersecting IPsets, 101
symmetric difference, 98

rwsiteinfo, 6, 19–22
command examples, 20, 98, 99
displaying sensors, 20
displaying traffic information, 20
help, 22

rwsort, 41–43, 234
additional parameters, 248
command examples, 41, 105, 109, 110, 160, 177,

208, 222, 234, 236
conditional values, 206
defining character string fields, 210
extending with silkpython, 210
field numbers, 42
help, 42
multiple files, 43, 143, 234
prefix maps, 160
sort order, 41, 42
sorting before rwgroup and rwmatch, 104, 105,

108, 111
temporary files, 43, 240
use in behavioral analysis, 42
use with silkpython, 196, 205

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 267

INDEX

rwsplit, 145–147
command examples, 145, 147, 236
help, 147

rwstats, 19, 31, 34–39, 85, 114
additional parameters, 248
bottom-N lists, 34
command examples, 34, 35, 38, 53, 55, 56, 64,

85, 115, 147, 177
compared to rwuniq, 38, 66
defining character string fields, 210
defining key and summary value fields, 212
extending with silkpython, 210
help, 35
improving performance of, 222
prefix maps, 160
required fields, 35
summary statistics, 35
temporary files, 240
thresholding on compound keys, 85
top-N lists, 34, 63
use with silkpython, 196, 205

rwtuc, 147–149
command examples, 148
help, 149

rwuniq, 19, 31–34, 38–39, 82–85, 87–88
additional parameters, 248
command examples, 32, 54, 62, 64, 84, 85, 88,

89, 118, 131, 133, 136, 150, 161, 166, 174,
178, 186, 189, 210, 213, 222, 229, 231, 236,
238

compared to rwaggbag, 151
compared to rwstats, 38, 66
compound keys, 85
defining character string fields, 210
defining key and summary value fields, 212
extending with silkpython, 210
finding anomalies, 186
help, 34
improving performance of, 222, 228
low, medium and high-byte flows, 31
prefix maps, 160, 186, 191
presorted input, 34
profiling, 87
profiling traffic, 130
required parameters, 32
specifying range, 85
specifying ranges, 84
summarizing web traffic, 89
temporary files, 240

thresholding, 82, 85
use with silkpython, 196, 205

sampling, 145
scanning, 90, 141, 142, 181

finding port scanners, 174
scripting languages, 195

use with rwtuc, 147
selection parameters, 23

use as partitioning parameters, 26
selective perception bias, 13
sensor, 3, 4, 29, 99

class, 8
displaying information for, 19
inventories, 121
locations, 6
network flow collection, 3
removing, 240
retrieving data for, 25
type, 8

server, 77, 80
service analysis, 113
services, 244
sessions

grouping, 104
matched groups, 108

sets, see IPsets
shell scripts, 124, 127, 196

command examples, 125, 144, 145, 178
examples of, 73
help with, 256

SiLK, 1–9
analysis types, 9, 17, 69
applying workflow, 60
case studies, 59, 121, 173
common parameters, 247
documentation, 251
email addresses, 252
enabling IPv6, 240
flow repository, 7, 8, 240
help with, 247, 251
improving performance of, 215–240
IPv4 and IPv6 fields, 241
repository, see flow repository
single vs. multi-threaded, 224
source files, 251
tool suite, 8
use with Python, 196
version of, 247
visualization tools, 257

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 268

INDEX

web site, 251
wildcard notation for IP addresses, 45
workflow, 10, 22

SILK_COUNTRY_CODES environment variable, 158
SILK_IPV6_POLICY environment variable, 28, 228
SILK_PAGER environment variable, 29
silkpython, 195, 196
Simple Network Management Protocol, see SNMP
single-path analysis, 9, 17–19

behavioral analysis, 42
case studies, 59
common SiLK commands for, 19
dataset for examples, 14
for situational awareness, 51
interpreting, 66
relationship to exploratory analysis, 127
relationship to multi-path analysis, 69
workflow, 17, 19

sIP, see source IP address
situational awareness, 13, 51–56, 63, 71, 79, 113–118,

163–169, 174, 201, 202, 206, 208, 212
analytical chaining, 164
case studies, 52, 115
components of, 51
definition of, 13, 51
progressive broadening, 164
progressive exclusion, 163
relationship to threat hunting, 114
use of manifold, 79, 163

SMTP, 244
SNMP, 35, 134
SNORT®, 57
sort order, 41
sorting, 41, 42, 222

by field, 41, 42
by prefix label, 160
extending with silkpython, 196, 205
multiple files, 43, 232
on multi-field values, 206
order of, 42
performance improvement, 222
with rwuniq, 32

source IP address, 2, 3, 29, 47, 149
CIDR notation for, 64
creating IPsets, 44
displaying, 27
matching queries and responses, 109

source IP type, 3
source port, 2, 3, 29

displaying, 27
matching queries and responses, 110

sPort, see source port
standard input, 45
standard output, 32
standards, 258
start time, 3, 29, 32

displaying, 27
state information, 198
sTime, see start time
sType, see source type
subnet, 45, 95

in IPset, 45
subnetwork mask, 189
summary record, 105
SYN, 77, 243

TCP, 3, 34, 53, 71, 104, 107, 110, 118, 143, 174, 178,
206, 217, 228, 238, 241, 243, 255

finding suspicious requests, 174
header, 243
selecting TCP flows, 71
services, 244
summarizing web traffic, 89

TCP flags, 19, 29, 243, 249
client vs. server, 81
client-server communication, 77
filtering with, 76, 80
initial flags, 3
session flags, 3

temporary files, 43, 240
text

converting to network flow records, 147
creating bags from, 90
creating IPsets from, 43, 97
creating prefix maps from, 155, 182
viewing flow records as, 27

threads, 224, 227
threat hunting, 13, 80, 90, 114, 174, 198, 199, 202,

206
thresholding, 35, 38, 82, 92, 105, 141, 142

bag counts, 92
compound keys, 85, 151
min-max, 84
multiple parameters, 85

time bins, see bins
time distribution of packets, 81
time format, 8, 25, 250
timing relationships, 73
top-N lists, 34, 63

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 269

INDEX

top-down analysis, 63
traffic, see network traffic
Transmission Control Protocol, see TCP
transport layer protocol, 2
tuple files, 134–136
type, see flow type
type dropping, 217

UDP, 34, 35, 52, 66, 87, 98, 110, 129, 134, 143, 145,
155, 169, 178, 206, 217, 238, 244

services, 245
UNIX commands, 253
URG, 243

visualizing SiLK data, 257
volume analysis, 113
volume relationships, 73
vulnerability analysis, 113

wait, 217, 238
web services, 71, 164, 244
web traffic, 8, 55, 71, 89, 115, 135, 165

types of, 7
wildcard notation for IP addresses, 45
workflow, 60

yaf, 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 270

©2020 Carnegie Mellon University | 4995 | 08.24.2020

Analyst’s Handbook for SiLK
Version 3.15.0 and Later

August 2020

	Contents
	List of Figures
	List of Tables
	List of Examples
	List of Hints
	Acknowledgements
	Handbook Goals
	1 Introduction to SiLK
	1.1 What is SiLK?
	1.2 The SiLK Flow Repository
	1.2.1 What is Network Flow Data?
	1.2.2 Structure of a Flow Record
	1.2.3 Flow Generation and Collection
	1.2.4 Introduction to Flow Collection
	1.2.5 Where Network Flow Data Are Collected
	1.2.6 Types of Network Traffic
	1.2.7 The Collection System and Data Management
	1.2.8 How Network Flow Data Are Organized

	1.3 The SiLK Tool Suite
	1.4 How to Use SiLK for Analysis
	1.4.1 Single-path Analysis
	1.4.2 Multi-path Analysis
	1.4.3 Exploratory Analysis

	1.5 Workflow for SiLK Analysis
	1.5.1 Formulate
	1.5.2 Model
	1.5.3 Test
	1.5.4 Analyze
	1.5.5 Refine

	1.6 Applying the SiLK Workflow
	1.7 Avoiding Cognitive Biases
	1.8 Dataset for Single-path, Multi-path, and Exploratory Analysis Examples

	2 Basic Single-path Analysis with SiLK: Profiling and Reacting
	2.1 Single-path Analysis: Concepts
	2.1.1 Scoping Queries of Network Flow Data
	2.1.2 Excluding Unwanted Network Traffic
	2.1.3 Example Single-Path Analysis

	2.2 Single-path Analysis: Analytics
	2.2.1 Get a List of Sensors With rwsiteinfo
	2.2.2 Choose Flow Records With rwfilter
	2.2.3 View Flow Records With rwcut
	2.2.4 Viewing File Information with rwfileinfo
	2.2.5 Profile Flows With rwuniq and rwstats
	2.2.6 Characterize Traffic by Time Period With rwcount
	2.2.7 Sort Flow Records With rwsort
	2.2.8 Use IPsets to Gather IP Addresses
	2.2.9 Resolve IP Addresses to Domain Names With rwresolve

	2.3 Situational Awareness and Single-Path Analysis
	2.3.1 Components of Situational Awareness
	2.3.2 Single-Path Analysis for Desired Awareness: Validate Web and DNS Servers
	2.3.3 Single-Path Analysis for Actual Awareness: Examine Network Traffic
	2.3.4 Translate IDS Signatures into rwfilter Calls with rwidsquery

	2.4 Summary of SiLK Commands in Chapter 2

	3 Case Studies: Basic Single-path Analysis
	3.1 Profile Traffic Around an Event
	3.1.1 Examining Shifts in Traffic
	3.1.2 How to Profile Traffic

	3.2 Generate Top N Lists
	3.2.1 Using rwstats to Create Top N Lists
	3.2.2 Interpreting the Top-N Lists

	4 Intermediate Multi-path Analysis with SiLK: Explaining and Investigating
	4.1 Multi-path Analysis: Concepts
	4.1.1 What Is Multi-path Analysis?
	4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic
	4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis
	4.1.4 Integrating and Interpreting the Results of Multi-path Analysis
	4.1.5 ``Gotchas'' for Multi-path Analysis

	4.2 Multi-path Analysis: Analytics
	4.2.1 Complex Filtering With rwfilter
	4.2.2 Finding Low-Packet Flows with rwfilter
	4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount
	4.2.4 Summarizing Network Traffic with Bags
	4.2.5 Working with Bags and IPsets
	4.2.6 Masking IP Addresses
	4.2.7 Working With IPsets
	4.2.8 Indicating Flow Relationships
	4.2.9 Managing IPset, Bag, and Prefix Map Files

	4.3 Multi-path Analysis for Situational Awareness
	4.3.1 Structuring a Multi-path Analytic for Situational Awareness
	4.3.2 Characterizing Threats
	4.3.3 Profiling Data
	4.3.4 Multi-path Analysis for Differential Awareness: Investigate Abnormal Web Traffic

	4.4 Summary of SiLK Commands in Chapter 4

	5 Case Studies: Intermediate Multi-path Analysis
	5.1 Building Inventories of Network Flow Sensors With IPsets
	5.1.1 Path 1: Associate Addresses with a Single Sensor
	5.1.2 Path 2: Associate Addresses of Remaining Sensors
	5.1.3 Path 3: Associate Shared Addresses
	5.1.4 Merge Address Results

	5.2 Automating IPset Inventories of Network Flow Sensors
	5.2.1 Program Header
	5.2.2 Program Loop

	6 Advanced Exploratory Analysis with SiLK: Exploring and Hunting
	6.1 Exploratory Analysis: Concepts
	6.1.1 Exploring Network Behavior
	6.1.2 Starting Points for Exploratory Analysis
	6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity
	6.1.4 Observations on Exploratory Analysis

	6.2 Exploratory Analysis: Analytics
	6.2.1 Using Tuple Files for Complex Filtering
	6.2.2 Manipulating Bags
	6.2.3 Sets Versus Bags: A Scanning Example
	6.2.4 Manipulating SiLK Flow Record Files
	6.2.5 Generate Flow Records From Text
	6.2.6 Using Aggregate Bags
	6.2.7 Labeling Data with Prefix Maps

	6.3 Exploratory Analysis for Situational Awareness
	6.3.1 Structuring an Exploratory Analysis for Situational Awareness
	6.3.2 Situational Awareness for User-driven and Automated Services
	6.3.3 Exploratory Analysis for Differential and Actionable Awareness: Investigate Abnormal Web Traffic

	6.4 Summary of SiLK Commands in Chapter 6

	7 Case Studies: Advanced Exploratory Analysis
	7.1 Dataset for Exploratory Case Studies
	7.2 Case Study: Investigating Suspicious TCP Behavior
	7.2.1 Level 0: Which TCP Requests are Suspicious?
	7.2.2 Level 1: Which Requests are Illegitimate?
	7.2.3 Level 2: What are the Illegitimate Sources and Destinations Doing?
	7.2.4 Level 3: What are the Commonalities Across The Cases?

	7.3 Case Study: Exploring Network Messaging for Information Exposure
	7.3.1 Prepare a Model of the Enterprise Network and Protocols
	7.3.2 Pull Records Associated with ICMP Flows
	7.3.3 What Anomalies are in the ICMP Records?
	7.3.4 Exploring Attributes of ICMP Messaging
	7.3.5 Wrap Up Investigation and Identify Follow-On Analyses

	8 Extending the Reach of SiLK with PySiLK
	8.1 Using PySiLK
	8.1.1 PySiLK Requirements
	8.1.2 PySiLK Scripts and Plug-ins

	8.2 Extending rwfilter with PySiLK
	8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating Inconsistent Sources
	8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting Port Knocking
	8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Environment
	8.2.4 Simple PySiLK with rwfilter--python-expr
	8.2.5 PySiLK with Complex Combinations of Rules
	8.2.6 Use of Data Structures in Partitioning

	8.3 Extending SiLK with Fields Defined with PySiLK
	8.4 Extending rwcut and rwsort with PySiLK
	8.4.1 Computing Values from Multiple Records
	8.4.2 Computing a Value Based on Multiple Fields in a Record
	8.4.3 Defining a Character String Field for rwcut
	8.4.4 Defining a Character String Field for Five SiLK Tools

	8.5 Defining Key Fields and Summary Value Fields for rwuniq and rwstats

	9 Tuning SiLK for Improved Performance
	9.1 Introduction
	9.1.1 Example: Reducing the Run Time of SiLK Analyses
	9.1.2 Processor Contention, Data Contention, and Performance

	9.2 Using Concurrent rwfilter Calls to Spread the Load Across Processors
	9.2.1 Parallelizing rwfilter Calls By Type
	9.2.2 Parallelizing rwfilter Calls By Flow Time

	9.3 Combining Results From Concurrent rwfilter Calls via rwuniq, rwcount, and rwstats
	9.4 Parallelizing via the rwfilter--threads Parameter
	9.4.1 Improving rwfilter Performance with --threads
	9.4.2 Effect of --threads On Other rwfilter Parameters
	9.4.3 Limitations On --threads Performance Improvements

	9.5 Constructing Efficient Queries
	9.5.1 Pipelining Calls to SiLK commands
	9.5.2 Using Flow Characteristics To Improve rwfilter Efficiency
	9.5.3 Specifying Fewer SiLK Types In rwfilter Calls
	9.5.4 Constraining rwfilter Output
	9.5.5 Merging the Results of Multiple rwfilter Calls

	9.6 Using Coarse Parallelism
	9.7 Using Named Pipes and Process Substitution
	9.8 Specifying Local Temporary Files
	9.9 Administrative Actions to Improve SiLK Performance
	9.10 Summary of Strategies to Improve SiLK Performance

	A TCP/IP, UDP and ICMP Headers
	A.1 Structure of the IP Header
	A.2 Structure of the TCP Header
	A.2.1 TCP Flags
	A.2.2 Major TCP Services

	A.3 Structure of UDP and ICMP Headers
	A.3.1 UDP and ICMP Packet Structure
	A.3.2 Major UDP Services and ICMP Messages

	B Common Features of SiLK Commands
	B.1 Getting Help with SiLK Tools
	B.2 Displaying the Current Version of SiLK
	B.3 Parameters Common to Important SiLK Commands

	C Additional Information on SiLK
	C.1 SiLK Support and Documentation
	C.2 FloCon Conference and Social Media
	C.3 Email Addresses and Mailing Lists

	D Further Reading and Resources
	D.1 Unix and Linux
	D.1.1 Useful UNIX Commands
	D.1.2 Online Tutorials on Unix and Linux
	D.1.3 Books on Unix and Linux

	D.2 Networking and TCP/IP
	D.2.1 Online Courses on Networking and TCP/IP Fundamentals
	D.2.2 Books on Networking and TCP/IP Fundamentals

	D.3 Network Flow and Related Topics
	D.3.1 Technical Papers
	D.3.2 Books on Network Flow and Network Security

	D.4 Bash Scripting Resources
	D.4.1 Online Tutorial
	D.4.2 Books on Bash Scripting

	D.5 Visualizing SiLK Data
	D.5.1 Rayon
	D.5.2 FloViz
	D.5.3 Graphviz—Graph Visualization Software
	D.5.4 The Spinning Cube of Potential Doom

	D.6 Networking Standards

	Index

