
RAVE Administrator’s Guide

Phil Groce
CERT Network Situational Awareness Group

April 27, 2007

Contents

I Introduction 2

1 About this document 2

2 Additional Information 2

II Installing RAVE 2

3 Requirements 3

4 How RAVE is distributed 3
4.1 Distutils package . 3
4.2 Raw archive . 3

5 RAVE Components 4
5.1 RAVE core and analysis libraries . 4
5.2 RAVE “Extras” . 4

5.2.1 raved configuration files . 4
5.3 Sample binaries . 4
5.4 Documentation . 4

III Writing RAVE Analyses 4

6 RAVE Operations 5

7 Using operations within operations 6

8 File Operations 8

9 Passing options to operations 8

10 Managing data retention with @expires 9

11 Operation versioning 9

12 Typemaps 10

1

13 Specifying output type 12

IV raved and mod rave 12

14 raved and mod rave Configuration 12
14.1 System Requirements . 12
14.2 raved Configuration . 13

14.2.1 Command-line configuration options . 13
14.2.2 Namespace configuration . 14
14.2.3 Log configuration . 14

14.3 mod rave configuration . 14

15 Writing analyses for raved 15
15.1 Namespaces . 15
15.2 Internal namespace organization . 16
15.3 Exporting Operations . 16

V Appendices 17

A List of expiration strategies 17

B List of RAVE type specifiers 18

2

Part I

Introduction

The Retrospective Analysis and Visualization Environment (RAVE) is a framework for writing and sharing
code that generates data analysis and visualization products. The goal of the RAVE project is to provide an
environment in which to write analyses that run faster and integrate smoothly into a number of operating
environments.

RAVE minimizes the cost of executing expensive analyses by caching their results. For most functions,
it simply caches the return value of the function; when the same function is called again with the same
arguments, it returns the cached value rather than running the function again. (This process is called mem-
oization.) If the analysis returns a large amount of data, the analysis can write the result directly to a file, as
well.

Beyond caching, RAVE provides interfaces for sharing both the analyses themselves as services, and for
sharing the results cache directly among multiple users.

At its core, RAVE is a set of Python libraries. The simplest way to use RAVE is at the Python command
prompt. 1 One may also write applications to run analyses in a different user interface, or to interact with
other applications across a network. One such application, raved , comes with RAVE. raved provides
RAVE analyses via HTTP.

RAVE was written to support the analysis tasks of network operations centers performing queries on large
sets of network monitoring data. Although this continues to be the focus of development, RAVE is de-
signed simply to improve performance of expensive processes with caching, a desirable feature in many
environments.

1 About this document

This guide takes you through the installation of RAVE and shows you how to RAVE-enable your code. We
also discuss how to install and configure raved , and how to use some existing RAVE-enabled libraries for
querying databases and other large datasets, notably network flow data stored using SiLK.

2 Additional Information

There is additional documentation on specific functions and classes available via Pydoc, the Python inline
code documentation system. To view this documentation at the command-line, type pydoc modulename ,
where modulename is a RAVE library module, such as rave.plugins.decorators .

1We recommend iPython (http://ipython.scipy.org/) as a full-featured interactive Python environment.

3

http://ipython.scipy.org/

Part II

Installing RAVE

3 Requirements

RAVE requires Python, at least version 2.4. Subsequent versions may work, but are untested. Additionally,
analysis operations may require additional libraries in order to work.

4 How RAVE is distributed

RAVE is distributed as a Python distutils-based package and as a raw source archive.

4.1 Distutils package

For most systems a Python package is available, based on distutils. Python packages are distributed as
gzipped TAR archives. The distutils-based package is named rave-1.9.0.tar.gz.

To install the python package, extract the archive and run the package’s setup.py script. For instance:

tar xvzf python-1.9.0.tar.gz
cd python-1.9.0
python ./setup.py install

You can call setup.py with a number of options to customize your installation. For more information, see
http://docs.python.org/inst .

The distutils package does not contain the mod rave Apache module, documentation or examples. To
obtain these, either download the unpackaged archive or the rave-extras-1.9.0.tar.gz archive. The
contents of rave-extras is outlined in Section 5.

4.2 Raw archive

If it is unsuitable to install from a Python distutils package, RAVE is also available as a plain gzipped TAR
archive.

To distinguish between this and the Python distutils package, this file is named rave-unpackaged-1.9.0.tar.gz .

To install from the raw source files, extract the archive into some temporary space. This will create a di-
rectory called rave-1.9.0 . You may then move the files to their final destination, as appropriate to your
system.

For more information on the contents of this archive, see Section 5.

4

http://docs.python.org/inst

5 RAVE Components

5.1 RAVE core and analysis libraries

These will be installed in your Python installation’s site-packages directory. In the unpackaged archive,
they reside in the lib/python directory. These libraries must be in the Python module search path for
RAVE to work. See http://docs.python.org/tut/node8.html for details.

5.2 RAVE “Extras”

The following items are included in the unpackaged TAR archive and in the rave-extras archive. They
are not part of the distutils package. Filenames are relative to the root of the archive.

5.2.1 raved configuration files

The doc/examples directory contains example log and namespace configuration files for raved . Also
included is a sample init script for managing raved as a system service.

5.3 Sample binaries

The bin/samples directory contains sample binaries illustrating how to write applications that talk to
RAVE. Currently, the only application in this directory is rave-get.py , a command-line application which
requests analyses from raved .

5.4 Documentation

The doc directory contains documentation, including this document.

Part III

Writing RAVE Analyses

In order for RAVE to do its job, needs to know what results it should cache, how the results are returned, and
other meta-information about the results, like how long they can be cached before they must be recomputed.

In Python, we can this obtain this information fairly unobtrusively through function decorators.2 Deco-
rators can also change the behavior of functions; RAVE uses this to implement its results caching. RAVE
analyses, then are simply Python functions with some special decorators attached.

2For more information on Python decorator syntax, see http://www.python.org/dev/peps/pep-0318/ and http://
docs.python.org/ref/function.html

5

http://docs.python.org/tut/node8.html
http://www.python.org/dev/peps/pep-0318/
http://docs.python.org/ref/function.html
http://docs.python.org/ref/function.html

6 RAVE Operations

To begin, let’s turn a normal Python function into a RAVE analysis.

def complex():
Do a big complex query
return query_results

To enable RAVE to cache the output of this function requires two additional lines of code:

from rave.plugins.decorators import op
@op
def complex():

Do a big complex query
return query_results

We import some symbols from rave.plugins.decorators and decorate complex with @op. This
signifies that complex is a RAVE operation. Operations are identical to normal Python functions, but RAVE
stores their return value in its cache; if someone runs the function again with the same arguments, RAVE
returns the cached value instead of running the function again. We can make this obvious (with a different
example) at the command-line:

>>> from rave.plugins.decorators import op
>>>
>>> @op
... def add(a, b):
... print "Executing add"
... return a + b
...
>>> add(1, 2)
Executing add
3
>>> add(1, 2)
3
>>> add(1, 3) # different args, should run function
Executing add
4

Here’s another example. The following function returns the nth number in the Fibonacci sequence:

>>> @op
... def fib(n):
... if n <= 0:
... return 0
... elif n == 1:
... return 1
... else:
... return fib(n-2) + fib(n-1)

6

Because fib is an @op, it caches its output. Because it’s defined recursively, it implicitly caches all its
intermediate work as it goes. You can see the benefits using Python’s timeit module:

>>> from timeit import Timer
>>> Timer(’fib(50)’, ’from test import fib’).timeit(1)
0.41100001335144043
>>> Timer(’fib(50)’, ’from test import fib’).timeit(1)
0.0014078617095947266
>>> Timer(’fib(25)’, ’from test import fib’).timeit(1)
0.0012981891632080078

The times above are in fractions of a second. In other words, all those calls took under a second. By
comparison, here’s how long it took on one machine to make similar calls on a fib function that was not
an @op:

>>> Timer(’fib(20)’, ’from test import fib’).timeit(1)
0.014575958251953125
>>> Timer(’fib(30)’, ’from test import fib’).timeit(1)
1.2909920215606689
>>> Timer(’fib(40)’, ’from test import fib’).timeit(1)
160.64894795417786

7 Using operations within operations

You can use RAVE operations within other operations. In fact, this is a very effective way to use cached
data. Consider the following:

from rave.plugins.decorators import *

def aggregate(data):
aggregate data points in *data into
a single report
return aggregated

def visualize(proto, port):
generate an amalgamated visualization
of proto and port data
return visualized

@op
def generate_hourly_port_report(hour, port):

generate the report
return generated

@op
def generate_hourly_proto_report(hour, proto):

generate the report
return generated

7

@op
def generate_proto_reports(day, proto):

hourlies = []
for hour in day.hours():

hourlies.append(
generate_hourly_proto_report(hour, proto)

)
return aggregate(hourlies)

@op
def generate_port_reports(day, port):

hourlies = []
for hour in day.hours():

hourlies.append(
generate_hourly_port_report(hour, port)

)
return aggregate(hourlies)

#
Putting it all together...
#

@op
def generate_daily_reports(day):

daily_protos = []
for proto in (1, 6, 17):

daily_protos.append(
generate_daily_proto_report(day, proto)

)
proto reports = aggregate(daily_protos)

daily_ports = []
for port in (22, 25, 80):

daily_ports.append(
generate_daily_proto_report(day, port)

)
port_reports = aggregate(daily_ports)
return visualize(daily_protos, daily_ports)

The function generate daily reports runs reports for three IP protocols and three TCP ports. To get
its data, it calls generate port report and generate proto report for each protocol or port; they,
in turn, return an aggregate of the hourly reports for each protocol or port. 3

If we run generate daily reports , say, in a cron job at the end of the day (for looking at the next
morning), we cache not only the single daily report visualization, but all the data used to generate it, broken
down by port or protocol and by hour. Drilling into the data used to generate the report will be much

3Some readers might notice that aggregate is not an @op. In this example, the results of a specific call to aggregate are only
of interest to that specific caller; we don’t expect someone to want the results of aggregating this particular set of daily reports again,
unless they’re calling generate daily reports , which is already cached. Another reason not to make a function an @op is when
the process of retrieving a cached result is no faster than computing the result. The add example used previously is such a case—in
the real world, it takes much less overhead to add two numbers than to retrieve the results from an on-disk cache.

8

easier because the data was implicitly cached by generate daily reports . Alternately, we could run
the generate hourly report scripts after each hour, and the end-of-day report will run much more
quickly.

8 File Operations

Some things are inconvenient to pass as a function return value, but nice to cache. Large data sets are
inconvenient to store in memory. As a result, tools that manipulate these sorts of data frequently work
in terms of files on disk. Visualizations often fall into this category, too—most APIs for generating or
manipulating images expect to work with files on disk.

RAVE supports this way of working with the file operation. Writing a file operation is very similar to writing
a normal operation. Consider this example:

import os
@op_file
def thumbnail(out_file, in_file, width, height):

os.system(
"convert %s -size %d %d %s" % (

in_file, width, height, out_file))

This function generates a thumbnail from (presumably) the name of a larger image on the disk using the
convert utility from ImageMagick. 4 out file points to a file which the RAVE cache will manage.

It is decorated with @opfile rather than @op. The behavior RAVE expects from an @opfile -decorated
function is somewhat different from that of an operation. Most importantly, its output is expected to be
written to the file whose name is passed via the first argument; as a result, its return value is ignored.

Note, too, that RAVE supplies the first argument to the function. When calling the function, therefore, omit
the first argument:

new_file = thumbnail("/path/to/input/file.png", 100, 100)

Finally, RAVE passes the filename as the return value of the function, even though the function returns
nothing (and its return value would be ignored if it did).

9 Passing options to operations

You can control how an @op or an @opfile runs by passing it special arguments that RAVE reads before
executing the underlying function. To distinguish these from normal arguments, we call them options.

For example, what if we want to use thumbnail as a normal function? Perhaps we want to use it as an
intermediate step in the production of a larger image, and we don’t care to cache the created file because it
will never be used anywhere else. To do this, pass the operation the rave tofile option:

Write thumbnail to a temporary file
new_file = thumbnail("/path/to/input/file.png", 100, 100,

rave_tofile="mythumb.png")

4http://www.imagemagick.org

9

http://www.imagemagick.org

When called like this, thumbnail will write its output to the file “myfile.png”. (It will also return this file-
name, so in this example, new file will contain the string ‘‘myfile.png’’ .This will always be identical
to the name in rave tofile , and may therefore be safely ignored.)

RAVE operations support the following options:

rave tofile Value: File name. Execute the @opfile , writing the output to the specified file.

rave refresh Value: True or False (default). Assume any cached value for this operation has expired
and should be refreshed.

rave deep refresh Value: True or False (default). Like rave refresh , but also refresh any opera-
tions this operation may call.

rave dry run Value: True or False (default). If a cached version exists, return it; otherwise, return
None.

10 Managing data retention with @expires

The most common reason to remove data from a cache is to reclaim space the cache occupies. However,
even assuming infinite disk space, some results will require recomputation after some period of time. When
dealing with very recent time-series data, for instance, it may be that new data for the time period in
question will arrive shortly. It may improve performance to cache the results briefly, but soon the cached
data will be too outdated to continue using.

Use the @expires decorator to control how long to retain cached data. @expires takes as its input a
cache expiration strategy, which is a function whose return value is a time. After that time, the data being
cached will be considered invalid. For example, soon is an expiration strategy for operations whose values
should not stay in the cache very long:

import time
def soon(req):

return time.time() + 300 # five minutes

@op
@expires(soon)
def volatile_data(x, y, z):

...

Expiration strategies like soon take one argument, a Request object. 5 They return a Unix time value after
which the results returned should be considered invalid.

See Appendix A for further discussion of the expiration strategies that come with RAVE.

11 Operation versioning

Something else can invalidate the results of an operation besides age—changing the operation itself. When
RAVE is determining whether it has cached data for an operation call, it takes four things into account: the

5The Request object is documented in detail in the rave.plugins.decorators module. For more information, type pydoc
rave.plugins.decorators at the command line.

10

operation itself, the arguments to the operation, the age of the data, and whether the operation has changed
since the data was cached.

By default, RAVE uses the modification time of the file in which the operation was defined to determine if
the operation was changed. This works most of the time; however, there are times it might cause problems.
For example, perhaps there was only a small cosmetic change to a function (like renaming a variable),
and want to continue returning cached data. Perhaps the operation in question didn’t change at all, only
something else in the same file.

If it is important to only invalidate the cache data when the operation substantively changes, consider
giving the operation a specific version. Beyond expiration, RAVE will only invalidate the cached results of
a versioned operation if the version changes, regardless of whether the file containing it changed.

Versioning an operation is fairly simple; just add the @version decorator:

@op
@expires(duration_strategy(300))
@version("20070211")
def my_operation(x, y, z):

...

This example uses the string “20070211” as the version identifer, but it can be any valid Python value.
(We recommend encoding the date of change in the version number, in order to know when it was last
changed.) Whenever it changes, the cache results from that operation are no longer valid. Similarly, if the
file or operation changes, will remain valid unless the version identifier has changed.

In environments with large amounts of cached data, versioning can provide a way to preserve cached data
that is still useful even though an operation or module may have changed. When versioning an operation,
however, take care to change the version every time the operation changes in a meaningful way; otherwise,
the cache may inadvertently store inaccurate data.

12 Typemaps

Most of the time, @op, @opfile , @expires and @version are sufficient to make the most out of RAVE.
You could use the following operation with no problems for quite some time:

@op
@expires(duration_strategy(’30m’))
def top_n(n):

"Get the top n elements from data."
rows = fetch_sorted_data()
return [rows[x] for x in len(rows) if x < n]

However, this code has two limitations, which, depending on its purpose , may or may not be significant:

1. This function generates the same results whether its first argument is 10 (an integer) or 10.0 (a
floating-point value). However, to the cache, they are different arguments, which may result in need-
less cache misses.

2. All operations exported to raved initially receive their input as strings. This operation will be called
as top n("10") , which will produce an error.

11

The fundamental problem is that Python doesn’t know what type n is. In Python, this is usually no problem;
it implicitly converts what it can when something is used, and raises an exception when it can’t.

Since we are using the arguments to the function as identifiers in a cache, however, equivalent types with
different representations will cause them to be stored in different parts of the cache, so RAVE may not notice
cache data for an operation invocation, even if it is still valid. This is also a problem in service-oriented
architectures which need to know the arguments the function expects so it can convert them before calling
the function.

To get around this limitation, RAVE has the concept of typemaps. RAVE analysis developers can use
typemaps to let the cache and service applications know what argument types an operation expects. As a
bonus, typemapped operations will already have their arguments converted to a standard representation—
a very handy feature for data types with multiple valid representations, such as dates.

Add a typemap to an @op or an @opfile using a decorator:

@op
@typemap(str, int, iso_date, iso_date)
@expires(duration_strategy(’2h’))
def my_op(name, num, sdate, edate):

...

This typemap indicates that the argument name is a string, num is an integer, and sdate and edate are
variables of the type iso date .

You can specify a typemap in a number of ways—the syntax is essentially the same as a Python function
call. Therefore, all of the following are equivalent:

@typemap(str, int, iso_date, iso_date)
@typemap(name=str, num=int, sdate=iso_date, edate=iso_date)
order doesn’t matter when all types are passed in with keywords
@typemap(sdate=iso_date, edate=iso_date, num=int, name=str)
It is legal to use keywords for some arguments and not for others
(be sure the non-keyword arguments are in the right position)
@typemap(str, int, sdate=iso_date, edate=iso_date)

The typemap performs type conversion, not merely type checking. Therefore, if the caller passes the string
"1" as the first argument to my op , name will get the value 1—the string has been converted into an int.

The valid values for @typemap arguments are:

• any of Python’s built-in types—e.g., str , int , float , list , dict . For a complete list, see http:
//www.python.org/doc/2.4.4/lib/types.html .

• one of the compound types specified in rave.plugins.decorators (e.g., list of , one of , any)
See Appendix B for a fuller description of these type specifiers.

• The value None. This means that the only acceptable input for this parameter is the value None. (This
is useful in some compound type converters—for instance, one of(None, str) means that a value
can be a string or None.)

• A function which takes a single value for its input and returns the value converted into the target
type. If the function cannot convert the value, it raises TypeError .

Do not specify the type of the first argument to an @opfile (the output file name). RAVE will handle all
aspects of this argument.

12

http://www.python.org/doc/2.4.4/lib/types.html
http://www.python.org/doc/2.4.4/lib/types.html

13 Specifying output type

Typemaps convert input into something the operation expects; to let external functions know what kind of
output to expect, we provide @mimetype .

As with @typemap , the @mimetype decorator is more useful if when exporting an operation to others in
a network service environment. For using operations within a Python program (including the interactive
prompt), the @mimetype decorator isn’t necessarily very valuable.

To use MIME type, decorate an @opor @opfile with @mimetype , supplying the MIME type as a string:

@op_file
@typemap(int, iso_date, iso_date)
@mime_type(’image/png’)
@expires(duration_strategy(’2h’))
def visualize_protocols(out_file, proto, sdate, edate):

#....

If a MIME type is not supplied, it is assumed to be application/octet-stream .

Part IV

raved and mod rave

The raved application provides access to RAVE analyses via HTTP. In conjunction with mod rave and
the Apache web server, it can be a useful visualization and analysis backend for web applications such as
portals or operations consoles.

raved does not deliver analysis products directly to the end-user. Rather, raved responds to requests for
different analysis products with references to the location of the product (typically HTTP URLs). The client
must then retrieve the analysis product separately. This allows raved to focus on generating analysis
products, leaving the task of serving the data to more appropriate applications, such as Apache.

mod rave is an Apache module which provides a more intuitive interface to end users. It proxies con-
nections from clients, requests analyses from RAVE, and returns the analysis results directly in a single
request.

14 raved and mod rave Configuration

14.1 System Requirements

raved comes in the main RAVE distribution, and has no additional requirements. mod rave requires
Apache version 2 or later and mod python version 3.1.3 or later.

13

14.2 raved Configuration

raved uses configuration files to track its namespaces and logging. All other configuration is done using
command-line switches.

14.2.1 Command-line configuration options

raved takes the following options on the command line.

--listen-addr raved will listen for connections on the interface bound to this network address.

--listen-port raved will listen for connections to this port.

--data-dir Directory in which to cache intermediate analysis data.

--data-expire-after If an analysis has no other caching strategy, expire it after it exceeds this age, in
seconds. This option applies only analysis data. For visualizations, use --vis-expire-after

--data-purge-every raved will periodically remove expired items from the data cache to save disk
space. This option controls how often this happens. If unspecified, raved will purge the data cache
every two hours.

--output-dir Directory where raved should write visualizations.

--vis-expire-after Similar to --data-expire-after , this parameter determines when existing
visualizations will no longer be served in response to requests and may be cleaned up.

--vis-purge-every raved will periodically remove expired items from the visualization cache to
save disk space. This option controls how often this happens. If unspecified, raved will purge the
visualization cache every two hours.

--threads The number of worker threads RAVE spawns. Administrators should pick a number of
threads based on available system resources and performance requirements. The default is five
threads.

--namespace-config Location of the analysis namespace configuration file. See Section 15.1 for more
information.

--namespace-root The optional root of all analysis namespace paths. See Section 15.1 for more infor-
mation.

--log-config Location of the logging configuration file.

--load-error-fatal This option takes no value. If specified, errors encountered while loading analy-
sis namespaces will cause raved to halt. Default behavior is to start anyway with all successfully-
loaded analyses.

--url-base When RAVE returns a ticket to a visualization, it prepends the contents of this option to the
location of the visualization to create (usually) a URL.

--no-daemon This option takes no value. If specified, raved will remain attached to the calling terminal
and send its output to the console. This can be useful when troubleshooting. By default, raved
detaches from the terminal and runs as a daemon process.

14

--working-dir When invoked as a daemon (see --no-daemon) raved will make the value of this
option its working directory. If --no-daemon is supplied, the working directory will be the invoking
user’s current working directory and this value will be ignored. By default, raved will change its
working directory to the root (“/”).

--pidfile File to which raved should write its process ID.

14.2.2 Namespace configuration

For a fuller discussion of namespaces, see Section 15.1

raved reads its namespace configuration from the namespace configuration file, whose name it gets from
the --namespace-config command-line option. The configuration file has an INI-file syntax.

[namespaces]
foo=/usr/local/home/foo/namespace
bar=/usr/local/home/bar/namespace

This configuration maps the foo namespace to the directory /usr/local/home/foo/namespace and
the bar namespace to /usr/local/home/bar/namespace . A request for foo/op1 will look for the
operation labeled op1 in the foo namespace. A request for baz/op1 or just /op1 would both yield errors.

Administrators may wish to use the nsroot variable to simplify the configuration file. The previous con-
figuration file could be rewritten using nsroot in the following way:

[namespaces]
foo=%(nsroot)s/foo/namespace
bar=%(nsroot)s/bar/namespace

The string %(nsroot)s is replaced with the value of the --namespace-root command-line option. 6 If
many or all of your namespaces share a common parent directory, this saves some typing, and may offer
you some flexibility. (If the mount point for home directories changes, for instances, you don’t need to
modify the namespace configuration file; just restart raved with a different --namespace-root .)

14.2.3 Log configuration

raved reads its logging configuration from the file specified by the --log-config command-line option.
raved uses the standard Python logging module to emit log information; for more information on the log
configuration file syntax, see http://www.python.org/doc/2.4.4/lib/module-logging.html

14.3 mod rave configuration

mod rave is an Apache module; its configuration is done inside the Apache configuration file. For more
information on Apache configuration file syntax, see http://httpd.apache.org/docs/ .

To enable mod rave , you need to make sure mod python can locate the Python libraries needed to run it.
To do this, use the PythonPath Apache configuration directive

6The "%()s" syntax is an extension of the common “printf” syntax, and is common in Python. See http://www.python.org/
doc/2.4.4/lib/typesseq-strings.html for more information on this pattern.

15

http://www.python.org/doc/2.4.4/lib/module-logging.html
http://httpd.apache.org/docs/
http://www.python.org/doc/2.4.4/lib/typesseq-strings.html
http://www.python.org/doc/2.4.4/lib/typesseq-strings.html

PythonPath "sys.path + [/path/to/the_module/]"

Next, add a location that mod rave will handle, as in this example:

<Location "/rave-proxy">
SetHandler mod_python
PythonHandler mod_rave
PythonOption rave-service http://rave.example.com:8888/

</Location>

The SetHandler and PythonHandler directives tell Apache that mod rave will process requests made
to this location. The two PythonOption directive specifies the location of the listening raved process.

15 Writing analyses for raved

To use RAVE operations with raved , they must supply typemaps and MIME types with the @typemap
and @mimetype decorators. The operations themselves may also require libraries to be installed on the
system running raved .

Other than that, there are two other important concepts involved in running operations through raved
—operation namespaces and exporting operations.

15.1 Namespaces

All operations accessible via raved live in namespaces. All raved requests have the form <namespace>/<operation> ,
where <namespace> is the namespace name, and <operation> is a symbolic name given to a RAVE op-
eration.

Namespaces solve two problems that come up when running code in a server process such as raved —
access control and availability.

Operations are basically code in Python modules. Normally, Python loads its modules once when its pro-
cess first starts. It generally loads from only a few places, and access requirements for those locations are
very simple—the user starting the process should be able to read from everywhere.

The assumptions may not hold in a long-running server process. The access requirements for raved are
more like those of a web-server; several different people may contribute operations, and they need areas
where they can read and write their code. However, they probably don’t need access to areas where other
people contribute their code.

Also like a web server, users contributing operations need to be able to change operations and see those
changes without restarting the raved process. This allows administrators to separate the privilege of
writing raved -accessible operations from the privileges of running or restarting the raved process.

Each raved namespace is a separate directory. raved treats this directory as a Python package (a Python
module that can contain other modules). The maintainer of this namespace may organize the package
however they wish. When a namespace maintainer makes a change to the namespace, raved recognizes
the change and reloads the code.

Namespace maintainers don’t need to be able to start or stop raved or change any of its configuration
files, nor do they need to be see any of the other namespaces. The user running raved needs only read
access to the namespaces.

16

15.2 Internal namespace organization

Internally, namespaces are Python packages—Python modules which contain other modules. Practically,
this means the namespace directory contains an init .py file. This file can contain all the code for the
namespace; more commonly, however, it is nearly empty, and contains only the definition of the all
variable:

__all__ = [’amod’, ’bmod’]

This line tells Python that amod.py and bmod.py are part of this package, and should be loaded as well.

For more details on maintaining a Python package, see http://www.python.org/doc/2.4.4/tut/
node8.html .

15.3 Exporting Operations

For an external client to request an analysis operation from raved , the operation must be exported. Other
code running in raved may still call unexported operations and RAVE will cache their results normally,
but they are not externally accessible.

To export an operation, define a Python dictionary named export in the module where you define
your operations:

from rave.plugins.decorators import *

@op
@typemap(str)
@mime_type("text/plain")
def hello(name):

return "Hello, %s!" % name

@op
@typemap(str)
@mime_type("text/plain")
def goodbye(name):

return "Goodbye, %s!" % name

@op
@typemap(int)
@mime_type("text/plain")
def fib(n):

if n <= 0:
return 0

elif n == 1:
return 1

else:
return fib(n-2) + fib(n-1)

__export__ = {
’fibonacci’: fib,
’greeting/hello’: hello,

17

http://www.python.org/doc/2.4.4/tut/node8.html
http://www.python.org/doc/2.4.4/tut/node8.html

’greeting/goodbye’: goodbye }

The keys to export are names for the analysis, while the values are the operations themselves. As-
suming these operations were defined in the namespace foo , these operations would now be externally
accessible as foo/fibonacci , foo/greeting/hello and foo/greeting/goodbye .

An export name must be unique within the namespace. RAVE-enabled services will combine the exported
name with the namespace name to locate the exported operation. Beyond that, export names can be any
string. However, we recommend you limit yourself to alphanumeric, hyphen and underscore characters
for export names.

Part V

Appendices

A List of expiration strategies

The following expiration strategies are supplied with RAVE. For a fuller discussion of expiration strategies,
see Section 10.

forever Returns a constant value indicating that the result should always remain cached.

nocache Returns a constant value indicating that the result should never be cached.

RAVE also provides some strategy factories. The results of these functions are expiration strategy functions
specialized to certain situations.

duration strategy(interval) Returns an expiration strategy which will return a value that is interval
seconds after the cached item is generated. interval can be a number or a string containing one or
more interval specifiers of the form <number><unit> , where <number> is an integer and <unit>
is one of d , h, m, or s (for days, hours, minutes and seconds, respectively). For example, the following
operation:

@op
@expires(duration_strategy(’2h30m’)
def foo(a, b):

...

will expire two and a half hours after it is created.

crossover strategy(a, b, age, age arg) returns strategy a if the time in age arg is more
recent than age ; otherwise it returns b. This is often useful for caching time-series data; it is often
useful to refresh such data more frequently if it is very recent, as new information may about the time
in question may still be coming in. For example, the following operation:

five_mins = duration_strategy(’5m’)
five_days = duration_strategy(’5d’)
@op

18

@expires(crossover_strategy(
five_mins, five_days, 3*60*60, ’etime’))

def foo(a, b, stime, etime):
...

will cache data with an end time newer than three hours for five minutes, and will cache data older
than three hours for five days.

B List of RAVE type specifiers

Type specifiers are used in typemaps. See Section 12 for a discussion of what typemaps are and why they
are useful.

The following is a list of type specifiers supplied by RAVE.

list of(*types) Specifies a list containing the types in *types , in that order. If there are more items
in the input list than in *types , the *types list is recycled to consume the input.

one of(*types) Specifies that the input should be converted successfully into at least one of the types
listed in *types . The returned value will be the output of the first successful conversion. One useful
way to use this is to specify that an input can be either a value of a given type or None. For instance, a
value that can be either a string or None could be represented by one of(None, str) . (Note that,
because str would “successfully” convert the value None into the string "None" , the literal None
has to precede it in the list.

any Always succeeds, and returns the input value, unchanged. Use if a typemap is desirable, but the type
of a particular parameter is unimportant.

19

	I Introduction
	1 About this document
	2 Additional Information

	II Installing RAVE
	3 Requirements
	4 How RAVE is distributed
	4.1 Distutils package
	4.2 Raw archive

	5 RAVE Components
	5.1 RAVE core and analysis libraries
	5.2 RAVE ``Extras''
	5.2.1 raved configuration files

	5.3 Sample binaries
	5.4 Documentation

	III Writing RAVE Analyses
	6 RAVE Operations
	7 Using operations within operations
	8 File Operations
	9 Passing options to operations
	10 Managing data retention with @expires
	11 Operation versioning
	12 Typemaps
	13 Specifying output type

	IV raved and mod_rave
	14 raved and mod_rave Configuration
	14.1 System Requirements
	14.2 raved Configuration
	14.2.1 Command-line configuration options
	14.2.2 Namespace configuration
	14.2.3 Log configuration

	14.3 mod_rave configuration

	15 Writing analyses for raved
	15.1 Namespaces
	15.2 Internal namespace organization
	15.3 Exporting Operations

	V Appendices
	A List of expiration strategies
	B List of RAVE type specifiers

